
Network Working Group M. Terada
Request for Comments: 4154 NTT DoCoMo
Category: Informational K. Fujimura
 NTT
 September 2005

Voucher Trading System Application Programming Interface (VTS-API)

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

IESG Note

 This document is not a candidate for any level of Internet Standard.
 This document specifies the Voucher Trading System Application
 Programming Interface (VTS-API), which assumes that the VTS plug-in
 is trusted by its user. The application making calls to VTS-API
 ought to authenticate the VTS plug-in and securely bind the plug-in
 with the VTS provider information specified in the Voucher Component.
 However, this document does not specify an approach to application
 authentication. The VTS-API should not be used without being
 augmented by an application authentication mechanism.

Abstract

 This document specifies the Voucher Trading System Application
 Programming Interface (VTS-API). The VTS-API allows a wallet or
 other application to issue, transfer, and redeem vouchers in a
 uniform manner independent of the VTS implementation. The VTS is a
 system for securely transferring vouchers; e.g., coupons, tickets,
 loyalty points, and gift certificates. This process is often
 necessary in the course of payment and/or delivery transactions.

Terada & Fujimura Informational [Page 1]

RFC 4154 VTS-API September 2005

Table of Contents

1. Introduction ... 3
2. Processing Model ... 4
3. Design Overview .. 6
4. Concepts ... 6
5. Interface Definitions .. 8

5.1. VTSManager .. 8
5.1.1. getParticipantRepository 8
5.1.2. getVoucherComponentRepository 8

5.2. ParticipantRepository 9
5.2.1. lookup ... 9

5.3. Participant ... 9
5.3.1. getIdentifier 10
5.3.2. getVTSAgent 10

5.4. VTSAgent .. 10
5.4.1. login .. 11
5.4.2. logout ... 12
5.4.3. prepare .. 12
5.4.4. issue .. 13
5.4.5. transfer ... 14
5.4.6. consume .. 15
5.4.7. present .. 16
5.4.8. cancel ... 17
5.4.9. resume ... 18
5.4.10. create .. 18
5.4.11. delete .. 19
5.4.12. getContents 19
5.4.13. getSessions 19
5.4.14. getLog .. 20
5.4.15. addReceptionListener 20
5.4.16. removeReceptionListener 21

5.5. Session ... 21
5.5.1. getIdentifier 21
5.5.2. getVoucher 22
5.5.3. getSender .. 22
5.5.4. getReceiver 22
5.5.5. isPrepared 22
5.5.6. isActivated 23
5.5.7. isSuspended 23
5.5.8. isCompleted 23

5.6. Voucher ... 23
5.6.1. getIssuer .. 23
5.6.2. getPromise 24
5.6.3. getCount ... 24

5.7. VoucherComponentRepository 24
5.7.1. register ... 24

5.8. VoucherComponent .. 25

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 2]

RFC 4154 VTS-API September 2005

5.8.1. getIdentifier 25
5.8.2. getDocument 26

5.9. ReceptionListener 26
5.9.1. arrive ... 26

5.10. Exceptions ... 27
6. Example Code ... 28
7. Security Considerations 29
8. Acknowledgements ... 30
9. Normative References ... 30
10. Informative References 30

1. Introduction

 This document specifies the Voucher Trading System Application
 Programming Interface (VTS-API). The motivation and background of
 the Voucher Trading System (VTS) are described in Requirements for
 Generic Voucher Trading [VTS].

 A voucher is a logical entity that represents a certain right, and it
 is logically managed by the VTS. A voucher is generated by the
 issuer, traded among users, and finally collected using VTS. The
 terminology and model of the VTS are also described in [VTS].

 VTSes can be implemented in different ways, such as a centralized
 VTS, which uses a centralized online server to store and manage all
 vouchers, or a distributed VTS, which uses per-user smartcards to
 maintain the vouchers owned by each user. However, the VTS-API
 allows a caller application to issue, transfer, and redeem vouchers
 in a uniform manner independent of the VTS implementation. Several
 attempts have been made to provide a generic payment API. Java
 Commerce Client [JCC] and Generic Payment Service Framework [GPSF],
 for example, introduce a modular wallet architecture that permits
 diverse types of payment modules to be added as plug-ins and supports
 both check-like/cash-like payment models. This document is inspired
 by these approaches but its scope is limited to the VTS model, in
 which the cash-like payment model is assumed and vouchers are
 directly or indirectly transferred between the sender (transferor)
 and receiver (transferee) via the VTS. This document is not intended
 to support API for SET, e-check, or other payment schemes that do not
 fit the VTS model.

 Unlike the APIs provided in JCC and GPSF, which are designed to
 transfer only monetary values, this API enables the transfer of a
 wide range of values through the use of XML-based Generic Voucher
 Language [GVL]. The monetary meaning of the voucher is interpreted
 by the upper application layer using the information described in the
 language. This approach makes it possible to provide a simpler API
 in the voucher-transfer layer and enhances runtime efficiency. The

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 3]

RFC 4154 VTS-API September 2005

 API specification in this document is described in the Java language
 syntax. Bindings for other programming languages may be completed in
 a future version of this document or in separate related
 specifications.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]

2. Processing Model

 This section provides the processing model in which the VTS-API is
 used. A part of the text in this section has been taken from the
 Generic Voucher Language specification [GVL].

 There are several ways to implement VTS. For discount coupons or
 event tickets, for example, a smartcard-based distributed offline VTS
 is often preferred, whereas for bonds or securities, a centralized
 online VTS is preferred. While distributed VTSes would utilize
 public (asymmetric) key-based or shared (symmetric) key-based
 cryptographic challenge-and-response protocols to trade vouchers
 securely, centralized VTSes would utilize transactions that rewrite
 ownerships of vouchers on their database. Therefore, it is
 impractical to define standard protocols for issuing, transferring,
 or redeeming vouchers at this time.

 To provide implementation flexibility, this document assumes a
 modular wallet architecture that allows multiple VTSes to be added as
 plug-ins. In this architecture, instead of specifying a standard
 voucher transfer protocol, two specifications, Voucher Component and
 VTS-API, are standardized (Figure 1).

https://datatracker.ietf.org/doc/html/rfc4154
https://datatracker.ietf.org/doc/html/rfc2119

Terada & Fujimura Informational [Page 4]

RFC 4154 VTS-API September 2005

 Sender wallet/Issuing system Receiver wallet/Collecting system
 +---------------------------+ +---------------------------+
	Voucher Component					
	(Specifies VTS Provider and Promise)					
	-->					
	Intention to receive and payment (option)					
	<- -					
	Issue/transfer/ VTS		VTS Register			
	redeem request plug-in	plug-in Listener(*1)				
	------------------>				<------------------	
	(VTS API)	<- - - - - - - ->	(VTS API)			
		VTS-specific				
		protocol if VTS				
		is distributed				
	Result	<- - - - - - - ->	Notify(*2)			
	<------------------				------------------>	
 +---------------------------+ +---------------------------+

 (*1) Registration is optional. Note also that the VTS plug-ins are
 usually pre-registered when the wallet or collecting system
 is started.

 (*2) If a listener is registered.

 Figure 1. Wallet architecture with VTS plug-ins

 In this architecture, a VTS provides a logical view of vouchers
 called a Valid Voucher Set (VVS), which is a set that includes the
 vouchers <I,P,H> managed by the VTS [VTS]. A user's wallet can
 access (e.g., view, transfer, and redeem) the subset of the VVS that
 includes a set of vouchers owned by the user by interacting with the
 VTS plug-in via the VTS-API. Likewise, an issuing system can issue a
 voucher and add it to the VVS, and a collecting system can be
 notified of the redemption of vouchers via the VTS-API.

 After a sender and a receiver agree on what vouchers are to be traded
 and which VTS is to be used, the issuing system or wallet system
 requests the corresponding VTS plug-in to permit the issue, transfer,
 or redemption transactions to be performed via the VTS-API. The VTS
 then logically rewrites the ownership of the vouchers on the VVS
 using the VTS-specific protocol. Since the VTS is responsible for
 preventing illegal acts on vouchers like forgery or reproduction, as
 required in [VTS], the protocol would include a cryptographic
 challenge-and-response (in a distributed VTS) or a transactional

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 5]

RFC 4154 VTS-API September 2005

 database manipulation with adequate access controls (in a centralized
 VTS). Finally, a completion event is sent to the wallet systems or
 issuing/collecting systems.

 This document describes the VTS-API specification. See [GVL] for the
 Voucher Component specification that gives the syntax and semantics
 for describing and interpreting the meaning of vouchers.

3. Design Overview

 We have adopted the following approach to specify the VTS-API.

 1) Provide an abstract and uniform API that encapsulates the VTS
 implementation. For example, a common API is provided for both
 centralized and distributed VTSes. Issuers and application
 developers have more freedom in VTS selection.

 2) To provide an abstract and uniform API, this document
 introduces an interface called VTSAgent that is associated with
 a holder and provides methods to manipulate vouchers held by
 its holder. Vouchers are accessed through the methods provided
 by the VTSAgent.

 3) Use existing standards for the VTS branding mechanism
 (negotiation). This document assumes that the VTS to be used
 for sending a voucher has settled the VTS-APIs are called.
 Negotiation can be done within the upper application layer
 using other standards (e.g., [IOTP] or [ECML]), if necessary.

 4) Support only the push-type voucher transfer interface, in which
 the voucher transfer session is initiated by the transferor
 side. A pull-type voucher transfer interface can be
 implemented on top of the push-type VTS interface at the
 application level.

4. Concepts

 The VTS-API consists of the following interfaces. A VTS is required
 to implement all of the interfaces except ReceptionListener, which is
 intended to be implemented by wallets or other applications that use
 VTS.

 VTSManager
 Provides the starting point for using a VTS plug-in. All of
 the objects needed to manipulate vouchers can be directly or
 indirectly acquired via the VTSManager. A VTSManager maintains
 the two repositories: a ParticipantRepository and a
 VoucherComponentRepository, both of which are described below.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 6]

RFC 4154 VTS-API September 2005

 ParticipantRepository
 Provides the access points of participants that are to be
 trading partners. A ParticipantRepository maintains
 Participants and acts as an "address book" of trading partners.

 Participant
 Represents a participant (such as an issuer, a holder, or a
 collector). A Participant interface knows how to obtain the
 corresponding VTSAgent described below.

 VTSAgent (extends Participant)
 Provides the access point of vouchers in the Valid Voucher Set
 (VVS) that is logically managed by the VTS. A VTSAgent
 provides a means of manipulating vouchers held by its holder
 according to basic trading methods; i.e., issue, transfer,
 consume, and present. Before calling trading methods, the
 application must create a Session, which is described below.

 Session
 Represents the logical connection established by the trade. A
 Session has references to two Participant interfaces; i.e.,
 those of the sender and the receiver. After trading methods
 are called using a Session, the Session holds a reference to
 the Vouchers to be traded.

 Voucher
 Represents one or more vouchers in which all of the issuer and
 promise parts of the vouchers are the same. A Voucher holds
 references to the Participant interface who issued the voucher
 (issuer) and to a VoucherComponent (promise), which is
 described below.

 VoucherComponent
 Represents a Voucher Component, described in [GVL]. It defines
 the promise part of the voucher.

 VoucherComponentRepository
 Provides the access points of VoucherComponents. A
 VoucherComponentRepository maintains VoucherComponents and acts
 as a "voucher type book" managed by the VTS. This document
 assumes that a set of VoucherComponents has been acquired and
 stored in this repository. Delivery of VoucherComponents is
 beyond the scope of this document. It may be delivered within
 the VTS from the trading partners or manually acquired from a
 trusted third party (see Section 3 of [GVL]).

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 7]

RFC 4154 VTS-API September 2005

 ReceptionListener
 Provides a listener function with regard to the receipt of a
 voucher by a VTSAgent to wallets or other applications that
 implement this interface. (This interface may not be
 implemented as part of the VTS.)

5. Interface Definitions

 The interfaces defined in this document reside in the package named
 "org.ietf.vts". Wallets or other applications that use this API,
 should import this package as "import org.ietf.vts.*;".

5.1. VTSManager

 public interface VTSManager

 Provides the starting point for using a VTS plug-in.

 All of the objects needed to manipulate vouchers can be directly
 or indirectly acquired via a VTSManager so that wallets or other
 applications can make the VTS available by instantiating an object
 implementing this interface.

 A class that implements the VTSManager interface must have a
 public default constructor (a constructor without any parameters).
 The VTS provides a name for such a constructor so that the
 implementation class can bootstrap the interface.

5.1.1. getParticipantRepository

 public ParticipantRepository getParticipantRepository()

 Returns a repository that maintains Participants.

 Returns:

 the ParticipantRepository of the VTS, or null if no
 ParticipantRepository is available.

5.1.2. getVoucherComponentRepository

 public VoucherComponentRepository getVoucherComponentRepository()

 Returns a repository that maintains VoucherComponents.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 8]

RFC 4154 VTS-API September 2005

 Returns:

 the VoucherComponentRepository of the VTS, or null if no
 VoucherComponentRepository is available.

5.2. ParticipantRepository

 public interface ParticipantRepository

 Provides the access points of Participants. A
 ParticipantRepository maintains Participants and acts as an
 "address book" of trading partners.

 The object implementing this interface maintains Participants (or
 holds a reference to an object maintaining Participants), which
 are to be trading partners.

 The implementation of a ParticipantRepository may be either (an
 adaptor to) "yellow pages", which is a network-wide directory
 service like LDAP, or "pocket address book", which maintains only
 personal acquaintances.

5.2.1. lookup

 public Participant lookup(String id)

 Retrieves the participant that has the specified id.

 Returns:

 the participant associated with the specified id, or null if the
 id is null or the corresponding participant cannot be found.

5.3. Participant

 public interface Participant

 Represents the participants (such as issuers, holders, and
 collectors).

 This interface is used as a representation of the trade partners
 and issuers of vouchers. Anyone can retrieve objects that
 implement Participants from the participant repository.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 9]

RFC 4154 VTS-API September 2005

5.3.1. getIdentifier

 public String getIdentifier()

 Returns the identifier of the participant. Each participant must
 have a unique identifier.

 The identifier can be used for looking up and retrieving the
 participant via the ParticipantRepository.

 The format of the identifier is implementation-specific.

 Returns:

 the identifier string of the participant.

5.3.2. getVTSAgent

 VTSAgent getVTSAgent()

 Returns a VTSAgent, whose identifier is the same as the identifier
 of the participant.

 Returns:

 an object that implements the VTSAgent.

5.4. VTSAgent

 public interface VTSAgent extends Participant

 Represents contact points to access vouchers in a Valid Voucher
 Set (VVS) that is managed by the VTS.

 Each VTSAgent is associated with a holder and provides a means for
 managing vouchers owned by the holder. The holder must be
 authenticated using the login() method before being called by any
 other method, otherwise, a VTSSecurityException will be issued.

 Before any trading method is called, e.g., issue(), transfer(),
 consume(), and present(), the application must establish a session
 by the prepare() method.

 Due to network failure, sessions may often be suspended when the
 voucher is sent via a network. The suspended sessions can be
 restarted by the resume() method. Details on the state management
 of a session are described in Section 5.5.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 10]

RFC 4154 VTS-API September 2005

 Some VTSAgents may not have all of the trading methods; a voucher
 collecting system doesn't require its VTSAgent to provide a method
 for issuing or creating vouchers. A VTSAgent returns a
 FeatureNotAvailableException when an unsupported method is
 invoked.

5.4.1. login

 public void login(String passphrase)
 throws VTSException

 Authenticates the VTSAgent. The passphrase is specified if the
 VTS requires it for authentication, otherwise it must be null.
 Nothing is performed if the VTSAgent has already been logged-in.
 The authentication scheme is implementation-specific. Examples of
 the implementation are as follows:

 1) Vouchers are managed on a remote centralized server
 (centralized VTS), which requires a password to login. In this
 case, the application may prompt the user to input the password
 and the password can be given to the VTSAgent through this
 method. For further information, see the Implementation Notes
 below.

 2) Vouchers are managed on a remote centralized server
 (centralized VTS), which requires challenge-and-response
 authentication using smartcards held by users. In this case,
 the passphrase may be null because access to the smartcard can
 be done without contacting the application or user (i.e., the
 VTSAgent receives the challenge from the server, sends the
 challenge to the smartcard (within the VTS), and returns the
 response from the smartcard to the server). Note that a PIN to
 unlock the smartcard may be given through this method,
 depending on the implementation.

 3) Each user holds their own smartcard in which their own vouchers
 are stored (distributed VTS). In this case, the passphrase may
 be null because no authentication is required. Note that a PIN
 to unlock the smartcard may be given, though this depends on
 the implementation.

 Implementation Notes:

 A VTS is responsible for providing secure ways for users to
 login(). It is strongly recommended that secure communication
 channels such as [TLS] be used if secret or private information
 is sent via networks. Fake server attacks, including the so-
 called MITM (man-in-the-middle), must be considered as well.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 11]

RFC 4154 VTS-API September 2005

 Throws:

 VTSSecurityException - if authentication fails.

5.4.2. logout

 public void logout()
 throws VTSException

 Voids the authentication performed by the login() method.

 After this method is called, calling any other method (except
 login()) will cause a VTSSecurityException.

 The VTSAgent can login again by the login() method.

 Throws:

 VTSSecurityException - if the VTSAgent is not authenticated
 correctly.

5.4.3. prepare

 public Session prepare(Participant receiver)
 throws VTSException

 Establishes a session that is required for trading vouchers. The
 trading partner who receives the vouchers is specified as the
 receiver. The vouchers to be traded will be specified later (when
 a trading method is called).

 The establishment of a session is implementation-specific. A
 centralized VTS implementation may start a transaction, while a
 distributed VTS implementation may get the challenge needed to
 create an authentic response from the receiver in the following
 trading method.

 If the VTSAgent does not have the ability to establish a session
 with the specified receiver (permanent error), the VTSAgent throws
 an InvalidParticipantExeption. If the VTSAgent cannot establish a
 session due to network failure (transient error), the VTSAgent
 throws a CannotProceedException.

 Parameters:

 receiver - the trading partner who receives vouchers.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 12]

RFC 4154 VTS-API September 2005

 Returns:

 an established session whose state is "prepared" (see Section
5.5).

 Throws:

 CannotProceedException - if the preparation of the session is
 aborted (e.g., network failures).

 FeatureNotAvailableException - if the VTSAgent does not provide
 any trading methods.

 InvalidParticipantException - if the specified participant is
 invalid.

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.4. issue

 public void issue(Session session,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Issues vouchers. This method creates the specified number of
 vouchers <this, promise, receiver> and adds them to the VVS. If
 the VTS is distributed, this method would create a "response" that
 corresponds to the challenge received in the prepare() method and
 send it to the receiver. Note that the receiver is specified when
 prepare() is called. Nothing is performed if the specified number
 is 0.

 The session MUST be "prepared" when calling this method. The
 state of the session will be "activated" when the vouchers are
 created, and it will be "completed" when the transaction is
 successfully completed or "suspended" if the transaction is
 interrupted abnormally (e.g., network failures).

 Parameters:

 session - the session used by the issue transaction.

 promise - the promise part of the voucher.

 num - the number of vouchers to be issued.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 13]

RFC 4154 VTS-API September 2005

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.

 FeatureNotAvailableException - if the VTSAgent does not provide a
 means of issuing vouchers.

 InvalidStateException - if the session is not "prepared".

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.5. transfer

 public void transfer(Session session,
 Participant issuer,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Transfers vouchers. This method rewrites the specified number of
 vouchers <issuer, promise, this> to <issuer, promise, receiver> in
 the VVS; i.e., deletes the vouchers from the sender and stores
 them for the receiver. Similar to issue(), this method would
 create and send the response to the receiver if the VTS is
 distributed. The VTSAgent must have sufficient vouchers in the
 VVS. Nothing is performed if the specified number is 0.

 The session MUST be "prepared" when calling this method. The
 state of the session will be "activated" when the voucher are
 retrieved from the sender, and it will be "completed" when the
 transaction is successfully completed or "suspended" if the
 transaction is interrupted abnormally (e.g., network failures).

 If null is specified for the issuer parameter, it indicates "any
 issuer". This method selects vouchers to be transferred from the
 set of vouchers returned by the getContents(null, promise).

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 14]

RFC 4154 VTS-API September 2005

 Parameters:

 session - the session used by the transfer transaction.

 issuer - the issuer part of the voucher, or null.

 promise - the promise part of the voucher.

 num - the number of vouchers to be transferred.

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.

 FeatureNotAvailableException - if the VTSAgent does not provide a
 means of transferring vouchers.

 InsufficientVoucherException - if the VTSAgent does not have a
 sufficient number of vouchers to transfer.

 InvalidStateException - if the session is not "prepared".

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.6. consume

 public void consume(Session session,
 Participant issuer,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Consumes vouchers. This method deletes the specified number of
 vouchers <issuer, promise, this> from the VVS and notifies the
 receiver of the deletion. Similar to issue() and transfer(), the
 response would be created and sent to the receiver if the VTS is
 distributed so that the receiver can obtain proof of the deletion.
 The VTSAgent must have a sufficient number of vouchers in the VVS.
 Nothing is performed if the specified number is 0.

 The session MUST be "prepared" when this method is called. The
 state of the session will be "activated" when the vouchers are
 deleted, and it will be "completed" when the transaction is
 successfully completed or "suspended" if the transaction is
 interrupted abnormally (e.g., network failures).

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 15]

RFC 4154 VTS-API September 2005

 If null is specified for the issuer parameter, it indicates "any
 issuer". This method selects vouchers to be consumed from the set
 of vouchers returned by the getContents(null, promise).

 Parameters:

 session - the session used by the consume transaction.

 issuer - the issuer part of the voucher, or null.

 promise - the promise part of the voucher.

 num - the number of vouchers to be consumed.

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.

 FeatureNotAvailableException - if the VTSAgent does not provide a
 means of consuming vouchers.

 InsufficientVoucherException - if the VTSAgent does not have a
 sufficient number of vouchers to consume.

 InvalidStateException - if the session is not "prepared".

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.7. present

 public void present(Session session,
 Participant issuer,
 VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Presents vouchers. This method shows that the sender has the
 specified number of vouchers <issuer, promise, this> in the VVS to
 the receiver of the session; no modification is performed to the
 VVS. However, the response would be sent to the receiver as well
 as consume() in order to prove that the VTS has been distributed.
 The VTSAgent must have a sufficient number of vouchers in the VVS.
 Nothing is performed if the specified number is 0.

 The session MUST be "prepared" when this method is called. The
 state of the session will be "activated" when the vouchers are

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 16]

RFC 4154 VTS-API September 2005

 retrieved, and it will be "completed" when the transaction is
 successfully completed or "suspended" if the transaction is
 interrupted abnormally (e.g., by network failures).

 If null is specified for the issuer parameter, it indicates "any
 issuer". This method selects vouchers to be presented from the
 set of vouchers returned by the getContents(null, promise).

 Parameters:

 session - the session used by the present transaction.

 issuer - the issuer part of the voucher, or null.

 promise - the promise part of the voucher.

 num - the number of the voucher to be presented.

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.

 InsufficientVoucherException - if the VTSAgent does not have a
 sufficient number of vouchers to present.

 InvalidStateException - if the session is not "prepared".

 FeatureNotAvailableException - if the VTSAgent does not provide a
 means of presenting vouchers.

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.8. cancel

 public void cancel(Session session)
 throws VTSException

 Releases the session. "Prepared" sessions MUST be canceled. An
 implementation MAY be permitted to cancel "activated" or
 "suspended" sessions.

 Throws:

 InvalidStateException - if the state of the session cannot be
 canceled.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 17]

RFC 4154 VTS-API September 2005

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.9. resume

 public void resume(Session session)
 throws VTSException

 Restarts the session. Only "suspended" sessions can be resumed.
 The state of the session will be re-"activated" immediately, and
 it will be "completed" when the transaction is successfully
 completed or "suspended" again if the transaction is interrupted
 abnormally (e.g., network failures).

 Throws:

 CannotProceedException - if the transaction cannot be successfully
 completed.

 InvalidStateException - if the session is not "suspended".

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.10. create

 public void create(VoucherComponent promise, java.lang.Number num)
 throws VTSException

 Creates vouchers where the issuer is the VTSAgent itself. This
 method creates the specified number of vouchers <this, promise,
 this> and adds them to the VVS. Nothing is performed if the
 specified number is 0.

 Throws:

 FeatureNotAvailableException - if the VTSAgent does not provide a
 means of creating vouchers.

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 18]

RFC 4154 VTS-API September 2005

5.4.11. delete

 public void delete(Participant issuer, VoucherComponent promise,
 java.lang.Number num)
 throws VTSException

 Deletes vouchers. This method deletes the specified number of
 vouchers <issuer, promise, this> from the VVS. The VTSAgent must
 have sufficient vouchers in the VVS. Nothing is performed if the
 specified number is 0.

 Throws:

 InsufficientVoucherException - if the VTSAgent does not have a
 sufficient number of vouchers to delete.

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.12. getContents

 public java.util.Set getContents(Participant issuer,
 VoucherComponent promise)
 throws VTSException

 Returns the set of vouchers whose issuer and promise both match
 the issuer and promise specified in the parameters.

 If null is specified for the issuer or promise parameter, it
 indicates "any issuer" or "any promise", respectively. If null is
 specified for both parameters, this method selects all vouchers
 owned by the holder from the VVS.

 Returns:

 the set of vouchers held by the holder of the VTSAgent.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.13. getSessions

 public java.util.Set getSessions()
 throws VTSException

 Returns a set of incomplete sessions prepared by the VTSAgent.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 19]

RFC 4154 VTS-API September 2005

 Returns:

 the set of sessions prepared by the VTSAgent that are not yet
 completed.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.14. getLog

 public java.util.Set getLog()
 throws VTSException

 Returns a set of completed sessions prepared or received by the
 VTSAgent. This set represents the trading log of the VTSAgent. A
 VTS may delete an old log eventually, so that the entire log may
 not be returned; the amount of the log kept by the VTSAgent is
 implementation-specific.

 Returns:

 the set of completed sessions prepared or received by the
 VTSAgent.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.4.15. addReceptionListener

 public void addReceptionListener(ReceptionListener l)
 throws VTSException

 Adds a ReceptionListener to the listener list.

 After a ReceptionListener l is registered by this method,
 l.arrive() will be called whenever the VTSAgent receives a
 voucher.

 Nothing is performed if the specified listener is null.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 20]

RFC 4154 VTS-API September 2005

5.4.16. removeReceptionListener

 public void removeReceptionListener(ReceptionListener l)
 throws VTSException

 Removes a ReceptionListener from the listener list.

 Nothing is performed when the specified listener is null or not
 registered.

 Throws:

 VTSSecurityException - if the VTSAgent cannot be authenticated
 correctly.

5.5. Session

 public interface Session

 Represents the logical connection established by the trade.
 Sessions are established by VTSAgent#prepare().

 A session has four states: prepared, activated, suspended, and
 completed. The initial state of a session is "prepared", and the
 session will be "activated" immediately when any of the trading
 methods of VTSAgent is called. The "activated" session will be
 "completed" after the trading method is successfully completed.
 If the trading method fails transiently (e.g., network failure),
 the session will be "suspended". Suspended sessions can be re-
 "activated" and restarted by calling VTSAgent#resume().

 A completed session may disappear from the VTSAgent; the session
 will be collected by the GC unless other objects keep its
 reference.

5.5.1. getIdentifier

 public String getIdentifier()

 Returns the identifier of the session. The generation scheme of
 the identifier is implementation-specific. An implementation may
 use a transaction ID as the identifier of the session.

 Returns:

 the string of the identifier of the session.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 21]

RFC 4154 VTS-API September 2005

5.5.2. getVoucher

 public Voucher getVoucher()

 Returns the voucher to be traded using the session, or returns
 null if the session has not been activated.

 Returns:

 the voucher to be traded, or null if the state of the session is
 "prepared".

5.5.3. getSender

 public Participant getSender()

 Returns the sender of the session (i.e., the creator who prepared
 the session).

 Returns:

 the sender of the session.

5.5.4. getReceiver

 public Participant getReceiver()

 Returns the receiver of the session (i.e., the participant
 specified when preparing the session (by the VTSAgent#prepare()
 method)).

 Returns:

 the receiver of the session.

5.5.5. isPrepared

 public boolean isPrepared()

 Verifies if the session is "prepared".

 Returns:

 true if the session is in the "prepared" state, otherwise, false.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 22]

RFC 4154 VTS-API September 2005

5.5.6. isActivated

 public boolean isActivated()

 Verifies if the session is "activated".

 Returns:

 true if the session is in the "activated" state, otherwise, false.

5.5.7. isSuspended

 public boolean isSuspended()

 Verifies if the session is "suspended".

 Returns:

 true if the session is in the "suspended" state, otherwise, false.

5.5.8. isCompleted

 public boolean isCompleted()

 Verifies if the session is "completed".

 Returns:

 true if the session is in the "completed" state, otherwise, false.

5.6. Voucher

 public interface Voucher

 Represents voucher(s) described in [VTS]. An object implementing
 this interface can represent more than one voucher if all of the
 issuer part and the promise part of the vouchers are the same.

5.6.1. getIssuer

 public Participant getIssuer()

 Returns the issuer part of the voucher(s).

 Returns:

 the participant who issued the voucher(s).

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 23]

RFC 4154 VTS-API September 2005

5.6.2. getPromise

 public VoucherComponent getPromise()

 Returns the promise part of the voucher(s).

 Returns:

 the voucher component that defines the promise of the voucher.

5.6.3. getCount

 public java.lang.Number getCount()

 Returns the number of the voucher(s).

 Returns:

 the positive (>0) number of the voucher(s).

5.7. VoucherComponentRepository

 public interface VoucherComponentRepository

 Maintains VoucherComponents.

 An object implementing VoucherComponentRepository provides a means
 of retrieving the voucher components that are the promises of
 vouchers in the VVS.

 Before issuing a voucher, the promise of the voucher must be
 registered with this repository. The repository can be
 implemented as either a network-wide directory service or personal
 storage like the ParticipantRepository.

5.7.1. register

 public VoucherComponent register(org.w3c.dom.Document document)

 Creates a voucher component associated with the specified DOM
 object and registers the voucher component with the repository.

 A voucher component of the voucher to be issued must be registered
 using this method.

 Nothing is performed (and the method returns null) if the
 specified document is null or the syntax of the document does not
 conform to the VTS.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 24]

RFC 4154 VTS-API September 2005

 The method returns the registered voucher component if the
 specified DOM object has been already registered (no new voucher
 component is created in this case).

 Returns:

 a registered voucher component associated with the specified
 document, or null if the document is null or has wrong syntax.

5.8. VoucherComponent

 public interface VoucherComponent

 Represents the voucher component that defines the promise of the
 voucher.

 Each VoucherComponent object has its own unique identifier and is
 associated with an XML document that describes the promise made by
 the issuer of the voucher (e.g., goods or services can be claimed
 in exchange for redeeming the voucher).

 This interface can be implemented as sort of a "smart pointer" to
 the XML document. An implementation may have a reference to a
 voucher component repository instead of the voucher component, and
 it may retrieve the document dynamically from the repository when
 the getDocument() method is called.

5.8.1. getIdentifier

 public String getIdentifier()

 Returns the identifier of the voucher component. Each voucher
 component must have a unique identifier. The identifier may be
 used to check for equivalence of voucher components.

 The format of the identifier is implementation-specific, however,
 it is RECOMMENDED that the hash value of the voucher component in
 the identifier be included to assure uniqueness. For generating
 the hash value, it is desirable to use a secure hash function
 (e.g., [SHA-1]) and to apply a canonicalization function (e.g.,
 [EXC-C14N]) before applying the hash function to minimize the
 impact of insignificant format changes to the voucher component,
 (e.g., line breaks or character encoding).

 Returns:

 the identifier string of the voucher component.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 25]

RFC 4154 VTS-API September 2005

5.8.2. getDocument

 public org.w3c.dom.Document getDocument()

 Returns a Document Object Model [DOM] representation of the
 document associated with the voucher component by the
 VoucherComponentRepository#register() method.

 The DOM object to be returned may be retrieved from a
 VoucherComponentRepository on demand, instead of the
 VoucherComponent always keeping a reference to the DOM object.

 The VTS must guarantee that the getDocument method will eventually
 return the DOM object, provided that the voucher associated with
 the corresponding voucher component exists in the VVS.

 Returns:

 a DOM representation of the document associated with the voucher
 component.

 Throws:

 DocumentNotFoundException - if the associated DOM object cannot be
 retrieved.

5.9. ReceptionListener

 public interface ReceptionListener extends java.util.EventListener

 Provides a listener interface with a notification that a VTSAgent
 has received a voucher.

 When a voucher arrives at the VTSAgent, the VTSAgent invokes the
 arrive() method of each registered ReceptionListener.
 ReceptionListeners can obtain a Session object, which contains
 information about the received voucher and the sender of the
 voucher.

 This interface is intended to provide a means of notifying a
 wallet that "You have new vouchers", so that this interface may be
 implemented by wallets or other applications that use VTS.

5.9.1. arrive

 public void arrive(Session session)

 Provides notification of the arrival of a voucher.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 26]

RFC 4154 VTS-API September 2005

 After the listener is registered to a VTSAgent (by the
 VTSAgent#addReceptionListener() method), the VTSAgent invokes this
 method whenever it receives a voucher.

 The specified session is equivalent to the session used by the
 sender to trade the voucher. The state of the session is
 "completed" when this method is called.

5.10. Exceptions

 java.lang.Exception
 +-- VTSException
 +-- CannotProceedException
 +-- DocumentNotFoundException
 +-- FeatureNotAvailableException
 +-- InsufficientVoucherException
 +-- InvalidParticipantException
 +-- InvalidStateException
 +-- VTSSecurityException

 VTSException
 This is the superclass of all exceptions thrown by the methods in
 the interfaces that construct the VTS-API.

 CannotProceedException
 This exception is thrown when a trading is interrupted by network
 failures or other errors.

 DocumentNotFoundException
 This exception is thrown when the document associated with a
 voucher component cannot be found.

 FeatureNotAvailableException
 This exception is thrown when the invoked method is not supported.

 InsufficientVoucherException
 This exception is thrown when the number of the voucher is less
 than the number specified for trading.

 InvalidParticipantException
 This exception is thrown when the specified participant cannot be
 located.

 InvalidStateException
 This exception is thrown when the state of the session is invalid
 and the operation cannot proceed.

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 27]

RFC 4154 VTS-API September 2005

 VTSSecurityException
 This exception is thrown when authentication fails, or when a
 method that requires authentication in advance is called without
 authentication.

6. Example Code

 // Issue a voucher

 VTSManager vts = new FooVTSManager();
 ParticipantRepository addrBook = vts.getParticipantRepository();
 VoucherComponentRepository vcr = vts.getVoucherComponentRepository();

 Participant you = addrBook.lookup("http://example.org/foo");
 // looks up a trading partner identified as
 // "http://example.org/foo".
 VTSAgent me = addrBook.lookup("myName").getVTSAgent();
 // a short-cut name may be used if VTS implementation allows.

 VoucherComponent promise = vcr.register(anXMLVoucherDocument);
 // registers a voucher component that corresponds to the voucher
 // to be issued.

 try {
 me.login();
 // sets up the issuer's smartcard (assuming distributed VTS).
 s = me.prepare(you);
 // receives a challenge from the partner.
 me.issue(s, promise, 1);
 // sends a voucher using the received challenge.
 me.logout();
 } catch (VTSException e) {
 // if an error (e.g., a network trouble) occurs...
 System.err.println("Sorry.");
 e.printStackTrace();
 // this example simply prints a stack trace, but a real wallet
 // may prompt the user to retry (or cancel).
 }

 // Transfer all my vouchers

 VTSManager vts = new FooVTSManager();
 ParticipantRepository addrBook = vts.getParticipantRepository();

 Participant you = addrBook.lookup("8f42 5aab ffff cafe babe...");
 // some VTS implementations would use a hash value of a public key
 // (aka fingerprint) as an identifier of a participant.
 VTSAgent me = addrBook.lookup("myName").getVTSAgent();

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 28]

RFC 4154 VTS-API September 2005

 try {
 me.login();
 Iterator i = me.getContents(null, null).iterator();

 while (i.hasNext()) {
 Voucher v = (Voucher) i.next();
 s = me.prepare(you);
 me.transfer(s, v.getIssuer(), v.getPromise(), v.getCount());
 }

 me.logout();
 } catch (VTSException e) {
 System.err.println("Sorry.");
 e.printStackTrace();
 }

 // Register an incoming voucher notifier (biff)

 VTSManager vts = new FooVTSManager();

 ParticipantRepository addrBook = vts.getParticipantRepository();
 VTSAgent me = addrBook.lookup("myName").getVTSAgent();

 ReceptionListener listener = new ReceptionListener() {
 public void arrive(Session s) {
 System.out.println("You got a new voucher.");
 }
 };

 try {
 me.login();
 me.addReceptionListener(listener);
 me.logout();
 } catch (VTSException e) {
 System.err.println("Sorry.");
 e.printStackTrace();
 }

7. Security Considerations

 Security is very important for trading vouchers. VTS implementations
 are responsible for preventing illegal acts upon vouchers (as
 described in [VTS]), as well as preventing malicious access from
 invalid users and fake server attacks, including man-in-the-middle
 attacks.

 The means to achieve the above requirements are not specified in this
 document because they depend on VTS implementation. However,

https://datatracker.ietf.org/doc/html/rfc4154

Terada & Fujimura Informational [Page 29]

RFC 4154 VTS-API September 2005

 securing communication channels (e.g., using TLS) between client VTS
 plug-ins and the central server in a centralized VTS (as described in
 5.4.1 login()), and applying cryptographic challenge-and-response
 techniques in a distributed VTS are likely to be helpful and are
 strongly recommended to implement a secure VTS.

 This document assumes that the VTS plug-in is trusted by its user.
 The caller application of a VTS should authenticate the VTS plug-in
 and bind it securely using the VTS Provider information specified in
 the Voucher Component. This document, however, does not specify any
 application authentication scheme and it is assumed to be specified
 by other related standards. Until various VTS systems are deployed,
 it is enough to manually check and install VTS plug-ins like other
 download applications.

8. Acknowledgements

 The following persons, in alphabetic order, contributed substantially
 to the material herein:

 Donald Eastlake 3rd
 Iguchi Makoto
 Yoshitaka Nakamura
 Ryuji Shoda

9. Normative References

 [DOM] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs,
 A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, and
 L. Wood. "Document Object Model (DOM) Level 1
 Specification", W3C Recommendation, October 1998,
 <http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/>

 [GVL] Fujimura, K. and M. Terada, "XML Voucher: Generic Voucher
 Language", RFC 4153, September 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10. Informative References

 [ECML] Eastlake 3rd, D., "Electronic Commerce Modeling Language
 (ECML) Version 2 Specification", RFC 4112, June 2005.

 [EXC-C14N] J. Boyer, D. Eastlake, and J. Reagle, "Exclusive XML
 Canonicalization Version 1.0", W3C Recommendation, July
 2002, <http://www.w3.org/TR/2002/REC-xml-exc-c14n-

20020718/>

https://datatracker.ietf.org/doc/html/rfc4154
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
https://datatracker.ietf.org/doc/html/rfc4153
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4112
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Terada & Fujimura Informational [Page 30]

RFC 4154 VTS-API September 2005

 [GPSF] G. Lacoste, B. Pfitzmann, M. Steiner, and M. Waidner
 (Eds.), "SEMPER - Secure Electronic Marketplace for
 Europe," LNCS 1854, Springer-Verlag, 2000.

 [IOTP] Burdett, D., "Internet Open Trading Protocol - IOTP
 Version 1.0", RFC 2801, April 2000.

 [JCC] T. Goldstein, "The Gateway Security Model in the Java
 Electronic Commerce Framework", Proc. of Financial
 Cryptography '97, 1997.

 [SHA-1] Department of Commerce/National Institute of Standards and
 Technology, "FIPS PUB 180-1. Secure Hash Standard. U.S.",
 <http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2withchangenotice.pdf>

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [VTS] Fujimura, K. and D. Eastlake, "Requirements and Design for
 Voucher Trading System (VTS)", RFC 3506, March 2003.

Authors' Addresses

 Masayuki Terada
 NTT DoCoMo, Inc.
 3-5 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-8536 JAPAN

 Phone: +81-(0)46-840-3809
 Fax: +81-(0)46-840-3705
 EMail: te@rex.yrp.nttdocomo.co.jp

 Ko Fujimura
 NTT Corporation
 1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 JAPAN

 Phone: +81-(0)46-859-3053
 Fax: +81-(0)46-859-1730
 EMail: fujimura.ko@lab.ntt.co.jp

https://datatracker.ietf.org/doc/html/rfc4154
https://datatracker.ietf.org/doc/html/rfc2801
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc3506

Terada & Fujimura Informational [Page 31]

RFC 4154 VTS-API September 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/rfc4154
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Terada & Fujimura Informational [Page 32]

