
Network Working Group S. Blake-Wilson
Request for Comments: 3546 BCI
Updates: 2246 M. Nystrom
Category: Standards Track RSA Security
 D. Hopwood
 Independent Consultant
 J. Mikkelsen
 Transactionware
 T. Wright
 Vodafone
 June 2003

Transport Layer Security (TLS) Extensions

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes extensions that may be used to add
 functionality to Transport Layer Security (TLS). It provides both
 generic extension mechanisms for the TLS handshake client and server
 hellos, and specific extensions using these generic mechanisms.

 The extensions may be used by TLS clients and servers. The
 extensions are backwards compatible - communication is possible
 between TLS 1.0 clients that support the extensions and TLS 1.0
 servers that do not support the extensions, and vice versa.

Conventions used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [KEYWORDS].

Blake-Wilson, et. al. Standards Track [Page 1]

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

RFC 3546 TLS Extensions June 2003

Table of Contents

1. Introduction ... 2
2. General Extension Mechanisms 4

2.1. Extended Client Hello 5
2.2. Extended Server Hello 5
2.3. Hello Extensions 6
2.4. Extensions to the handshake protocol 7

3. Specific Extensions 8
3.1. Server Name Indication 8
3.2. Maximum Fragment Length Negotiation 10
3.3. Client Certificate URLs 11
3.4. Trusted CA Indication 14
3.5. Truncated HMAC 15
3.6. Certificate Status Request........................... 16

4. Error alerts .. 18
5. Procedure for Defining New Extensions...................... 20
6. Security Considerations 21

6.1. Security of server_name 21
6.2. Security of max_fragment_length 21
6.3. Security of client_certificate_url 22
6.4. Security of trusted_ca_keys 23
6.5. Security of truncated_hmac 23
6.6. Security of status_request 24

7. Internationalization Considerations 24
8. IANA Considerations 24
9. Intellectual Property Rights 26
10. Acknowledgments .. 26
11. Normative References 27
12. Informative References 28
13. Authors' Addresses 28
14. Full Copyright Statement 29

1. Introduction

 This document describes extensions that may be used to add
 functionality to Transport Layer Security (TLS). It provides both
 generic extension mechanisms for the TLS handshake client and server
 hellos, and specific extensions using these generic mechanisms.

 TLS is now used in an increasing variety of operational environments
 - many of which were not envisioned when the original design criteria
 for TLS were determined. The extensions introduced in this document
 are designed to enable TLS to operate as effectively as possible in
 new environments like wireless networks.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 2]

RFC 3546 TLS Extensions June 2003

 Wireless environments often suffer from a number of constraints not
 commonly present in wired environments. These constraints may
 include bandwidth limitations, computational power limitations,
 memory limitations, and battery life limitations.

 The extensions described here focus on extending the functionality
 provided by the TLS protocol message formats. Other issues, such as
 the addition of new cipher suites, are deferred.

 Specifically, the extensions described in this document are designed
 to:

 - Allow TLS clients to provide to the TLS server the name of the
 server they are contacting. This functionality is desirable to
 facilitate secure connections to servers that host multiple
 'virtual' servers at a single underlying network address.

 - Allow TLS clients and servers to negotiate the maximum fragment
 length to be sent. This functionality is desirable as a result of
 memory constraints among some clients, and bandwidth constraints
 among some access networks.

 - Allow TLS clients and servers to negotiate the use of client
 certificate URLs. This functionality is desirable in order to
 conserve memory on constrained clients.

 - Allow TLS clients to indicate to TLS servers which CA root keys
 they possess. This functionality is desirable in order to prevent
 multiple handshake failures involving TLS clients that are only
 able to store a small number of CA root keys due to memory
 limitations.

 - Allow TLS clients and servers to negotiate the use of truncated
 MACs. This functionality is desirable in order to conserve
 bandwidth in constrained access networks.

 - Allow TLS clients and servers to negotiate that the server sends
 the client certificate status information (e.g., an Online
 Certificate Status Protocol (OCSP) [OCSP] response) during a TLS
 handshake. This functionality is desirable in order to avoid
 sending a Certificate Revocation List (CRL) over a constrained
 access network and therefore save bandwidth.

 In order to support the extensions above, general extension
 mechanisms for the client hello message and the server hello message
 are introduced.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 3]

RFC 3546 TLS Extensions June 2003

 The extensions described in this document may be used by TLS 1.0
 clients and TLS 1.0 servers. The extensions are designed to be
 backwards compatible - meaning that TLS 1.0 clients that support the
 extensions can talk to TLS 1.0 servers that do not support the
 extensions, and vice versa.

 Backwards compatibility is primarily achieved via two considerations:

 - Clients typically request the use of extensions via the extended
 client hello message described in Section 2.1. TLS 1.0 [TLS]
 requires servers to accept extended client hello messages, even if
 the server does not "understand" the extension.

 - For the specific extensions described here, no mandatory server
 response is required when clients request extended functionality.

 Note however, that although backwards compatibility is supported,
 some constrained clients may be forced to reject communications with
 servers that do not support the extensions as a result of the limited
 capabilities of such clients.

 The remainder of this document is organized as follows. Section 2
 describes general extension mechanisms for the client hello and
 server hello handshake messages. Section 3 describes specific
 extensions to TLS 1.0. Section 4 describes new error alerts for use
 with the TLS extensions. The final sections of the document address
 IPR, security considerations, registration of the application/pkix-
 pkipath MIME type, acknowledgements, and references.

2. General Extension Mechanisms

 This section presents general extension mechanisms for the TLS
 handshake client hello and server hello messages.

 These general extension mechanisms are necessary in order to enable
 clients and servers to negotiate whether to use specific extensions,
 and how to use specific extensions. The extension formats described
 are based on [MAILING LIST].

Section 2.1 specifies the extended client hello message format,
Section 2.2 specifies the extended server hello message format, and
Section 2.3 describes the actual extension format used with the

 extended client and server hellos.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 4]

RFC 3546 TLS Extensions June 2003

2.1. Extended Client Hello

 Clients MAY request extended functionality from servers by sending
 the extended client hello message format in place of the client hello
 message format. The extended client hello message format is:

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-1>;
 CompressionMethod compression_methods<1..2^8-1>;
 Extension client_hello_extension_list<0..2^16-1>;
 } ClientHello;

 Here the new "client_hello_extension_list" field contains a list of
 extensions. The actual "Extension" format is defined in Section 2.3.

 In the event that a client requests additional functionality using
 the extended client hello, and this functionality is not supplied by
 the server, the client MAY abort the handshake.

 Note that [TLS], Section 7.4.1.2, allows additional information to be
 added to the client hello message. Thus the use of the extended
 client hello defined above should not "break" existing TLS 1.0
 servers.

 A server that supports the extensions mechanism MUST accept only
 client hello messages in either the original or extended ClientHello
 format, and (as for all other messages) MUST check that the amount of
 data in the message precisely matches one of these formats; if not
 then it MUST send a fatal "decode_error" alert. This overrides the
 "Forward compatibility note" in [TLS].

2.2. Extended Server Hello

 The extended server hello message format MAY be sent in place of the
 server hello message when the client has requested extended
 functionality via the extended client hello message specified in

Section 2.1. The extended server hello message format is:

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 5]

RFC 3546 TLS Extensions June 2003

 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 Extension server_hello_extension_list<0..2^16-1>;
 } ServerHello;

 Here the new "server_hello_extension_list" field contains a list of
 extensions. The actual "Extension" format is defined in Section 2.3.

 Note that the extended server hello message is only sent in response
 to an extended client hello message. This prevents the possibility
 that the extended server hello message could "break" existing TLS 1.0
 clients.

2.3. Hello Extensions

 The extension format for extended client hellos and extended server
 hellos is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The extension types defined in this document are:

 enum {
 server_name(0), max_fragment_length(1),
 client_certificate_url(2), trusted_ca_keys(3),
 truncated_hmac(4), status_request(5), (65535)
 } ExtensionType;

 Note that for all extension types (including those defined in
 future), the extension type MUST NOT appear in the extended server
 hello unless the same extension type appeared in the corresponding
 client hello. Thus clients MUST abort the handshake if they receive
 an extension type in the extended server hello that they did not
 request in the associated (extended) client hello.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 6]

RFC 3546 TLS Extensions June 2003

 Nonetheless "server initiated" extensions may be provided in the
 future within this framework by requiring the client to first send an
 empty extension to indicate that it supports a particular extension.

 Also note that when multiple extensions of different types are
 present in the extended client hello or the extended server hello,
 the extensions may appear in any order. There MUST NOT be more than
 one extension of the same type.

 Finally note that all the extensions defined in this document are
 relevant only when a session is initiated. However, a client that
 requests resumption of a session does not in general know whether the
 server will accept this request, and therefore it SHOULD send an
 extended client hello if it would normally do so for a new session.
 If the resumption request is denied, then a new set of extensions
 will be negotiated as normal. If, on the other hand, the older
 session is resumed, then the server MUST ignore extensions appearing
 in the client hello, and send a server hello containing no
 extensions; in this case the extension functionality negotiated
 during the original session initiation is applied to the resumed
 session.

2.4. Extensions to the handshake protocol

 This document suggests the use of two new handshake messages,
 "CertificateURL" and "CertificateStatus". These messages are
 described in Section 3.3 and Section 3.6, respectively. The new
 handshake message structure therefore becomes:

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20), certificate_url(21), certificate_status(22),
 (255)
 } HandshakeType;

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 7]

RFC 3546 TLS Extensions June 2003

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 case certificate_url: CertificateURL;
 case certificate_status: CertificateStatus;
 } body;
 } Handshake;

3. Specific Extensions

 This section describes the specific TLS extensions specified in this
 document.

 Note that any messages associated with these extensions that are sent
 during the TLS handshake MUST be included in the hash calculations
 involved in "Finished" messages.

Section 3.1 describes the extension of TLS to allow a client to
 indicate which server it is contacting. Section 3.2 describes the
 extension to provide maximum fragment length negotiation. Section

3.3 describes the extension to allow client certificate URLs.
Section 3.4 describes the extension to allow a client to indicate

 which CA root keys it possesses. Section 3.5 describes the extension
 to allow the use of truncated HMAC. Section 3.6 describes the
 extension to support integration of certificate status information
 messages into TLS handshakes.

3.1. Server Name Indication

 [TLS] does not provide a mechanism for a client to tell a server the
 name of the server it is contacting. It may be desirable for clients
 to provide this information to facilitate secure connections to
 servers that host multiple 'virtual' servers at a single underlying
 network address.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 8]

RFC 3546 TLS Extensions June 2003

 In order to provide the server name, clients MAY include an extension
 of type "server_name" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain
 "ServerNameList" where:

 struct {
 NameType name_type;
 select (name_type) {
 case host_name: HostName;
 } name;
 } ServerName;

 enum {
 host_name(0), (255)
 } NameType;

 opaque HostName<1..2^16-1>;

 struct {
 ServerName server_name_list<1..2^16-1>
 } ServerNameList;

 Currently the only server names supported are DNS hostnames, however
 this does not imply any dependency of TLS on DNS, and other name
 types may be added in the future (by an RFC that Updates this
 document). TLS MAY treat provided server names as opaque data and
 pass the names and types to the application.

 "HostName" contains the fully qualified DNS hostname of the server,
 as understood by the client. The hostname is represented as a byte
 string using UTF-8 encoding [UTF8], without a trailing dot.

 If the hostname labels contain only US-ASCII characters, then the
 client MUST ensure that labels are separated only by the byte 0x2E,
 representing the dot character U+002E (requirement 1 in section 3.1
 of [IDNA] notwithstanding). If the server needs to match the HostName
 against names that contain non-US-ASCII characters, it MUST perform
 the conversion operation described in section 4 of [IDNA], treating
 the HostName as a "query string" (i.e. the AllowUnassigned flag MUST
 be set). Note that IDNA allows labels to be separated by any of the
 Unicode characters U+002E, U+3002, U+FF0E, and U+FF61, therefore
 servers MUST accept any of these characters as a label separator. If
 the server only needs to match the HostName against names containing
 exclusively ASCII characters, it MUST compare ASCII names case-
 insensitively.

 Literal IPv4 and IPv6 addresses are not permitted in "HostName".

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 9]

RFC 3546 TLS Extensions June 2003

 It is RECOMMENDED that clients include an extension of type
 "server_name" in the client hello whenever they locate a server by a
 supported name type.

 A server that receives a client hello containing the "server_name"
 extension, MAY use the information contained in the extension to
 guide its selection of an appropriate certificate to return to the
 client, and/or other aspects of security policy. In this event, the
 server SHALL include an extension of type "server_name" in the
 (extended) server hello. The "extension_data" field of this
 extension SHALL be empty.

 If the server understood the client hello extension but does not
 recognize the server name, it SHOULD send an "unrecognized_name"
 alert (which MAY be fatal).

 If an application negotiates a server name using an application
 protocol, then upgrades to TLS, and a server_name extension is sent,
 then the extension SHOULD contain the same name that was negotiated
 in the application protocol. If the server_name is established in
 the TLS session handshake, the client SHOULD NOT attempt to request a
 different server name at the application layer.

3.2. Maximum Fragment Length Negotiation

 [TLS] specifies a fixed maximum plaintext fragment length of 2^14
 bytes. It may be desirable for constrained clients to negotiate a
 smaller maximum fragment length due to memory limitations or
 bandwidth limitations.

 In order to negotiate smaller maximum fragment lengths, clients MAY
 include an extension of type "max_fragment_length" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain:

 enum{
 2^9(1), 2^10(2), 2^11(3), 2^12(4), (255)
 } MaxFragmentLength;

 whose value is the desired maximum fragment length. The allowed
 values for this field are: 2^9, 2^10, 2^11, and 2^12.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 10]

RFC 3546 TLS Extensions June 2003

 Servers that receive an extended client hello containing a
 "max_fragment_length" extension, MAY accept the requested maximum
 fragment length by including an extension of type
 "max_fragment_length" in the (extended) server hello. The
 "extension_data" field of this extension SHALL contain
 "MaxFragmentLength" whose value is the same as the requested maximum
 fragment length.

 If a server receives a maximum fragment length negotiation request
 for a value other than the allowed values, it MUST abort the
 handshake with an "illegal_parameter" alert. Similarly, if a client
 receives a maximum fragment length negotiation response that differs
 from the length it requested, it MUST also abort the handshake with
 an "illegal_parameter" alert.

 Once a maximum fragment length other than 2^14 has been successfully
 negotiated, the client and server MUST immediately begin fragmenting
 messages (including handshake messages), to ensure that no fragment
 larger than the negotiated length is sent. Note that TLS already
 requires clients and servers to support fragmentation of handshake
 messages.

 The negotiated length applies for the duration of the session
 including session resumptions.

 The negotiated length limits the input that the record layer may
 process without fragmentation (that is, the maximum value of
 TLSPlaintext.length; see [TLS] section 6.2.1). Note that the output
 of the record layer may be larger. For example, if the negotiated
 length is 2^9=512, then for currently defined cipher suites (those
 defined in [TLS], [KERB], and [AESSUITES]), and when null compression
 is used, the record layer output can be at most 793 bytes: 5 bytes of
 headers, 512 bytes of application data, 256 bytes of padding, and 20
 bytes of MAC. That means that in this event a TLS record layer peer
 receiving a TLS record layer message larger than 793 bytes may
 discard the message and send a "record_overflow" alert, without
 decrypting the message.

3.3. Client Certificate URLs

 [TLS] specifies that when client authentication is performed, client
 certificates are sent by clients to servers during the TLS handshake.
 It may be desirable for constrained clients to send certificate URLs
 in place of certificates, so that they do not need to store their
 certificates and can therefore save memory.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 11]

RFC 3546 TLS Extensions June 2003

 In order to negotiate to send certificate URLs to a server, clients
 MAY include an extension of type "client_certificate_url" in the
 (extended) client hello. The "extension_data" field of this
 extension SHALL be empty.

 (Note that it is necessary to negotiate use of client certificate
 URLs in order to avoid "breaking" existing TLS 1.0 servers.)

 Servers that receive an extended client hello containing a
 "client_certificate_url" extension, MAY indicate that they are
 willing to accept certificate URLs by including an extension of type
 "client_certificate_url" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

 After negotiation of the use of client certificate URLs has been
 successfully completed (by exchanging hellos including
 "client_certificate_url" extensions), clients MAY send a
 "CertificateURL" message in place of a "Certificate" message:

 enum {
 individual_certs(0), pkipath(1), (255)
 } CertChainType;

 enum {
 false(0), true(1)
 } Boolean;

 struct {
 CertChainType type;
 URLAndOptionalHash url_and_hash_list<1..2^16-1>;
 } CertificateURL;

 struct {
 opaque url<1..2^16-1>;
 Boolean hash_present;
 select (hash_present) {
 case false: struct {};
 case true: SHA1Hash;
 } hash;
 } URLAndOptionalHash;

 opaque SHA1Hash[20];

 Here "url_and_hash_list" contains a sequence of URLs and optional
 hashes.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 12]

RFC 3546 TLS Extensions June 2003

 When X.509 certificates are used, there are two possibilities:

 - if CertificateURL.type is "individual_certs", each URL refers to a
 single DER-encoded X.509v3 certificate, with the URL for the
 client's certificate first, or

 - if CertificateURL.type is "pkipath", the list contains a single
 URL referring to a DER-encoded certificate chain, using the type
 PkiPath described in Section 8.

 When any other certificate format is used, the specification that
 describes use of that format in TLS should define the encoding format
 of certificates or certificate chains, and any constraint on their
 ordering.

 The hash corresponding to each URL at the client's discretion is
 either not present or is the SHA-1 hash of the certificate or
 certificate chain (in the case of X.509 certificates, the DER-encoded
 certificate or the DER-encoded PkiPath).

 Note that when a list of URLs for X.509 certificates is used, the
 ordering of URLs is the same as that used in the TLS Certificate
 message (see [TLS] Section 7.4.2), but opposite to the order in which
 certificates are encoded in PkiPath. In either case, the self-signed
 root certificate MAY be omitted from the chain, under the assumption
 that the server must already possess it in order to validate it.

 Servers receiving "CertificateURL" SHALL attempt to retrieve the
 client's certificate chain from the URLs, and then process the
 certificate chain as usual. A cached copy of the content of any URL
 in the chain MAY be used, provided that a SHA-1 hash is present for
 that URL and it matches the hash of the cached copy.

 Servers that support this extension MUST support the http: URL scheme
 for certificate URLs, and MAY support other schemes.

 If the protocol used to retrieve certificates or certificate chains
 returns a MIME formatted response (as HTTP does), then the following
 MIME Content-Types SHALL be used: when a single X.509v3 certificate
 is returned, the Content-Type is "application/pkix-cert" [PKIOP], and
 when a chain of X.509v3 certificates is returned, the Content-Type is
 "application/pkix-pkipath" (see Section 8).

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 13]

RFC 3546 TLS Extensions June 2003

 If a SHA-1 hash is present for an URL, then the server MUST check
 that the SHA-1 hash of the contents of the object retrieved from that
 URL (after decoding any MIME Content-Transfer-Encoding) matches the
 given hash. If any retrieved object does not have the correct SHA-1
 hash, the server MUST abort the handshake with a
 "bad_certificate_hash_value" alert.

 Note that clients may choose to send either "Certificate" or
 "CertificateURL" after successfully negotiating the option to send
 certificate URLs. The option to send a certificate is included to
 provide flexibility to clients possessing multiple certificates.

 If a server encounters an unreasonable delay in obtaining
 certificates in a given CertificateURL, it SHOULD time out and signal
 a "certificate_unobtainable" error alert.

3.4. Trusted CA Indication

 Constrained clients that, due to memory limitations, possess only a
 small number of CA root keys, may wish to indicate to servers which
 root keys they possess, in order to avoid repeated handshake
 failures.

 In order to indicate which CA root keys they possess, clients MAY
 include an extension of type "trusted_ca_keys" in the (extended)
 client hello. The "extension_data" field of this extension SHALL
 contain "TrustedAuthorities" where:

 struct {
 TrustedAuthority trusted_authorities_list<0..2^16-1>;
 } TrustedAuthorities;

 struct {
 IdentifierType identifier_type;
 select (identifier_type) {
 case pre_agreed: struct {};
 case key_sha1_hash: SHA1Hash;
 case x509_name: DistinguishedName;
 case cert_sha1_hash: SHA1Hash;
 } identifier;
 } TrustedAuthority;

 enum {
 pre_agreed(0), key_sha1_hash(1), x509_name(2),
 cert_sha1_hash(3), (255)
 } IdentifierType;

 opaque DistinguishedName<1..2^16-1>;

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 14]

RFC 3546 TLS Extensions June 2003

 Here "TrustedAuthorities" provides a list of CA root key identifiers
 that the client possesses. Each CA root key is identified via
 either:

 - "pre_agreed" - no CA root key identity supplied.

 - "key_sha1_hash" - contains the SHA-1 hash of the CA root key. For
 DSA and ECDSA keys, this is the hash of the "subjectPublicKey"
 value. For RSA keys, the hash is of the big-endian byte string
 representation of the modulus without any initial 0-valued bytes.
 (This copies the key hash formats deployed in other environments.)

 - "x509_name" - contains the DER-encoded X.509 DistinguishedName of
 the CA.

 - "cert_sha1_hash" - contains the SHA-1 hash of a DER-encoded
 Certificate containing the CA root key.

 Note that clients may include none, some, or all of the CA root keys
 they possess in this extension.

 Note also that it is possible that a key hash or a Distinguished Name
 alone may not uniquely identify a certificate issuer - for example if
 a particular CA has multiple key pairs - however here we assume this
 is the case following the use of Distinguished Names to identify
 certificate issuers in TLS.

 The option to include no CA root keys is included to allow the client
 to indicate possession of some pre-defined set of CA root keys.

 Servers that receive a client hello containing the "trusted_ca_keys"
 extension, MAY use the information contained in the extension to
 guide their selection of an appropriate certificate chain to return
 to the client. In this event, the server SHALL include an extension
 of type "trusted_ca_keys" in the (extended) server hello. The
 "extension_data" field of this extension SHALL be empty.

3.5. Truncated HMAC

 Currently defined TLS cipher suites use the MAC construction HMAC
 with either MD5 or SHA-1 [HMAC] to authenticate record layer
 communications. In TLS the entire output of the hash function is
 used as the MAC tag. However it may be desirable in constrained
 environments to save bandwidth by truncating the output of the hash
 function to 80 bits when forming MAC tags.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 15]

RFC 3546 TLS Extensions June 2003

 In order to negotiate the use of 80-bit truncated HMAC, clients MAY
 include an extension of type "truncated_hmac" in the extended client
 hello. The "extension_data" field of this extension SHALL be empty.

 Servers that receive an extended hello containing a "truncated_hmac"
 extension, MAY agree to use a truncated HMAC by including an
 extension of type "truncated_hmac", with empty "extension_data", in
 the extended server hello.

 Note that if new cipher suites are added that do not use HMAC, and
 the session negotiates one of these cipher suites, this extension
 will have no effect. It is strongly recommended that any new cipher
 suites using other MACs consider the MAC size as an integral part of
 the cipher suite definition, taking into account both security and
 bandwidth considerations.

 If HMAC truncation has been successfully negotiated during a TLS
 handshake, and the negotiated cipher suite uses HMAC, both the client
 and the server pass this fact to the TLS record layer along with the
 other negotiated security parameters. Subsequently during the
 session, clients and servers MUST use truncated HMACs, calculated as
 specified in [HMAC]. That is, CipherSpec.hash_size is 10 bytes, and
 only the first 10 bytes of the HMAC output are transmitted and
 checked. Note that this extension does not affect the calculation of
 the PRF as part of handshaking or key derivation.

 The negotiated HMAC truncation size applies for the duration of the
 session including session resumptions.

3.6. Certificate Status Request

 Constrained clients may wish to use a certificate-status protocol
 such as OCSP [OCSP] to check the validity of server certificates, in
 order to avoid transmission of CRLs and therefore save bandwidth on
 constrained networks. This extension allows for such information to
 be sent in the TLS handshake, saving roundtrips and resources.

 In order to indicate their desire to receive certificate status
 information, clients MAY include an extension of type
 "status_request" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain
 "CertificateStatusRequest" where:

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 16]

RFC 3546 TLS Extensions June 2003

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPStatusRequest;
 } request;
 } CertificateStatusRequest;

 enum { ocsp(1), (255) } CertificateStatusType;

 struct {
 ResponderID responder_id_list<0..2^16-1>;
 Extensions request_extensions;
 } OCSPStatusRequest;

 opaque ResponderID<1..2^16-1>;
 opaque Extensions<0..2^16-1>;

 In the OCSPStatusRequest, the "ResponderIDs" provides a list of OCSP
 responders that the client trusts. A zero-length "responder_id_list"
 sequence has the special meaning that the responders are implicitly
 known to the server - e.g., by prior arrangement. "Extensions" is a
 DER encoding of OCSP request extensions.

 Both "ResponderID" and "Extensions" are DER-encoded ASN.1 types as
 defined in [OCSP]. "Extensions" is imported from [PKIX]. A zero-
 length "request_extensions" value means that there are no extensions
 (as opposed to a zero-length ASN.1 SEQUENCE, which is not valid for
 the "Extensions" type).

 In the case of the "id-pkix-ocsp-nonce" OCSP extension, [OCSP] is
 unclear about its encoding; for clarification, the nonce MUST be a
 DER-encoded OCTET STRING, which is encapsulated as another OCTET
 STRING (note that implementations based on an existing OCSP client
 will need to be checked for conformance to this requirement).

 Servers that receive a client hello containing the "status_request"
 extension, MAY return a suitable certificate status response to the
 client along with their certificate. If OCSP is requested, they
 SHOULD use the information contained in the extension when selecting
 an OCSP responder, and SHOULD include request_extensions in the OCSP
 request.

 Servers return a certificate response along with their certificate by
 sending a "CertificateStatus" message immediately after the
 "Certificate" message (and before any "ServerKeyExchange" or
 "CertificateRequest" messages). If a server returns a

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 17]

RFC 3546 TLS Extensions June 2003

 "CertificateStatus" message, then the server MUST have included an
 extension of type "status_request" with empty "extension_data" in the
 extended server hello.

 struct {
 CertificateStatusType status_type;
 select (status_type) {
 case ocsp: OCSPResponse;
 } response;
 } CertificateStatus;

 opaque OCSPResponse<1..2^24-1>;

 An "ocsp_response" contains a complete, DER-encoded OCSP response
 (using the ASN.1 type OCSPResponse defined in [OCSP]). Note that
 only one OCSP response may be sent.

 The "CertificateStatus" message is conveyed using the handshake
 message type "certificate_status".

 Note that a server MAY also choose not to send a "CertificateStatus"
 message, even if it receives a "status_request" extension in the
 client hello message.

 Note in addition that servers MUST NOT send the "CertificateStatus"
 message unless it received a "status_request" extension in the client
 hello message.

 Clients requesting an OCSP response, and receiving an OCSP response
 in a "CertificateStatus" message MUST check the OCSP response and
 abort the handshake if the response is not satisfactory.

4. Error Alerts

 This section defines new error alerts for use with the TLS extensions
 defined in this document.

 The following new error alerts are defined. To avoid "breaking"
 existing clients and servers, these alerts MUST NOT be sent unless
 the sending party has received an extended hello message from the
 party they are communicating with.

 - "unsupported_extension" - this alert is sent by clients that
 receive an extended server hello containing an extension that they
 did not put in the corresponding client hello (see Section 2.3).
 This message is always fatal.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 18]

RFC 3546 TLS Extensions June 2003

 - "unrecognized_name" - this alert is sent by servers that receive a
 server_name extension request, but do not recognize the server
 name. This message MAY be fatal.

 - "certificate_unobtainable" - this alert is sent by servers who are
 unable to retrieve a certificate chain from the URL supplied by
 the client (see Section 3.3). This message MAY be fatal - for
 example if client authentication is required by the server for the
 handshake to continue and the server is unable to retrieve the
 certificate chain, it may send a fatal alert.

 - "bad_certificate_status_response" - this alert is sent by clients
 that receive an invalid certificate status response (see Section

3.6). This message is always fatal.

 - "bad_certificate_hash_value" - this alert is sent by servers when
 a certificate hash does not match a client provided
 certificate_hash. This message is always fatal.

 These error alerts are conveyed using the following syntax:

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed(21),
 record_overflow(22),
 decompression_failure(30),
 handshake_failure(40),
 /* 41 is not defined, for historical reasons */
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 user_canceled(90),
 no_renegotiation(100),
 unsupported_extension(110), /* new */
 certificate_unobtainable(111), /* new */

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 19]

RFC 3546 TLS Extensions June 2003

 unrecognized_name(112), /* new */
 bad_certificate_status_response(113), /* new */
 bad_certificate_hash_value(114), /* new */
 (255)
 } AlertDescription;

5. Procedure for Defining New Extensions

 Traditionally for Internet protocols, the Internet Assigned Numbers
 Authority (IANA) handles the allocation of new values for future
 expansion, and RFCs usually define the procedure to be used by the
 IANA. However, there are subtle (and not so subtle) interactions
 that may occur in this protocol between new features and existing
 features which may result in a significant reduction in overall
 security.

 Therefore, requests to define new extensions (including assigning
 extension and error alert numbers) must be approved by IETF Standards
 Action.

 The following considerations should be taken into account when
 designing new extensions:

 - All of the extensions defined in this document follow the
 convention that for each extension that a client requests and that
 the server understands, the server replies with an extension of
 the same type.

 - Some cases where a server does not agree to an extension are error
 conditions, and some simply a refusal to support a particular
 feature. In general error alerts should be used for the former,
 and a field in the server extension response for the latter.

 - Extensions should as far as possible be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem.

 Often the fact that the extension fields are included in the
 inputs to the Finished message hashes will be sufficient, but
 extreme care is needed when the extension changes the meaning of
 messages sent in the handshake phase. Designers and implementors
 should be aware of the fact that until the handshake has been
 authenticated, active attackers can modify messages and insert,
 remove, or replace extensions.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 20]

RFC 3546 TLS Extensions June 2003

 - It would be technically possible to use extensions to change major
 aspects of the design of TLS; for example the design of cipher
 suite negotiation. This is not recommended; it would be more
 appropriate to define a new version of TLS - particularly since
 the TLS handshake algorithms have specific protection against
 version rollback attacks based on the version number, and the
 possibility of version rollback should be a significant
 consideration in any major design change.

6. Security Considerations

 Security considerations for the extension mechanism in general, and
 the design of new extensions, are described in the previous section.
 A security analysis of each of the extensions defined in this
 document is given below.

 In general, implementers should continue to monitor the state of the
 art, and address any weaknesses identified.

 Additional security considerations are described in the TLS 1.0 RFC
 [TLS].

6.1. Security of server_name

 If a single server hosts several domains, then clearly it is
 necessary for the owners of each domain to ensure that this satisfies
 their security needs. Apart from this, server_name does not appear
 to introduce significant security issues.

 Implementations MUST ensure that a buffer overflow does not occur
 whatever the values of the length fields in server_name.

 Although this document specifies an encoding for internationalized
 hostnames in the server_name extension, it does not address any
 security issues associated with the use of internationalized
 hostnames in TLS - in particular, the consequences of "spoofed" names
 that are indistinguishable from another name when displayed or
 printed. It is recommended that server certificates not be issued
 for internationalized hostnames unless procedures are in place to
 mitigate the risk of spoofed hostnames.

6.2. Security of max_fragment_length

 The maximum fragment length takes effect immediately, including for
 handshake messages. However, that does not introduce any security
 complications that are not already present in TLS, since [TLS]
 requires implementations to be able to handle fragmented handshake
 messages.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 21]

RFC 3546 TLS Extensions June 2003

 Note that as described in section 3.2, once a non-null cipher suite
 has been activated, the effective maximum fragment length depends on
 the cipher suite and compression method, as well as on the negotiated
 max_fragment_length. This must be taken into account when sizing
 buffers, and checking for buffer overflow.

6.3. Security of client_certificate_url

 There are two major issues with this extension.

 The first major issue is whether or not clients should include
 certificate hashes when they send certificate URLs.

 When client authentication is used *without* the
 client_certificate_url extension, the client certificate chain is
 covered by the Finished message hashes. The purpose of including
 hashes and checking them against the retrieved certificate chain, is
 to ensure that the same property holds when this extension is used -
 i.e., that all of the information in the certificate chain retrieved
 by the server is as the client intended.

 On the other hand, omitting certificate hashes enables functionality
 that is desirable in some circumstances - for example clients can be
 issued daily certificates that are stored at a fixed URL and need not
 be provided to the client. Clients that choose to omit certificate
 hashes should be aware of the possibility of an attack in which the
 attacker obtains a valid certificate on the client's key that is
 different from the certificate the client intended to provide.
 Although TLS uses both MD5 and SHA-1 hashes in several other places,
 this was not believed to be necessary here. The property required of
 SHA-1 is second pre-image resistance.

 The second major issue is that support for client_certificate_url
 involves the server acting as a client in another URL protocol. The
 server therefore becomes subject to many of the same security
 concerns that clients of the URL scheme are subject to, with the
 added concern that the client can attempt to prompt the server to
 connect to some, possibly weird-looking URL.

 In general this issue means that an attacker might use the server to
 indirectly attack another host that is vulnerable to some security
 flaw. It also introduces the possibility of denial of service
 attacks in which an attacker makes many connections to the server,
 each of which results in the server attempting a connection to the
 target of the attack.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 22]

RFC 3546 TLS Extensions June 2003

 Note that the server may be behind a firewall or otherwise able to
 access hosts that would not be directly accessible from the public
 Internet; this could exacerbate the potential security and denial of
 service problems described above, as well as allowing the existence
 of internal hosts to be confirmed when they would otherwise be
 hidden.

 The detailed security concerns involved will depend on the URL
 schemes supported by the server. In the case of HTTP, the concerns
 are similar to those that apply to a publicly accessible HTTP proxy
 server. In the case of HTTPS, the possibility for loops and
 deadlocks to be created exists and should be addressed. In the case
 of FTP, attacks similar to FTP bounce attacks arise.

 As a result of this issue, it is RECOMMENDED that the
 client_certificate_url extension should have to be specifically
 enabled by a server administrator, rather than being enabled by
 default. It is also RECOMMENDED that URI protocols be enabled by the
 administrator individually, and only a minimal set of protocols be
 enabled, with unusual protocols offering limited security or whose
 security is not well-understood being avoided.

 As discussed in [URI], URLs that specify ports other than the default
 may cause problems, as may very long URLs (which are more likely to
 be useful in exploiting buffer overflow bugs).

 Also note that HTTP caching proxies are common on the Internet, and
 some proxies do not check for the latest version of an object
 correctly. If a request using HTTP (or another caching protocol)
 goes through a misconfigured or otherwise broken proxy, the proxy may
 return an out-of-date response.

6.4. Security of trusted_ca_keys

 It is possible that which CA root keys a client possesses could be
 regarded as confidential information. As a result, the CA root key
 indication extension should be used with care.

 The use of the SHA-1 certificate hash alternative ensures that each
 certificate is specified unambiguously. As for the previous
 extension, it was not believed necessary to use both MD5 and SHA-1
 hashes.

6.5. Security of truncated_hmac

 It is possible that truncated MACs are weaker than "un-truncated"
 MACs. However, no significant weaknesses are currently known or
 expected to exist for HMAC with MD5 or SHA-1, truncated to 80 bits.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 23]

RFC 3546 TLS Extensions June 2003

 Note that the output length of a MAC need not be as long as the
 length of a symmetric cipher key, since forging of MAC values cannot
 be done off-line: in TLS, a single failed MAC guess will cause the
 immediate termination of the TLS session.

 Since the MAC algorithm only takes effect after the handshake
 messages have been authenticated by the hashes in the Finished
 messages, it is not possible for an active attacker to force
 negotiation of the truncated HMAC extension where it would not
 otherwise be used (to the extent that the handshake authentication is
 secure). Therefore, in the event that any security problem were
 found with truncated HMAC in future, if either the client or the
 server for a given session were updated to take into account the
 problem, they would be able to veto use of this extension.

6.6. Security of status_request

 If a client requests an OCSP response, it must take into account that
 an attacker's server using a compromised key could (and probably
 would) pretend not to support the extension. A client that requires
 OCSP validation of certificates SHOULD either contact the OCSP server
 directly in this case, or abort the handshake.

 Use of the OCSP nonce request extension (id-pkix-ocsp-nonce) may
 improve security against attacks that attempt to replay OCSP
 responses; see section 4.4.1 of [OCSP] for further details.

7. Internationalization Considerations

 None of the extensions defined here directly use strings subject to
 localization. Domain Name System (DNS) hostnames are encoded using
 UTF-8. If future extensions use text strings, then
 internationalization should be considered in their design.

8. IANA Considerations

 The MIME type "application/pkix-pkipath" has been registered by the
 IANA with the following template:

 To: ietf-types@iana.org Subject: Registration of MIME media type
 application/pkix-pkipath

 MIME media type name: application

 MIME subtype name: pkix-pkipath

 Required parameters: none

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 24]

RFC 3546 TLS Extensions June 2003

 Optional parameters: version (default value is "1")

 Encoding considerations:
 This MIME type is a DER encoding of the ASN.1 type PkiPath,
 defined as follows:
 PkiPath ::= SEQUENCE OF Certificate
 PkiPath is used to represent a certification path. Within the
 sequence, the order of certificates is such that the subject of
 the first certificate is the issuer of the second certificate,
 etc.

 This is identical to the definition that will be published in
 [X509-4th-TC1]; note that it is different from that in [X509-4th].

 All Certificates MUST conform to [PKIX]. (This should be
 interpreted as a requirement to encode only PKIX-conformant
 certificates using this type. It does not necessarily require
 that all certificates that are not strictly PKIX-conformant must
 be rejected by relying parties, although the security consequences
 of accepting any such certificates should be considered
 carefully.)

 DER (as opposed to BER) encoding MUST be used. If this type is
 sent over a 7-bit transport, base64 encoding SHOULD be used.

 Security considerations:
 The security considerations of [X509-4th] and [PKIX] (or any
 updates to them) apply, as well as those of any protocol that uses
 this type (e.g., TLS).

 Note that this type only specifies a certificate chain that can be
 assessed for validity according to the relying party's existing
 configuration of trusted CAs; it is not intended to be used to
 specify any change to that configuration.

 Interoperability considerations:
 No specific interoperability problems are known with this type,
 but for recommendations relating to X.509 certificates in general,
 see [PKIX].

 Published specification: this memo, and [PKIX].

 Applications which use this media type: TLS. It may also be used by
 other protocols, or for general interchange of PKIX certificate
 chains.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 25]

RFC 3546 TLS Extensions June 2003

 Additional information:
 Magic number(s): DER-encoded ASN.1 can be easily recognized.
 Further parsing is required to distinguish from other ASN.1
 types.
 File extension(s): .pkipath
 Macintosh File Type Code(s): not specified

 Person & email address to contact for further information:
 Magnus Nystrom <magnus@rsasecurity.com>

 Intended usage: COMMON

 Author/Change controller:
 Magnus Nystrom <magnus@rsasecurity.com>

9. Intellectual Property Rights

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in RFC 2028. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this document. Please address the information to the IETF Executive
 Director.

10. Acknowledgments

 The authors wish to thank the TLS Working Group and the WAP Security
 Group. This document is based on discussion within these groups.

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc2028

Blake-Wilson, et. al. Standards Track [Page 26]

RFC 3546 TLS Extensions June 2003

11. Normative References

 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-hashing for message authentication", RFC 2104,
 February 1997.

 [HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [IDNA] Faltstrom, P., Hoffman, P. and A. Costello,
 "Internationalizing Domain Names in Applications
 (IDNA)", RFC 3490, March 2003.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [OCSP] Myers, M., Ankney, R., Malpani, A., Galperin, S. and
 C. Adams, "Internet X.509 Public Key Infrastructure:
 Online Certificate Status Protocol - OCSP", RFC 2560,
 June 1999.

 [PKIOP] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure - Operation Protocols: FTP and HTTP",

RFC 2585, May 1999.

 [PKIX] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
 Public Key Infrastructure - Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version
 1.0", RFC 2246, January 1999.

 [URI] Berners-Lee, T., Fielding, R. and L. Masinter,
 "Uniform Resource Identifiers (URI): Generic Syntax",

RFC 2396, August 1998.

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

 [X509-4th] ITU-T Recommendation X.509 (2000) | ISO/IEC 9594-
 8:2001, "Information Systems - Open Systems
 Interconnection - The Directory: Public key and
 attribute certificate frameworks."

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc2585
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2279

Blake-Wilson, et. al. Standards Track [Page 27]

RFC 3546 TLS Extensions June 2003

 [X509-4th-TC1] ITU-T Recommendation X.509(2000) Corrigendum 1(2001) |
 ISO/IEC 9594-8:2001/Cor.1:2002, Technical Corrigendum
 1 to ISO/IEC 9594:8:2001.

12. Informative References

 [KERB] Medvinsky, A. and M. Hur, "Addition of Kerberos Cipher
 Suites to Transport Layer Security (TLS)", RFC 2712,
 October 1999.

 [MAILING LIST] J. Mikkelsen, R. Eberhard, and J. Kistler, "General
 ClientHello extension mechanism and virtual hosting,"
 ietf-tls mailing list posting, August 14, 2000.

 [AESSUITES] Chown, P., "Advanced Encryption Standard (AES)
 Ciphersuites for Transport Layer Security (TLS)", RFC

3268, June 2002.

13. Authors' Addresses

 Simon Blake-Wilson
 BCI
 EMail: sblakewilson@bcisse.com

 Magnus Nystrom
 RSA Security
 EMail: magnus@rsasecurity.com

 David Hopwood
 Independent Consultant
 EMail: david.hopwood@zetnet.co.uk

 Jan Mikkelsen
 Transactionware
 EMail: janm@transactionware.com

 Tim Wright
 Vodafone
 EMail: timothy.wright@vodafone.com

https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc2712
https://datatracker.ietf.org/doc/html/rfc3268
https://datatracker.ietf.org/doc/html/rfc3268

Blake-Wilson, et. al. Standards Track [Page 28]

RFC 3546 TLS Extensions June 2003

14. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/rfc3546

Blake-Wilson, et. al. Standards Track [Page 29]

