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Abstract

This document specifies protocol stacks for the routing and transport
of per-flow signalling messages along the path taken by that flow
through the network. The design uses existing transport and security
protocols under a common messaging layer, the General Internet
Signalling Transport (GIST), which provides a common service for
diverse signalling applications. GIST does not handle signalling
application state itself, but manages its own internal state and the
configuration of the underlying transport and security protocols to
enable the transfer of messages in both directions along the flow
path. The combination of GIST and the lower layer transport and
security protocols provides a solution for the base protocol
component of the "Next Steps in Signalling" (NSIS) framework.

Status of This Memo

This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.

This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5971.
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Introduction

Signalling involves the manipulation of state held in network
elements. 'Manipulation' could mean setting up, modifying, and
tearing down state; or it could simply mean the monitoring of state
that is managed by other mechanisms. This specification concentrates
mainly on path-coupled signalling, controlling resources on network
elements that are located on the path taken by a particular data
flow, possibly including but not limited to the flow endpoints.
Examples of state management include network resource reservation,
firewall configuration, and state used in active networking; examples
of state monitoring are the discovery of instantaneous path
properties, such as available bandwidth or cumulative queuing delay.
Each of these different uses of signalling is referred to as a
signalling application.

GIST assumes other mechanisms are responsible for controlling routing
within the network, and GIST is not designed to set up or modify
paths itself; therefore, it is complementary to protocols like
Resource Reservation Protocol - Traffic Engineering (RSVP-TE) [22] or
LDP [23] rather than an alternative. There are almost always more
than two participants in a path-coupled signalling session, although
there is no need for every node on the path to participate; indeed,
support for GIST and any signalling applications imposes a
performance cost, and deployment for flow-level signalling is much
more likely on edge devices than core routers. GIST path-coupled
signalling does not directly support multicast flows, but the current
GIST design could be extended to do so, especially in environments
where the multicast replication points can be made GIST-capable.

GIST can also be extended to cover other types of signalling pattern,
not related to any end-to-end flow in the network, in which case the
distinction between GIST and end-to-end higher-layer signalling will
be drawn differently or not at all.

Every signalling application requires a set of state management
rules, as well as protocol support to exchange messages along the
data path. Several aspects of this protocol support are common to
all or a large number of signalling applications, and hence can be
developed as a common protocol. The NSIS framework given in [29]
provides a rationale for a function split between the common and
application-specific protocols, and gives outline requirements for
the former, the NSIS Transport Layer Protocol (NTLP). Several
concepts in the framework are derived from RSVP [14], as are several
aspects of the GIST protocol design. The application-specific
protocols are referred to as NSIS Signalling Layer Protocols (NSLPs),
and are defined in separate documents. The NSIS framework [29] and
the accompanying threats document [30] provide important background
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N

information to this specification, including information on how GIST
is expected to be used in various network types and what role it is
expected to perform.

This specification provides a concrete solution for the NTLP. It is
based on the use of existing transport and security protocols under a
common messaging layer, the General Internet Signalling Transport
(GIST). GIST does not handle signalling application state itself; in
that crucial respect, it differs from higher layer signalling
protocols such as SIP, the Real-time Streaming Protocol (RTSP), and
the control component of FTP. 1Instead, GIST manages its own internal
state and the configuration of the underlying transport and security
protocols to ensure the transfer of signalling messages on behalf of
signalling applications in both directions along the flow path. The
purpose of GIST is thus to provide the common functionality of node
discovery, message routing, and message transport in a way that is
simple for multiple signalling applications to re-use.

The structure of this specification is as follows. Section 2 defines
terminology, and Section 3 gives an informal overview of the protocol
design principles and operation. The normative specification is
contained mainly in Section 4 to Section 8. Section 4 describes the
message sequences and Section 5 their format and contents. Note that
the detailed bit formats are given in Appendix A. The protocol
operation is captured in the form of state machines in Section 6.
Section 7 describes some more advanced protocol features, and
security considerations are contained in Section 8. 1In addition,
Appendix B describes an abstract API for the service that GIST
provides to signalling applications, and Appendix D provides an
example message flow. Parts of the GIST design use packets with IP
options to probe the network, that leads to some migration issues in
the case of IPv4, and these are discussed in Appendix C.

Because of the layered structure of the NSIS protocol suite, protocol
extensions to cover a new signalling requirement could be carried out
either within GIST, or within the signalling application layer, or
both. General guidelines on how to extend different layers of the
protocol suite, and in particular when and how it is appropriate to
extend GIST, are contained in a separate document [12]. 1In this
document, Section 9 gives the formal IANA considerations for the
registries defined by the GIST specification.

Requirements Notation and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [3].
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The terminology used in this specification is defined in this
section. The basic entities relevant at the GIST level are shown in
Figure 1. 1In particular, this diagram distinguishes the different
address types as being associated with a flow (end-to-end addresses)
or signalling (addresses of adjacent signalling peers).

Source GIST (adjacent) peer nodes Destination
IP address IP addresses = Signalling IP address
= Flow Source/Destination Addresses = Flow
Source (depending on signalling direction) Destination
Address | | Address
V \%
e + I + Data Flow +------ + Fomm - +
| Flow |----------- |-=----- [-----mmmmea - [------ [-------- >| Flow |
| Sender | | | | | |Receiver |
[ R, + | GIST |============>| GIST | o m oo - +
| Node |<============| Node |
to-mmm- + Signalling +------ +
GN1 Flow GN2
>>>>>>>>>>>>>>>>> =  Downstream direction
<<<<<<<K<K<<L<KKK<<K<< = Upstream direction

Figure 1: Basic Terminology

[Data] Flow: A set of packets identified by some fixed combination
of header fields. Flows are unidirectional; a bidirectional
communication is considered a pair of unidirectional flows.

Session: A single application layer exchange of information for
which some state information is to be manipulated or monitored.
See Section 3.7 for further detailed discussion.

Session Identifier (SID): An identifier for a session; the syntax is
a 128-bit value that is opaque to GIST.

[Flow] Sender: The node in the network that is the source of the
packets in a flow. A sender could be a host, or a router if, for
example, the flow is actually an aggregate.

[Flow] Receiver: The node in the network that is the sink for the
packets in a flow.

Downstream: In the same direction as the data flow.

Upstream: 1In the opposite direction to the data flow.
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GIST Node: Any node supporting the GIST protocol, regardless of what
signalling applications it supports.

[Adjacent] Peer: The next node along the signalling path, in the
upstream or downstream direction, with which a GIST node
explicitly interacts.

Querying Node: The GIST node that initiates the handshake process to
discover the adjacent peer.

Responding Node: The GIST node that responds to the handshake,
becoming the adjacent peer to the Querying node.

Datagram Mode (D-mode): A mode of sending GIST messages between
nodes without using any transport layer state or security
protection. Datagram mode uses UDP encapsulation, with source and
destination IP addresses derived either from the flow definition
or previously discovered adjacency information.

Connection Mode (C-mode): A mode of sending GIST messages directly
between nodes using point-to-point messaging associations (see
below). Connection mode allows the re-use of existing transport
and security protocols where such functionality is required.

Messaging Association (MA): A single connection between two
explicitly identified GIST adjacent peers, i.e., between a given
signalling source and destination address. A messaging
association may use a transport protocol; if security protection
is required, it may use a network layer security association, or
use a transport layer security association internally. A
messaging association is bidirectional: signalling messages can be
sent over it in either direction, referring to flows of either
direction.

[Message] Routing: Message routing describes the process of
determining which is the next GIST peer along the signalling path.
For signalling along a flow path, the message routing carried out
by GIST is built on top of normal IP routing, that is, forwarding
packets within the network layer based on their destination IP
address. In this document, the term 'routing' generally refers to
GIST message routing unless particularly specified.

Message Routing Method (MRM): There can be different algorithms for
discovering the route that signalling messages should take. These
are referred to as message routing methods, and GIST supports
alternatives within a common protocol framework. See Section 3.3.
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3.

3

Message Routing Information (MRI): The set of data item values that
is used to route a signalling message according to a particular
MRM; for example, for routing along a flow path, the MRI includes
flow source and destination addresses, and protocol and port
numbers. See Section 3.3.

Router Alert Option (RAO): An option that can be included in IPv4
and v6 headers to assist in the packet interception process; see
[13] and [17].

Transfer Attributes: A description of the requirements that a
signalling application has for the delivery of a particular
message; for example, whether the message should be delivered
reliably. See Section 4.1.2.

Design Overview

.1. Overall Design Approach

The generic requirements identified in the NSIS framework [29] for
transport of signalling messages are essentially two-fold:

Routing: Determine how to reach the adjacent signalling node along
each direction of the data path (the GIST peer), and if necessary
explicitly establish addressing and identity information about
that peer;

Transport: Deliver the signalling information to that peer.

To meet the routing requirement, one possibility is for the node to
use local routing state information to determine the identity of the
GIST peer explicitly. GIST defines a three-way handshake that probes
the network to set up the necessary routing state between adjacent
peers, during which signalling applications can also exchange data.
Once the routing decision has been made, the node has to select a
mechanism for transport of the message to the peer. GIST divides the
transport functionality into two parts, a minimal capability provided
by GIST itself, with the use of well-understood transport protocols
for the harder cases. Here, with details discussed later, the
minimal capability is restricted to messages that are sized well
below the lowest maximum transmission unit (MTU) along a path, are
infrequent enough not to cause concerns about congestion and flow
control, and do not need security protection or guaranteed delivery.

In [29], all of these routing and transport requirements are assigned
to a single notional protocol, the NSIS Transport Layer Protocol
(NTLP). The strategy of splitting the transport problem leads to a
layered structure for the NTLP, with a specialised GIST messaging
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layer running over standard transport and security protocols.
basic concept is shown in Figure 2.

GIST

October 2010

The

Note that not every combination

of transport and security protocols implied by the figure is actually
possible for use in GIST; the actual combinations allowed by this
specification are defined in Section 5.7.

The figure also shows GIST

offering its services to upper layers at an abstract interface, the
GIST API, further discussed in Section 4.1.
AN o e mmm oo - +
| | Signalling |
NSIS e |Application 2|
Signalling | Signalling +------------- +
Application |Application 1| |
Level R + |
N I I
\'AY | [
========|===================|===== <-- GIST API
I I
AN o e e e e e e e e e e e e e e e e e mm e —— +
| [+--mmmmm e + F o + |
| | ] GIST | | GIST State |
| | ] Encapsulation | <<<>>>| Maintenance | |
| ] [+--mmm - + E + |
| ] | GIST: Messaging Layer |
| B NS +
NSIS I I I I
TranSPOr T e e e e e s
Level Transport Layer Security (TLS or DTLS)
(NTLP) it et et et et ettt e e e e
N I I I I
| I T e . P S e
| | UDP | | TCP | | SCTP| | DCCP | other
| R R I R S e protocols
N I I I I
|1 e
| IP Layer Security
8
\4% I I I
e e e e
I I I I
o m e e e e e e e e e e e e e e e e e e +
IP
s oo o o o o o o e e e —ooo oo +

Figure 2:

Protocol Stack Architecture for Signalling Transport
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3.2. Modes and Messaging Associations
Internally, GIST has two modes of operation:

Datagram mode (D-mode): wused for small, infrequent messages with
modest delay constraints and no security requirements. A special
case of D-mode called Query-mode (Q-mode) is used when no routing
state exists.

Connection mode (C-mode): wused for all other signalling traffic. 1In
particular, it can support large messages and channel security and
provides congestion control for signalling traffic.

C-mode can in principle use any stream or message-oriented transport
protocol; this specification defines TCP as the initial choice. It
can in principle employ specific network layer security associations,
or an internal transport layer security association; this
specification defines TLS as the initial choice. When GIST messages
are carried in C-mode, they are treated just like any other traffic
by intermediate routers between the GIST peers. 1Indeed, it would be
impossible for intermediate routers to carry out any processing on
the messages without terminating the transport and security protocols
used.

D-mode uses UDP, as a suitable NAT-friendly encapsulation that does
not require per-message shared state to be maintained between the
peers. Long-term evolution of GIST is assumed to preserve the
simplicity of the current D-mode design. Any extension to the
security or transport capabilities of D-mode can be viewed as the
selection of a different protocol stack under the GIST messaging
layer; this is then equivalent to defining another option within the
overall C-mode framework. This includes both the case of using
existing protocols and the specific development of a message exchange
and payload encapsulation to support GIST requirements.
Alternatively, if any necessary parameters (e.g., a shared secret for
use in integrity or confidentiality protection) can be negotiated
out-of-band, then the additional functions can be added directly to
D-mode by adding an optional object to the message (see

Appendix A.2.1). Note that in such an approach, downgrade attacks as
discussed in Section 8.6 would need to be prevented by policy at the
destination node.

It is possible to mix these two modes along a path. This allows, for
example, the use of D-mode at the edges of the network and C-mode
towards the core. Such combinations may make operation more
efficient for mobile endpoints, while allowing shared security
associations and transport connections to be used for messages for
multiple flows and signalling applications. The setup for these
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protocols imposes an initialisation cost for the use of C-mode, but
in the long term this cost can be shared over all signalling sessions
between peers; once the transport layer state exists, retransmission
algorithms can operate much more aggressively than would be possible
in a pure D-mode design.

It must be understood that the routing and transport functions within
GIST are not independent. If the message transfer has requirements
that require C-mode, for example, if the message is so large that
fragmentation is required, this can only be used between explicitly
identified nodes. 1In such cases, GIST carries out the three-way
handshake initially in D-mode to identify the peer and then sets up
the necessary connections if they do not already exist. It must also
be understood that the signalling application does not make the
D-mode/C-mode selection directly; rather, this decision is made by
GIST on the basis of the message characteristics and the transfer
attributes stated by the application. The distinction is not visible
at the GIST service interface.

In general, the state associated with C-mode messaging to a
particular peer (signalling destination address, protocol and port
numbers, internal protocol configuration, and state information) is
referred to as a messaging association (MA). MAs are totally
internal to GIST (they are not visible to signalling applications).
Although GIST may be using an MA to deliver messages about a
particular flow, there is no direct correspondence between them: the
GIST message routing algorithms consider each message in turn and
select an appropriate MA to transport it. There may be any number of
MAs between two GIST peers although the usual case is zero or one,
and they are set up and torn down by management actions within GIST
itself.

3.3. Message Routing Methods

The baseline message routing functionality in GIST is that signalling
messages follow a route defined by an existing flow in the network,
visiting a subset of the nodes through which it passes. This is the
appropriate behaviour for application scenarios where the purpose of
the signalling is to manipulate resources for that flow. However,
there are scenarios for which other behaviours are applicable. Two
examples are:

Predictive Routing: Here, the intent is to signal along a path that
the data flow may follow in the future. Possible cases are pre-
installation of state on the backup path that would be used in the
event of a link failure, and predictive installation of state on
the path that will be used after a mobile node handover.
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NAT Address Reservations: This applies to the case where a node
behind a NAT wishes to reserve an address at which it can be
reached by a sender on the other side. This requires a message to
be sent outbound from what will be the flow receiver although no
reverse routing state for the flow yet exists.

Most of the details of GIST operation are independent of the routing
behaviour being used. Therefore, the GIST design encapsulates the
routing-dependent details as a message routing method (MRM), and
allows multiple MRMs to be defined. This specification defines the
path-coupled MRM, corresponding to the baseline functionality
described above, and a second ("Loose-End") MRM for the NAT Address
Reservation case. The detailed specifications are given in

Section 5.8.

The content of an MRM definition is as follows, using the path-
coupled MRM as an example:

o The format of the information that describes the path that the
signalling should take, the Message Routing Information (MRI).
For the path-coupled MRM, this is just the flow identifier (see
Section 5.8.1.1) and some additional control information.
Specifically, the MRI always includes a flag to distinguish
between the two directions that signalling messages can take,
denoted 'upstream' and 'downstream'.

0 A specification of the IP-level encapsulation of the messages
which probe the network to discover the adjacent peers. A
downstream encapsulation must be defined; an upstream
encapsulation is optional. For the path-coupled MRM, this
information is given in Section 5.8.1.2 and Section 5.8.1.3.
Current MRMs rely on the interception of probe messages in the
data plane, but other mechanisms are also possible within the
overall GIST design and would be appropriate for other types of
signalling pattern.

0 A specification of what validation checks GIST should apply to the
probe messages, for example, to protect against IP address
spoofing attacks. The checks may be dependent on the direction
(upstream or downstream) of the message. For the path-coupled
MRM, the downstream validity check is basically a form of ingress
filtering, also discussed in Section 5.8.1.2.

0 The mechanism(s) available for route change detection, i.e., any
change in the neighbour relationships that the MRM discovers. The
default case for any MRM is soft-state refresh, but additional
supporting techniques may be possible; see Section 7.1.2.
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In addition, it should be noted that NAT traversal may require
translation of fields in the MRI object carried in GIST messages (see
Section 7.2.2). The generic MRI format includes a flag that must be
given as part of the MRM definition, to indicate if some kind of
translation is necessary. Development of a new MRM therefore
includes updates to the GIST specification, and may include updates
to specifications of NAT behaviour. These updates may be done in
separate documents as is the case for NAT traversal for the MRMs of
the base GIST specification, as described in Section 7.2.3 and [44].

The MRI is passed explicitly between signalling applications and
GIST; therefore, signalling application specifications must define
which MRMs they require. Signalling applications may use fields in
the MRI in their packet classifiers; if they use additional
information for packet classification, this would be carried at the
NSLP level and so would be invisible to GIST. Any node hosting a
particular signalling application needs to use a GIST implementation
that supports the corresponding MRMs. The GIST processing rules
allow nodes not hosting the signalling application to ignore messages
for it at the GIST level, so it does not matter if these nodes
support the MRM or not.

3.4. GIST Messages

GIST has six message types: Query, Response, Confirm, Data, Error,
and MA-Hello. Apart from the invocation of the messaging association
protocols used by C-mode, all GIST communication consists of these
messages. In addition, all signalling application data is carried as
additional payloads in these messages, alongside the GIST
information.

The Query, Response, and Confirm messages implement the handshake
that GIST uses to set up routing state and messaging associations.
The handshake is initiated from the Querying node towards the
Responding node. The first message is the Query, which is
encapsulated in a specific way depending on the message routing
method, in order to probe the network infrastructure so that the
correct peer will intercept it and become the Responding node. A
Query always triggers a Response in the reverse direction as the
second message of the handshake. The content of the Response
controls whether a Confirm message is sent: as part of the defence
against denial-of-service attacks, the Responding node can delay
state installation until a return routability check has been
performed, and require the Querying node to complete the handshake
with the Confirm message. 1In addition, if the handshake is being
used to set up a new MA, the Response is required to request a
Confirm. All of these three messages can optionally carry signalling
application data. The handshake is fully described in Section 4.4.1.
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The Data message is used purely to encapsulate and deliver signalling
application data. Usually, it is sent using pre-established routing
state. However, if there are no security or transport requirements
and no need for persistent reverse routing state, it can also be sent
in the same way as the Query. Finally, Error messages are used to
indicate error conditions at the GIST level, and the MA-Hello message
can be used as a diagnostic and keepalive for the messaging
association protocols.

3.5. GIST Peering Relationships

Peering is the process whereby two GIST nodes create message routing
states that point to each other.

A peering relationship can only be created by a GIST handshake.

Nodes become peers when one issues a Query and gets a Response from
another. Issuing the initial Query is a result of an NSLP request on
that node, and the Query itself is formatted according to the rules
of the message routing method. For current MRMs, the identity of the
Responding node is not known explicitly at the time the Query is
sent; instead, the message is examined by nodes along the path until
one decides to send a Response, thereby becoming the peer. If the
node hosts the NSLP, local GIST and signalling application policy
determine whether to peer; the details are given in Section 4.3.2.
Nodes not hosting the NSLP forward the Query transparently

(Section 4.3.4). Note that the design of the Query message (see
Section 5.3.2) is such that nodes have to opt-in specifically to
carry out the message interception -- GIST-unaware nodes see the
Query as a normal data packet and so forward it transparently.

An existing peering relationship can only be changed by a new GIST
handshake; in other words, it can only change when routing state is
refreshed. On a refresh, if any of the factors in the original
peering process have changed, the peering relationship can also
change. As well as network-level rerouting, changes could include
modifications to NSIS signalling functions deployed at a node, or
alterations to signalling application policy. A change could cause
an existing node to drop out of the signalling path, or a new node to
become part of it. All these possibilities are handled as rerouting
events by GIST; further details of the process are described in
Section 7.1.

3.6. Effect on Internet Transparency

GIST relies on routers inside the network to intercept and process
packets that would normally be transmitted end-to-end. This
processing may be non-transparent: messages may be forwarded with
modifications, or not forwarded at all. This interception applies
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only to the encapsulation used for the Query messages that probe the
network, for example, along a flow path; all other GIST messages are
handled only by the nodes to which they are directly addressed, i.e.,
as normal Internet traffic.

Because this interception potentially breaks Internet transparency
for packets that have nothing to do with GIST, the encapsulation used
by GIST in this case (called Query-mode or Q-mode) has several
features to avoid accidental collisions with other traffic:

0 Q-mode messages are always sent as UDP traffic, and to a specific
well-known port (270) allocated by IANA.

0 All GIST messages sent as UDP have a magic number as the first 32-
bit word of the datagram payload.

Even if a node intercepts a packet as potentially a GIST message,
unless it passes both these checks it will be ignored at the GIST
level and forwarded transparently. Further discussion of the
reception process is in Section 4.3.1 and the encapsulation in
Section 5.3.

3.7. Signalling Sessions

GIST requires signalling applications to associate each of their
messages with a signalling session. Informally, given an application
layer exchange of information for which some network control state
information is to be manipulated or monitored, the corresponding
signalling messages should be associated with the same session.
Signalling applications provide the session identifier (SID) whenever
they wish to send a message, and GIST reports the SID when a message
is received; on messages forwarded at the GIST level, the SID is
preserved unchanged. Usually, NSLPs will preserve the SID value
along the entire signalling path, but this is not enforced by or even
visible to GIST, which only sees the scope of the SID as the single
hop between adjacent NSLP peers.

Most GIST processing and state information is related to the flow
(defined by the MRI; see above) and signalling application (given by
the NSLP identifier, see below). There are several possible
relationships between flows and sessions, for example:

0 The simplest case is that all signalling messages for the same
flow have the same SID.

0 Messages for more than one flow may use the same SID, for example,
because one flow is replacing another in a mobility or multihoming
scenario.
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0o A single flow may have messages for different SIDs, for example,
from independently operating signalling applications.

Because of this range of options, GIST does not perform any
validation on how signalling applications map between flows and
sessions, nor does it perform any direct validation on the properties
of the SID itself, such as any enforcement of uniqueness. GIST only
defines the syntax of the SID as an opaque 128-bit identifier.

The SID assignment has the following impact on GIST processing:

0 Messages with the same SID that are to be delivered reliably
between the same GIST peers are delivered in order.

o All other messages are handled independently.

0 GIST identifies routing state (upstream and downstream peer) by
the MRI/SID/NSLPID combination.

Strictly speaking, the routing state should not depend on the SID.
However, if the routing state is keyed only by (MRI, NSLP), there is
a trivial denial-of-service attack (see Section 8.3) where a
malicious off-path node asserts that it is the peer for a particular
flow. Such an attack would not redirect the traffic but would
reroute the signalling. 1Instead, the routing state is also
segregated between different SIDs, which means that the attacking
node can only disrupt a signalling session if it can guess the
corresponding SID. Normative rules on the selection of SIDs are
given in Section 4.1.3.

3.8. Signalling Applications and NSLPIDs

The functionality for signalling applications is supported by NSIS
Signalling Layer Protocols (NSLPs). Each NSLP is identified by a
16-bit NSLP identifier (NSLPID), assigned by IANA (Section 9). A
single signalling application, such as resource reservation, may
define a family of NSLPs to implement its functionality, for example,
to carry out signalling operations at different levels in a hierarchy
(cf. [21]). However, the interactions between the different NSLPs
(for example, to relate aggregation levels or aggregation region
boundaries in the resource management case) are handled at the
signalling application level; the NSLPID is the only information
visible to GIST about the signalling application being used.
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3.9. GIST Security Services
GIST has two distinct security goals:

o to protect GIST state from corruption, and to protect the nodes on
which it runs from resource exhaustion attacks; and

o to provide secure transport for NSLP messages to the signalling
applications.

The protocol mechanisms to achieve the first goal are mainly internal
to GIST. They include a cookie exchange and return routability check
to protect the handshake that sets up routing state, and a random SID
is also used to prevent off-path session hijacking by SID guessing.
Further details are given in Section 4.1.3 and Section 4.4.1, and the
overall security aspects are discussed in Section 8.

A second level of protection is provided by the use of a channel
security protocol in messaging associations (i.e., within C-mode).
This mechanism serves two purposes: to protect against on-path
attacks on GIST and to provide a secure channel for NSLP messages.
For the mechanism to be effective, it must be able to provide the
following functions:

o mutual authentication of the GIST peer nodes;

o ability to verify the authenticated identity against a database of
nodes authorised to take part in GIST signalling;

o confidentiality and integrity protection for NSLP data, and
provision of the authenticated identities used to the signalling
application.

The authorised peer database is described in more detail in

Section 4.4.2, including the types of entries that it can contain and
the authorisation checking algorithm that is used. The only channel
security protocol defined by this specification is a basic use of
TLS, and Section 5.7.3 defines the TLS-specific aspects of how these
functions (for example, authentication and identity comparison) are
integrated with the rest of GIST operation. At a high level, there
are several alternative protocols with similar functionality, and the
handshake (Section 4.4.1) provides a mechanism within GIST to select
between them. However, they differ in their identity schemes and
authentication methods and dependencies on infrastructure support for
the authentication process, and any GIST extension to incorporate
them would need to define the details of the corresponding
interactions with GIST operation.
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This section presents an example of GIST usage in a relatively simple
(in particular, NAT-free) signalling scenario, to illustrate its main
features.

GN1 GN2
Fommmmeiao o + SRR +
NSLP | | | |
Level | >>>>>>>>>1 | | 5>>>>>>>>5 |
| A V| Intermediate | A V|
[-A-------- 2-| Routers [ -~ V- |
I~ v | A v
| A V| +o-o-- + Foemo- + | A V|
>>>>>>>>>>N >3>SSSSSS>4>>SSSSSSS>>A>>>>>>>>>5 5>>>>>>>>>
I | | I I I | I
GIST | B<<<LLLLLLILLLLLLLLLLLLLLLLLLLL LB |
Level Fomm e e oo oo + oo + +---o- + B SIS, +

>>>>>, <<<<<
1-6

Signalling messages
Stages in the example
(stages 7 and 8 are not shown)

Figure 3: Example of Operation

Consider the case of an RSVP-like signalling application that makes
receiver-based resource reservations for a single unicast flow. In
general, signalling can take place along the entire end-to-end path
(between flow source and destination), but the role of GIST is only
to transfer signalling messages over a single segment of the path,
between neighbouring resource-capable nodes. Basic GIST operation is
the same, whether it involves the endpoints or only interior nodes:
in either case, GIST is triggered by a request from a local
signalling application. The example here describes how GIST
transfers messages between two adjacent peers some distance along the
path, GN1 and GN2 (see Figure 3). We take up the story at the point
where a message is being processed above the GIST layer by the
signalling application in GN1.

1. The signalling application in GN1 determines that this message is
a simple description of resources that would be appropriate for
the flow. It determines that it has no special security or
transport requirements for the message, but simply that it should
be transferred to the next downstream signalling application peer
on the path that the flow will take.
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2. The message payload is passed to the GIST layer in GN1, along
with a definition of the flow and description of the message
transfer attributes (in this case, requesting no reliable
transmission or channel security protection). GIST determines
that this particular message does not require fragmentation and
that it has no knowledge of the next peer for this flow and
signalling application; however, it also determines that this
application is likely to require secured upstream and downstream
transport of large messages in the future. This determination is
a function of node-internal policy interactions between GIST and
the signalling application.

3. GN1 therefore constructs a GIST Query carrying the NSLP payload,
and additional payloads at the GIST level which will be used to
initiate a messaging association. The Query is encapsulated in a
UDP datagram and injected into the network. At the IP level, the
destination address is the flow receiver, and an IP Router Alert
Option (RAO) is also included.

4. The Query passes through the network towards the flow receiver,
and is seen by each router in turn. GIST-unaware routers will
not recognise the RAO value and will forward the message
unchanged; GIST-aware routers that do not support the NSLP in
question will also forward the message basically unchanged,
although they may need to process more of the message to decide
this after initial interception.

5. The message is intercepted at GN2. The GIST layer identifies the
message as relevant to a local signalling application, and passes
the NSLP payload and flow description upwards to it. This
signalling application in GN2 indicates to GIST that it will peer
with GN1 and so GIST should proceed to set up any routing state.
In addition, the signalling application continues to process the
message as in GN1 (compare step 1), passing the message back down
to GIST so that it is sent further downstream, and this will
eventually result in the message reaching the flow receiver.

GIST itself operates hop-by-hop, and the signalling application
joins these hops together to manage the end-to-end signalling
operations.

6. In parallel, the GIST instance in GN2 now knows that it should
maintain routing state and a messaging association for future
signalling with GN1. This is recognised because the message is a
Query, and because the local signalling application has indicated
that it will peer with GN1. There are two possible cases for
sending back the necessary GIST Response:
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6.A - Association Exists: GN1 and GN2 already have an
appropriate MA. GN2 simply records the identity of GN1 as
its upstream peer for that flow and NSLP, and sends a
Response back to GN1 over the MA identifying itself as the
peer for this flow.

6.B - No Association: GN2 sends the Response in D-mode directly
to GN1, identifying itself and agreeing to the messaging
association setup. The protocol exchanges needed to
complete this will proceed in parallel with the following
stages.

In each case, the result is that GN1 and GN2 are now in a peering
relationship for the flow.

7. Eventually, another NSLP message works its way upstream from the
receiver to GN2. This message contains a description of the
actual resources requested, along with authorisation and other
security information. The signalling application in GN2 passes
this payload to the GIST level, along with the flow definition
and transfer attributes; in this case, it could request reliable
transmission and use of a secure channel for integrity
protection. (Other combinations of attributes are possible.)

8. The GIST layer in GN2 identifies the upstream peer for this flow
and NSLP as GN1, and determines that it has an MA with the
appropriate properties. The message is queued on the MA for
transmission; this may incur some delay if the procedures begun
in step 6.B have not yet completed.

Further messages can be passed in each direction in the same way.
The GIST layer in each node can in parallel carry out maintenance
operations such as route change detection (see Section 7.1).

It should be understood that several of these details of GIST
operations can be varied, either by local policy or according to
signalling application requirements. The authoritative details are
contained in the remainder of this document.

GIST Processing Overview

This section defines the basic structure and operation of GIST.
Section 4.1 describes the way in which GIST interacts with local
signalling applications in the form of an abstract service interface.
Section 4.2 describes the per-flow and per-peer state that GIST
maintains for the purpose of transferring messages. Section 4.3
describes how messages are processed in the case where any necessary
messaging associations and routing state already exist; this includes
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the simple scenario of pure D-mode operation, where no messaging
associations are necessary. Finally, Section 4.4 describes how
routing state and messaging associations are created and managed.

4.1. GIST Service Interface

This section describes the interaction between GIST and signalling
applications in terms of an abstract service interface, including a
definition of the attributes of the message transfer that GIST can
offer. The service interface presented here is non-normative and
does not constrain actual implementations of any interface between
GIST and signalling applications; the interface is provided to aid
understanding of how GIST can be used. However, requirements on SID
selection and internal GIST behaviour to support message transfer
semantics (such as in-order delivery) are stated normatively here.

The same service interface is presented at every GIST node; however,
applications may invoke it differently at different nodes, depending
for example on local policy. In addition, the service interface is
defined independently of any specific transport protocol, or even the
distinction between D-mode and C-mode. The initial version of this
specification defines how to support the service interface using a
C-mode based on TCP; if additional protocol support is added, this
will support the same interface and so the change will be invisible
to applications, except as a possible performance improvement. A
more detailed description of this service interface is given in

Appendix B.
4.1.1. Message Handling

Fundamentally, GIST provides a simple message-by-message transfer
service for use by signalling applications: individual messages are
sent, and individual messages are received. At the service
interface, the NSLP payload, which is opaque to GIST, is accompanied
by control information expressing the application's requirements
about how the message should be routed (the MRI), and the application
also provides the session identifier (SID); see Section 4.1.3.
Additional message transfer attributes control the specific transport
and security properties that the signalling application desires.

The distinction between GIST D- and C-mode is not visible at the
service interface. 1In addition, the functionality to handle
fragmentation and reassembly, bundling together of small messages for
efficiency, and congestion control are not visible at the service
interface; GIST will take whatever action is necessary based on the
properties of the messages and local node state.
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A signalling application is free to choose the rate at which it
processes inbound messages; an implementation MAY allow the
application to block accepting messages from GIST. 1In these
circumstances, GIST MAY discard unreliably delivered messages, but
for reliable messages MUST propagate flow-control condition back to
the sender. Therefore, applications must be aware that they may in
turn be blocked from sending outbound messages themselves.

4.1.2. Message Transfer Attributes

Message transfer attributes are used by NSLPs to define minimum
required levels of message processing. The attributes available are
as follows:

Reliability: This attribute may be 'true' or 'false'. When 'true',
the following rules apply:

* messages MUST be delivered to the signalling application in the
peer exactly once or not at all;

* for messages with the same SID, the delivery MUST be in order;

if there is a chance that the message was not delivered (e.g.,
in the case of a transport layer error), an error MUST be
indicated to the local signalling application identifying the
routing information for the message in question.

GIST implements reliability by using an appropriate transport
protocol within a messaging association, so mechanisms for the
detection of message loss depend on the protocol in question; for
the current specification, the case of TCP is considered in
Section 5.7.2. When 'false', a message may be delivered, once,
several times, or not at all, with no error indications in any of
these cases.

Security: This attribute defines the set of security properties that
the signalling application requires for the message, including the
type of protection required, and what authenticated identities
should be used for the signalling source and destination. This
information maps onto the corresponding properties of the security
associations established between the peers in C-mode. Keying
material for the security associations is established by the
authentication mechanisms within the messaging association
protocols themselves; see Section 8.2. The attribute can be
specified explicitly by the signalling application, or reported by
GIST to the signalling application. The latter can take place


https://datatracker.ietf.org/doc/html/rfc5971

Schulzrinne & Hancock Experimental [Page 22]



RFC 5971 GIST October 2010

either on receiving a message, or just before sending a message
but after configuring or selecting the messaging association to be
used for it.

This attribute can also be used to convey information about any
address validation carried out by GIST, such as whether a return
routability check has been carried out. Further details are
discussed in Appendix B.

Local Processing: An NSLP may provide hints to GIST to enable more
efficient or appropriate processing. For example, the NSLP may
select a priority from a range of locally defined values to
influence the sequence in which messages leave a node. Any
priority mechanism MUST respect the ordering requirements for
reliable messages within a session, and priority values are not
carried in the protocol or available at the signalling peer or
intermediate nodes. An NSLP may also indicate that upstream path
routing state will not be needed for this flow, to inhibit the
node requesting its downstream peer to create it; conversely, even
if routing state exists, the NSLP may request that it is not used,
which will lead to GIST Data messages being sent Q-mode
encapsulated instead.

A GIST implementation MAY deliver messages with stronger attribute
values than those explicitly requested by the application.

4.1.3. SID Selection

The fact that SIDs index routing state (see Section 4.2.1 below)
means that there are requirements for how they are selected.
Specifically, signalling applications MUST choose SIDs so that they
are cryptographically random, and SHOULD NOT use several SIDs for the
same flow, to avoid additional load from routing state maintenance.
Guidance on secure randomness generation can be found in [31].

4.2. GIST State
4.2.1. Message Routing State

For each flow, the GIST layer can maintain message routing state to
manage the processing of outgoing messages. This state is
conceptually organised into a table with the following structure.
Each row in the table corresponds to a unique combination of the
following three items:
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Message Routing Information (MRI): This defines the method to be
used to route the message, the direction in which to send the
message, and any associated addressing information; see
Section 3.3.

Session Identifier (SID): The signalling session with which this
message should be associated; see Section 3.7.

NSLP Identifier (NSLPID): This is an IANA-assigned identifier
associated with the NSLP that is generating messages for this
flow; see Section 3.8. The inclusion of this identifier allows
the routing state to be different for different NSLPs.

The information associated with a given MRI/SID/NSLPID combination
consists of the routing state to reach the peer in the direction
given by the MRI. For any flow, there will usually be two entries in
the table, one each for the upstream and downstream MRI. The routing
state includes information about the peer identity (see

Section 4.4.3), and a UDP port number for D-mode, or a reference to
one or more MAs for C-mode. Entries in the routing state table are
created by the GIST handshake, which is described in more detail in
Section 4.4.

It is also possible for the state information for either direction to
be empty. There are several possible cases:

0o The signalling application has indicated that no messages will
actually be sent in that direction.

o The node is the endpoint of the signalling path, for example,
because it is acting as a proxy, or because it has determined that
there are no further signalling nodes in that direction.

o The node is using other techniques to route the message. For
example, it can send it in Q-mode and rely on the peer to
intercept it.

In particular, if the node is a flow endpoint, GIST will refuse to
create routing state for the direction beyond the end of the flow
(see Section 4.3.3). Each entry in the routing state table has an
associated validity timer indicating for how long it can be
considered accurate. When this timer expires, the entry MUST be
purged if it has not been refreshed. 1Installation and maintenance of
routing state are described in more detail in Section 4.4.
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4.

2

.2. Peer-Peer Messaging Association State

I

.3.

The per-flow message routing state is not the only state stored by
GIST. There is also the state required to manage the MAs. Since
these are not per-flow, they are stored separately from the routing
state, including the following per-MA information:

0 a queue of any messages that require the use of an MA, pending
transmission while the MA is being established;

o the time since the peer re-stated its desire to keep the MA open
(see Section 4.4.5).

In addition, per-MA state, such as TCP port numbers or timer
information, is held in the messaging association protocols
themselves. However, the details of this state are not directly
visible to GIST, and they do not affect the rest of the protocol
description.

Basic GIST Message Processing

This section describes how signalling application messages are
processed in the case where any necessary messaging associations and
routing state are already in place. The description is divided into
several parts. First, message reception, local processing, and
message transmission are described for the case where the node hosts
the NSLPID identified in the message. Second, in Section 4.3.4, the
case where the message is handled directly in the IP or GIST layer
(because there is no matching signalling application on the node) is
given. An overview is given in Figure 4. This section concentrates
on the GIST-level processing, with full details of IP and transport
layer encapsulation in Section 5.3 and Section 5.4.
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Figure 4: Message Paths through a GIST Node
4.3.1. Message Reception
Messages can be received in C-mode or D-mode.
Reception in C-mode is simple: incoming packets undergo the security
and transport treatment associated with the MA, and the MA provides

complete messages to the GIST layer for further processing.

Reception in D-mode depends on the message type.
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Normal encapsulation: Normal messages arrive UDP-encapsulated and
addressed directly to the receiving signalling node, at an address
and port learned previously. Each datagram contains a single
message, which is passed to the GIST layer for further processing,
just as in the C-mode case.

Q-mode encapsulation: Where GIST is sending messages to be
intercepted by the appropriate peer rather than directly addressed
to it (in particular, Query messages), these are UDP encapsulated,
and MAY include an IP Router Alert Option (RAO) if required by the
MRM. Each GIST node can therefore see every such message, but
unless the message exactly matches the Q-mode encapsulation rules
(Section 5.3.2) it MUST be forwarded transparently at the IP
level. If it does match, GIST MUST check the NSLPID in the common
header. The case where the NSLPID does not match a local
signalling application at all is considered below in
Section 4.3.4; otherwise, the message MUST be passed up to the
GIST layer for further processing.

Several different RAO values may be used by the NSIS protocol suite.
GIST itself does not allocate any RAO values (for either IPv4 or
IPv6); an assignment is made for each NSLP using MRMs that use the
RAO in the Q-mode encapsulation. The assignment rationale is
discussed in a separate document [12]. The RAO value assigned for an
NSLPID may be different for IPv4 and IPv6. Note the different
significance between the RAO and the NSLPID values: the meaning of a
message (which signalling application it refers to, whether it should
be processed at a node) is determined only from the NSLPID; the role
of the RAO value is simply to allow nodes to pre-filter which IP
datagrams are analysed to see if they might be Q-mode GIST messages.

For all assignments associated with NSIS, the RAO-specific processing
is the same and is as defined by this specification, here and in
Section 4.3.4 and Section 5.3.2.

Immediately after reception, the GIST hop count is checked. Any
message with a GIST hop count of zero MUST be rejected with a "Hop
Limit Exceeded" error message (Appendix A.4.4.2); note that a correct
GIST implementation will never send a message with a GIST hop count
of zero. Otherwise, the GIST hop count MUST be decremented by one
before the next stage.

2. Local Processing and Validation

Once a message has been received, it is processed locally within the
GIST layer. Further processing depends on the message type and
payloads carried; most of the GIST payloads are associated with
internal state maintenance, and details are covered in Section 4.4.
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This section concentrates on the interaction with the signalling
application, in particular, the decision to peer and how data is
delivered to the NSLP.

In the case of a Query, there is an interaction with the signalling

application to determine which of two courses to follow. The first

option (peering) MUST be chosen if the node is the final destination
of the Query message.

1. The receiving signalling application wishes to become a
signalling peer with the Querying node. GIST MUST continue with
the handshake process to set up message routing state, as
described in Section 4.4.1. The application MAY provide an NSLP
payload for the same NSLPID, which GIST will transfer in the
Response.

2. The signalling application does not wish to set up state with the
Querying node and become its peer. This includes the case where
a node wishes to avoid taking part in the signalling for overload
protection reasons. GIST MUST propagate the Query, similar to
the case described in Section 4.3.4. No message is sent back to
the Querying node. The application MAY provide an updated NSLP
payload for the same NSLPID, which will be used in the Query
forwarded by GIST. Note that if the node that finally processes
the Query returns an Error message, this will be sent directly
back to the originating node, bypassing any forwarders. For
these diagnostics to be meaningful, any GIST node forwarding a
Query, or relaying it with modified NSLP payload, MUST NOT modify
it except in the GIST hop count; in particular, it MUST NOT
modify any other GIST payloads or their order. An implementation
MAY choose to achieve this by retaining the original message,
rather than reconstructing it from some parsed internal
representation.

This interaction with the signalling application, including the
generation or update of an NSLP payload, SHOULD take place
synchronously as part of the Query processing. In terms of the GIST
service interface, this can be implemented by providing appropriate
return values for the primitive that is triggered when such a message
is received; see Appendix B.2 for further discussion.

For all GIST message types other than Queries, if the message
includes an NSLP payload, this MUST be delivered locally to the
signalling application identified by the NSLPID. The format of the
payload is not constrained by GIST, and the content is not
interpreted. Delivery is subject to the following validation checks,
which MUST be applied in the sequence given:
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1. if the message was explicitly routed (see Section 7.1.5) or is a
Data message delivered without routing state (see Section 5.3.2),
the payload is delivered but flagged to the receiving NSLP to
indicate that routing state was not validated;

2. else, if the message arrived on an association that is not
associated with the MRI/NSLPID/SID combination given in the
message, the message MUST be rejected with an "Incorrectly
Delivered Message" error message (Appendix A.4.4.4);

3. else, if there is no routing state for this MRI/SID/NSLPID
combination, the message MUST either be dropped or be rejected
with an error message (see Section 4.4.6 for further details);

4. else, the payload is delivered as normal.
3. Message Transmission

Signalling applications can generate their messages for transmission,
either asynchronously or in reply to an input message delivered by
GIST, and GIST can also generate messages autonomously. GIST MUST
verify that it is not the direct destination of an outgoing message,
and MUST reject such messages with an error indication to the
signalling application. When the message is generated by a
signalling application, it may be carried in a Query if local policy
and the message transfer attributes allow it; otherwise, this may
trigger setup of an MA over which the NSLP payload is sent in a Data
message.

Signalling applications may specify a value to be used for the GIST
hop count; otherwise, GIST selects a value itself. GIST MUST reject
messages for which the signalling application has specified a value
of zero. Although the GIST hop count is only intended to control
message looping at the GIST level, the GIST API (Appendix B) provides
the incoming hop count to the NSLPs, which can preserve it on
outgoing messages as they are forwarded further along the path. This
provides a lightweight loop-control mechanism for NSLPs that do not
define anything more sophisticated. Note that the count will be
decremented on forwarding through every GIST-aware node. Initial
values for the GIST hop count are an implementation matter; one
suitable approach is to use the same algorithm as for IP TTL setting

[1].

When a message is available for transmission, GIST uses internal
policy and the stored routing state to determine how to handle it.
The following processing applies equally to locally generated
messages and messages forwarded from within the GIST or signalling
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application levels. However, see Section 5.6 for special rules
applying to the transmission of Error messages by GIST.

The main decision is whether the message must be sent in C-mode or
D-mode. Reasons for using C-mode are:

0 message transfer attributes: for example, the signalling
application has specified security attributes that require
channel-secured delivery, or reliable delivery.

0 message size: a message whose size (including the GIST header,
GIST objects and any NSLP payload, and an allowance for the IP and
transport layer encapsulation required by D-mode) exceeds a
fragmentation-related threshold MUST be sent over C-mode, using a
messaging association that supports fragmentation and reassembly
internally. The allowance for IP and transport layer
encapsulation is 64 bytes. The message size MUST NOT exceed the
Path MTU to the next peer, if this is known. If this is not
known, the message size MUST NOT exceed the least of the first-hop
MTU, and 576 bytes. The same limit applies to IPv4 and IPv6.

0 congestion control: D-mode SHOULD NOT be used for signalling where
it is possible to set up routing state and use C-mode, unless the
network can be engineered to guarantee capacity for D-mode traffic
within the rate control limits imposed by GIST (see
Section 5.3.3).

In principle, as well as determining that some messaging association
must be used, GIST MAY select between a set of alternatives, e.g.,
for load sharing or because different messaging associations provide
different transport or security attributes. For the case of reliable
delivery, GIST MUST NOT distribute messages for the same session over
multiple messaging associations in parallel, but MUST use a single
association at any given time. The case of moving over to a new
association is covered in Section 4.4.5.

If the use of a messaging association (i.e., C-mode) is selected, the
message is queued on the association found from the routing state
table, and further output processing is carried out according to the
details of the protocol stacks used. If no appropriate association
exists, the message is queued while one is created (see

Section 4.4.1), which will trigger the exchange of additional GIST
messages. If no association can be created, this is an error
condition, and should be indicated back to the local signalling
application.
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If a messaging association is not appropriate, the message is sent in
D-mode. The processing in this case depends on the message type,
local policy, and whether or not routing state exists.

3.

4.3.4.

If the message is not a Query, and local policy does not request
the use of Q-mode for this message, and routing state exists, it
is sent with the normal D-mode encapsulation directly to the
address from the routing state table.

If the message is a Query, or the message is Data and local policy
as given by the message transfer attributes requests the use of
Q-mode, then it is sent in Q-mode as defined in Section 5.3.2; the
details depend on the message routing method.

If no routing state exists, GIST can attempt to use Q-mode as in
the Query case: either sending a Data message with the Q-mode
encapsulation or using the event as a trigger for routing state
setup (see Section 4.4). If this is not possible, e.g., because
the encapsulation for the MRM is only defined for one message
direction, then this is an error condition that is reported back
to the local signalling application.

Nodes not Hosting the NSLP

A node may receive messages where it has no signalling application
corresponding to the message NSLPID. There are several possible
cases depending mainly on the encapsulation:

1.

A message contains an RAO value that is relevant to NSIS, but it
does not exactly match the Q-mode encapsulation rules of

Section 5.3.2. The message MUST be transparently forwarded at
the IP layer. See Section 3.6.

A Q-mode encapsulated message contains an RAO value that has been
assigned to some NSIS signalling application but that is not used
on this specific node, but the IP layer is unable to distinguish
whether it needs to be passed to GIST for further processing or
whether the packet should be forwarded just like a normal IP
datagram.

A Q-mode encapsulated message contains an RAO value that has been
assigned to an NSIS signalling application that is used on this
node, but the signalling application does not process the NSLPID
in the message. (This covers the case where a signalling
application uses a set of NSLPIDs.)
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4, A directly addressed message (in D-mode or C-mode) is delivered
to a node for which there is no corresponding signalling
application. With the current specification, this should not
happen in normal operation. While future versions might find a
use for such a feature, currently this MUST cause an "Unknown
NSLPID" error message (Appendix A.4.4.6).

5. A Q-mode encapsulated message arrives at the end-system that does
not handle the signalling application. This is possible in
normal operation, and MUST be indicated to the sender with an
"Endpoint Found" informational message (Appendix A.4.4.7). The
end-system includes the MRI and SID from the original message in
the error message without interpreting them.

6. The node is a GIST-aware NAT. See Section 7.2.

In case (2) and (3), the role of GIST is to forward the message
essentially as though it were a normal IP datagram, and it will not
become a peer to the node sending the message. Forwarding with
modified NSLP payloads is covered above in Section 4.3.2. However, a
GIST implementation MUST ensure that the IP-layer TTL field and GIST
hop count are managed correctly to prevent message looping, and this
should be done consistently independently of where in the packet
processing path the decision is made. The rules are that in cases
(2) and (3), the IP-layer TTL MUST be decremented just as if the
message was a normal IP forwarded packet. 1In case (3), the GIST hop
count MUST be decremented as in the case of normal input processing,
which also applies to cases (4) and (5).

A GIST node processing Q-mode encapsulated messages in this way
SHOULD make the routing decision based on the full contents of the
MRI and not only the IP destination address. It MAY also apply a
restricted set of sanity checks and under certain conditions return
an error message rather than forward the message. These conditions
are:

1. The message is so large that it would be fragmented on downstream
links, for example, because the downstream MTU is abnormally
small (less than 576 bytes). The error "Message Too Large"
(Appendix A.4.4.8) SHOULD be returned to the sender, which SHOULD
begin messaging association setup.

2. The GIST hop count has reached zero. The error "Hop Limit
Exceeded" (Appendix A.4.4.2) SHOULD be returned to the sender,
which MAY retry with a larger initial hop count.
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3. The MRI represents a flow definition that is too general to be
forwarded along a unique path (e.g., the destination address
prefix is too short). The error "MRI Validation Failure"
(Appendix A.4.4.12) with subcode © ("MRI Too Wild") SHOULD be
returned to the sender, which MAY retry with restricted MRIs,
possibly starting additional signalling sessions to do so. If
the GIST node does not understand the MRM in question, it MUST
NOT apply this check, instead forwarding the message
transparently.

In the first two cases, only the common header of the GIST message is
examined; in the third case, the MRI is also examined. The rest of
the message MUST NOT be inspected in any case. Similar to the case
of Section 4.3.2, the GIST payloads MUST NOT be modified or re-
ordered; an implementation MAY choose to achieve this by retaining
the original message, rather than reconstructing it from some parsed
internal representation.

4.4. Routing State and Messaging Association Maintenance

The main responsibility of GIST is to manage the routing state and
messaging associations that are used in the message processing
described above. Routing state is installed and refreshed by GIST
handshake messages. Messaging associations are set up by the normal
procedures of the transport and security protocols that comprise
them, using peer IP addresses from the routing state. Once a
messaging association has been created, its refresh and expiration
can be managed independently from the routing state.

There are two different cases for state installation and refresh:

1. Where routing state is being discovered or a new association is
to be established; and

2. Where a suitable association already exists, including the case
where routing state for the flow is being refreshed.

These cases are now considered in turn, followed by the case of
background general management procedures.

4.4.1. Routing State and Messaging Association Creation

The message sequence for GIST state setup between peers is shown in
Figure 5 and described in detail below. The figure informally
summarises the contents of each message, including optional elements
in square brackets. An example is given in Appendix D.
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The first message in any routing state maintenance operation is a
Query, sent from the Querying node and intercepted at the responding
node. This message has addressing and other identifiers appropriate
for the flow and signalling application that state maintenance is
being done for, addressing information about the node that generated
the Query itself, and MAY contain an NSLP payload. It also includes
a Query-Cookie, and optionally capability information about messaging
association protocol stacks. The role of the cookies in this and
later messages is to protect against certain denial-of-service
attacks and to correlate the events in the message sequence (see
Section 8.5 for further details).
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Routing
state
installed
at
Querying
node

Figure 5: Message Sequence at State

GIST October 2010
---------- + S
Querying | |Responding|
Node(Q-N) | | Node(R-N)|
---------- + Fommm et
Query
______________________ >
Router Alert Option Routing
MRI/SID/NSLPID state
Q-N Network Layer Info installed
Query-Cookie at .
[Q-N Stack-Proposal Responding.
Q-N Stack-Config-Data] node
[NSLP Payload] (case 1)
The responder can use an existing
messaging association if available
from here onwards to short-circuit
messaging association setup
Response
. Cmmm e
MRI/SID/NSLPID
R-N Network Layer Info
Query-Cookie
[Responder-Cookie
[R-N Stack-Proposal
R-N Stack-Config-Data]]
.. [NSLP Payload]
If a messaging association needs
to be created, it is set up here
and the Confirm uses it
confirm L
—————————————————————— > Routing
MRI/SID/NSLPID state
Q-N Network Layer Info installed
[Responder-Cookie at .
[R-N Stack-Proposal Responding.
[Q-N Stack-Config-Data]]] node
[NSLP Payload] (case 2)
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Provided that the signalling application has indicated that message
routing state should be set up (see Section 4.3.2), reception of a
Query MUST elicit a Response. This is a normally encapsulated D-mode
message with additional GIST payloads. It contains network layer
information about the Responding node, echoes the Query-Cookie, and
MAY contain an NSLP payload, possibly a reply to the NSLP payload in
the initial message. In case a messaging association was requested,
it MUST also contain a Responder-Cookie and its own capability
information about messaging association protocol stacks. Even if a
messaging association is not requested, the Response MAY still
include a Responder-Cookie if the node's routing state setup policy
requires it (see below).

Setup of a new messaging association begins when peer addressing
information is available and a new messaging association is actually
needed. Any setup MUST take place immediately after the specific
Query/Response exchange, because the addressing information used may
have a limited lifetime, either because it depends on limited
lifetime NAT bindings or because it refers to agile destination ports
for the transport protocols. The Stack-Proposal and Stack-
Configuration-Data objects carried in the exchange carry capability
information about what messaging association protocols can be used,
and the processing of these objects is described in more detail in
Section 5.7. With the protocol options currently defined, setup of
the messaging association always starts from the Querying node,
although more flexible configurations are possible within the overall
GIST design. If the messaging association includes a channel
security protocol, each GIST node MUST verify the authenticated
identity of the peer against its authorised peer database, and if
there is no match the messaging association MUST be torn down. The
database and authorisation check are described in more detail in
Section 4.4.2 below. Note that the verification can depend on what
the MA is to be used for (e.g., for which MRI or session), so this
step may not be possible immediately after authentication has
completed but some time later.

Finally, after any necessary messaging association setup has
completed, a Confirm MUST be sent if the Response requested it. Once
the Confirm has been sent, the Querying node assumes that routing
state has been installed at the responder, and can send normal Data
messages for the flow in question; recovery from a lost Confirm is
discussed in Section 5.3.3. If a messaging association is being
used, the Confirm MUST be sent over it before any other messages for
the same flow, and it echoes the Responder-Cookie and Stack-Proposal
from the Response. The former is used to allow the receiver to
validate the contents of the message (see Section 8.5), and the
latter is to prevent certain bidding-down attacks on messaging
association security (see Section 8.6). This first Confirm on a new
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association MUST also contain a Stack-Configuration-Data object
carrying an MA-Hold-Time value, which supersedes the value given in
the original Query. The association can be used in the upstream
direction for the MRI and NSLPID carried in the Confirm, after the
Confirm has been received.

The Querying node MUST install the responder address, derived from
the R-Node Network Layer info, as routing state information after
verifying the Query-Cookie in the Response. The Responding node MAY
install the querying address as peer state information at two points
in time:

Case 1: after the receipt of the initial Query, or
Case 2: after a Confirm containing the Responder-Cookie.

The Responding node SHOULD derive the peer address from the Q-Node
Network Layer Info if this was decoded successfully. Otherwise, it
MAY be derived from the IP source address of the message if the
common header flags this as being the signalling source address. The
precise constraints on when state information is installed are a
matter of security policy considerations on prevention of denial-of-
service attacks and state poisoning attacks, which are discussed
further in Section 8. Because the Responding node MAY choose to
delay state installation as in case (2), the Confirm must contain
sufficient information to allow it to be processed in the same way as
the original Query. This places some special requirements on NAT
traversal and cookie functionality, which are discussed in

Section 7.2 and Section 8 respectively.

4.4.2. GIST Peer Authorisation

When two GIST nodes authenticate using a messaging association, both
ends have to decide whether to accept the creation of the MA and
whether to trust the information sent over it. This can be seen as
an authorisation decision:

0 Authorised peers are trusted to install correct routing state
about themselves and not, for example, to claim that they are on-
path for a flow when they are not.

0 Authorised peers are trusted to obey transport- and application-
level flow control rules, and not to attempt to create overload
situations.

0o Authorised peers are trusted not to send erroneous or malicious
error messages, for example, asserting that routing state has been
lost when it has not.
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This specification models the decision as verification by the
authorising node of the peer's identity against a local list of
peers, the authorised peer database (APD). The APD is an abstract
construct, similar to the security policy database of IPsec [36].
Implementations MAY provide the associated functionality in any way
they choose. This section defines only the requirements for APD
administration and the consequences of successfully validating a
peer's identity against it.

The APD consists of a list of entries. Each entry includes an
identity, the namespace from which the identity comes (e.g., DNS
domains), the scope within which the entry is applicable, and whether
authorisation is allowed or denied. The following are example
scopes:

Peer Address Ownership: The scope is the IP address at which the
peer for this MRI should be; the APD entry denotes the identity as
the owner of address. If the authorising node can determine this
address from local information (such as its own routing tables),
matching this entry shows that the peer is the correct on-path
node and so should be authorised. The determination is simple if
the peer is one IP hop downstream, since the IP address can be
derived from the router's forwarding tables. If the peer is more
than one hop away or is upstream, the determination is harder but
may still be possible in some circumstances. The authorising node
may be able to determine a (small) set of possible peer addresses,
and accept that any of these could be the correct peer.

End-System Subnet: The scope is an address range within which the
MRI source or destination lies; the APD entry denotes the identity
as potentially being on-path between the authorising node and that
address range. There may be different source and destination
scopes, to account for asymmetric routing.

The same identity may appear in multiple entries, and the order of
entries in the APD is significant. When a messaging association is
authenticated and associated with an MRI, the authorising node scans
the APD to find the first entry where the identity matches that
presented by the peer, and where the scope information matches the
circumstances for which the MA is being set up. The identity
matching process itself depends on the messaging association protocol
that carries out the authentication, and details for TLS are given in
Section 5.7.3. Whenever the full set of possible peers for a
specific scope is known, deny entries SHOULD be added for the
wildcard identity to reject signalling associations from unknown
nodes. The ability of the authorising node to reject inappropriate
MAs depends directly on the granularity of the APD and the precision
of the scope matching process.
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If authorisation is allowed, the MA can be used as normal; otherwise,
it MUST be torn down without further GIST exchanges, and any routing
state associated with the MA MUST also be deleted. An error
condition MAY be logged locally. When an APD entry is modified or
deleted, the node MUST re-validate existing MAs and the routing state
table against the revised contents of the APD. This may result in
MAs being torn down or routing state entries being deleted. These
changes SHOULD be indicated to local signalling applications via the
NetworkNotification API call (Appendix B.4).

This specification does not define how the APD is populated. As a
minimum, an implementation MUST provide an administrative interface
through which entries can be added, modified, or deleted. More
sophisticated mechanisms are possible in some scenarios. For
example, the fact that a node is legitimately associated with a
specific IP address could be established by direct embedding of the
IP address as a particular identity type in a certificate, or by a
mapping that address to another identifier type via an additional
database lookup (such as relating IP addresses in in-addr.arpa to
domain names). An enterprise network operator could generate a list
of all the identities of its border nodes as authorised to be on the
signalling path to external destinations, and this could be
distributed to all hosts inside the network. Regardless of the
technique, it MUST be ensured that the source data justify the
authorisation decisions listed at the start of this section, and that
the security of the chain of operations on which the APD entry
depends cannot be compromised.

4.4.3. Messaging Association Multiplexing

It is a design goal of GIST that, as far as possible, a single
messaging association should be used for multiple flows and sessions
between two peers, rather than setting up a new MA for each. This
re-use of existing MAs is referred to as messaging association
multiplexing. Multiplexing ensures that the MA cost scales only with
the number of peers, and avoids the latency of new MA setup where
possible.

However, multiplexing requires the identification of an existing MA
that matches the same routing state and desired properties that would
be the result of a normal handshake in D-mode, and this
identification must be done as reliably and securely as continuing
with a normal D-mode handshake. Note that this requirement is
complicated by the fact that NATs may remap the node addresses in
D-mode messages, and also interacts with the fact that some nodes may
peer over multiple interfaces (and thus with different addresses).
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MA multiplexing is controlled by the Network Layer Information (NLI)
object, which is carried in Query, Response, and Confirm messages.
The NLI object includes (among other elements):

Peer-Identity: For a given node, this is an interface-independent
value with opaque syntax. It MUST be chosen so as to have a high
probability of uniqueness across the set of all potential peers,
and SHOULD be stable at least until the next node restart. Note
that there is no cryptographic protection of this identity;
attempting to provide this would essentially duplicate the
functionality in the messaging association security protocols.
For routers, the Router-ID [2], which is one of the router's IP
addresses, MAY be used as one possible value for the Peer-
Identity. 1In scenarios with nested NATs, the Router-ID alone may
not satisfy the uniqueness requirements, in which case it MAY be
extended with additional tokens, either chosen randomly or
administratively coordinated.

Interface-Address: This is an IP address through which the
signalling node can be reached. There may be several choices
available for the Interface-Address, and further discussion of
this is contained in Section 5.2.2.

A messaging association is associated with the NLI object that was
provided by the peer in the Query/Response/Confirm at the time the
association was first set up. There may be more than one MA for a
given NLI object, for example, with different security or transport
properties.

MA multiplexing is achieved by matching these two elements from the
NLI provided in a new GIST message with one associated with an
existing MA. The message can be either a Query or Response, although
the former is more likely:

o If there is a perfect match to an existing association, that
association SHOULD be re-used, provided it meets the criteria on
security and transport properties given at the end of
Section 5.7.1. This is indicated by sending the remaining
messages in the handshake over that association. This will lead
to multiplexing on an association to the wrong node if signalling
nodes have colliding Peer-Identities and one is reachable at the
same Interface-Address as another. This could be caused by an on-
path attacker; on-path attacks are discussed further in
Section 8.7. When multiplexing is done, and the original MA
authorisation was MRI-dependent, the verification steps of
Section 4.4.2 MUST be repeated for the new flow.
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o In all other cases, the handshake MUST be executed in D-mode as
usual. There are in fact four possibilities:

1. Nothing matches: this is clearly a new peer.

2. 0Only the Peer-Identity matches: this may be either a new
interface on an existing peer or a changed address mapping
behind a NAT. These should be rare events, so the expense of
a new association setup is acceptable. Another possibility is
one node using another node's Peer-Identity, for example, as
some kind of attack. Because the Peer-Identity is used only
for this multiplexing process, the only consequence this has
is to require a new association setup, and this is considered
in Section 8.4.

3. Only the Interface-Address matches: this is probably a new
peer behind the same NAT as an existing one. A new
association setup is required.

4. Both elements of the NLI object match: this is a degenerate
case, where one node recognises an existing peer, but wishes
to allow the option to set up a new association in any case,
for example, to create an association with different
properties.

4.4.4. Routing State Maintenance

Each item of routing state expires after a lifetime that is
negotiated during the Query/Response/Confirm handshake. The Network
Layer Information (NLI) object in the Query contains a proposal for
the lifetime value, and the NLI in the Response contains the value
the Responding node requires. A default timer value of 30 seconds is
RECOMMENDED. Nodes that can exploit alternative, more powerful,
route change detection methods such as those described in

Section 7.1.2 MAY choose to use much longer times. Nodes MAY use
shorter times to provide more rapid change detection. If the number
of active routing state items corresponds to a rate of Queries that
will stress the rate limits applied to D-mode traffic

(Section 5.3.3), nodes MUST increase the timer for new items and on
the refresh of existing ones. A suitable value is

2 * (number of routing states) / (rate limit in packets/second)

which leaves a factor of two headroom for new routing state creation
and Query retransmissions.
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The Querying node MUST ensure that a Query is received before this
timer expires, if it believes that the signalling session is still
active; otherwise, the Responding node MAY delete the state. Receipt
of the message at the Responding node will refresh peer addressing
state for one direction, and receipt of a Response at the Querying
node will refresh it for the other. There is no mechanism at the
GIST level for explicit teardown of routing state. However, GIST
MUST NOT refresh routing state if a signalling session is known to be
inactive, either because upstream state has expired or because the
signalling application has indicated via the GIST API (Appendix B.5)
that the state is no longer required, because this would prevent
correct state repair in the case of network rerouting at the IP
layer.

This specification defines precisely only the time at which routing
state expires; it does not define when refresh handshakes should be
initiated. Implementations MUST select timer settings that take at
least the following into account:

o the transmission latency between source and destination;
o the need for retransmissions of Query messages;

o the need to avoid network synchronisation of control traffic (cf.

[42]).

In most cases, a reasonable policy is to initiate the routing state
refresh when between 1/2 and 3/4 of the validity time has elapsed
since the last successful refresh. The actual moment MUST be chosen
randomly within this interval to avoid synchronisation effects.

4.4.5. Messaging Association Maintenance

Unneeded MAs are torn down by GIST, using the teardown mechanisms of
the underlying transport or security protocols if available, for
example, by simply closing a TCP connection. The teardown can be
initiated by either end. Whether an MA is needed is a combination of
two factors:

o local policy, which could take into account the cost of keeping
the messaging association open, the level of past activity on the
association, and the likelihood of future activity, e.g., if there
is routing state still in place that might generate messages to
use it.

o whether the peer still wants the MA to remain in place. During MA
setup, as part of the Stack-Configuration-Data, each node
advertises its own MA-Hold-Time, i.e., the time for which it will
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retain an MA that is not carrying signalling traffic. A node MUST
NOT tear down an MA if it has received traffic from its peer over
that period. A peer that has generated no traffic but still wants
the MA retained can use a special null message (MA-Hello) to
indicate the fact. A default value for MA-Hold-Time of 30 seconds
is RECOMMENDED. Nodes MAY use shorter times to achieve more rapid
peer failure detection, but need to take into account the load on
the network created by the MA-Hello messages. Nodes MAY use
longer times, but need to take into account the cost of retaining
idle MAs for extended periods. Nodes MAY take signalling
application behaviour (e.g., NSLP refresh times) into account in
choosing an appropriate value.

Because the Responding node can choose not to create state until a
Confirm, an abbreviated Stack-Configuration-Data object containing
just this information from the initial Query MUST be repeated by
the Querying node in the first Confirm sent on a new MA. If the
object is missing in the Confirm, an "Object Type Error" message
(Appendix A.4.4.9) with subcode 2 ("Missing Object") MUST be
returned.

Messaging associations can always be set up on demand, and messaging
association status is not made directly visible outside the GIST
layer. Therefore, even if GIST tears down and later re-establishes a
messaging association, signalling applications cannot distinguish
this from the case where the MA is kept permanently open. To
maintain the transport semantics described in Section 4.1, GIST MUST
close transport connections carrying reliable messages gracefully or
report an error condition, and MUST NOT open a new association to be
used for given session and peer while messages on a previous
association could still be outstanding. GIST MAY use an MA-Hello
request/reply exchange on an existing association to verify that
messages sent on it have reached the peer. GIST MAY use the same
technique to test the liveness of the underlying MA protocols
themselves at arbitrary times.

This specification defines precisely only the time at which messaging
associations expire; it does not define when keepalives should be
initiated. Implementations MUST select timer settings that take at
least the following into account:

o the transmission latency between source and destination;

0o the need for retransmissions within the messaging association
protocols;

o the need to avoid network synchronisation of control traffic (cf.

[42]).
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In most cases, a reasonable policy is to initiate the MA refresh when
between 1/2 and 3/4 of the validity time has elapsed since the last
successful refresh. The actual moment MUST be chosen randomly within
this interval to avoid synchronisation effects.

4.4.6. Routing State Failures

A GIST node can receive a message from a GIST peer that can only be
correctly processed in the context of some routing state, but where
no corresponding routing state exists. Cases where this can arise
include:

o Where the message is random traffic from an attacker, or
backscatter (replies to such traffic).

o Where routing state has been correctly installed but the peer has
since lost it, for example, because of aggressive timeout settings
at the peer or because the node has crashed and restarted.

o Where the routing state was not correctly installed in the first
place, but the sending node does not know this. This can happen
if the Confirm message of the handshake is lost.

It is important for GIST to recover from such situations promptly
where they represent genuine errors (node restarts, or lost messages
that would not otherwise be retransmitted). Note that only Response,
Confirm, Data, and Error messages ever require routing state to
exist, and these are considered in turn:

Response: A Response can be received at a node that never sent (or
has forgotten) the corresponding Query. If the node wants routing
state to exist, it will initiate it itself; a diagnostic error
would not allow the sender of the Response to take any corrective
action, and the diagnostic could itself be a form of backscatter.
Therefore, an error message MUST NOT be generated, but the
condition MAY be logged locally.

Confirm: For a Responding node that implements delayed state
installation, this is normal behaviour, and routing state will be
created provided the Confirm is validated. Otherwise, this is a
case of a non-existent or forgotten Response, and the node may not
have sufficient information in the Confirm to create the correct
state. The requirement is to notify the Querying node so that it
can recover the routing state.
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5.

5.

Data: This arises when a node receives Data where routing state is
required, but either it does not exist at all or it has not been
finalised (no Confirm message). To avoid Data being black-holed,
a notification must be sent to the peer.

Error: Some error messages can only be interpreted in the context of
routing state. However, the only error messages that require a
reply within the protocol are routing state error messages
themselves. Therefore, this case should be treated the same as a
Response: an error message MUST NOT be generated, but the
condition MAY be logged locally.

For the case of Confirm or Data messages, if the state is required
but does not exist, the node MUST reject the incoming message with a
"No Routing State" error message (Appendix A.4.4.5). There are then
three cases at the receiver of the error message:

No routing state: The condition MAY be logged but a reply MUST NOT
be sent (see above).

Querying node: The node MUST restart the GIST handshake from the
beginning, with a new Query.

Responding node: The node MUST delete its own routing state and
SHOULD report an error condition to the local signalling
application.

The rules at the Querying or Responding node make GIST open to
disruption by randomly injected error messages, similar to blind
reset attacks on TCP (cf. [46]), although because routing state
matching includes the SID this is mainly limited to on-path
attackers. 1If a GIST node detects a significant rate of such
attacks, it MAY adopt a policy of using secured messaging
associations to communicate for the affected MRIs, and only accepting
"No Routing State" error messages over such associations.

Message Formats and Transport
GIST Messages

All GIST messages begin with a common header, followed by a sequence
of type-length-value (TLV) objects. This subsection describes the
various GIST messages and their contents at a high level in ABNF
[11]; a more detailed description of the header and each object is
given in Section 5.2 and bit formats in Appendix A. Note that the
NAT traversal mechanism for GIST involves the insertion of an
additional NAT-Traversal-Object in Query, Response, and some Data and
Error messages; the rules for this are given in Section 7.2.
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GIST-Message: The primary messages are either part of the three-way
handshake or a simple message carrying NSLP data. Additional types
are defined for errors and keeping messaging associations alive.

GIST-Message = Query / Response / Confirm /
Data / Error / MA-Hello

The common header includes a version number, message type and size,
and NSLPID. It also carries a hop count to prevent infinite message
looping and various control flags, including one (the R-flag) to
indicate if a reply of some sort is requested. The objects following
the common header MUST be carried in a fixed order, depending on
message type. Messages with missing, duplicate, or invalid objects
for the message type MUST be rejected with an "Object Type Error"
message with the appropriate subcode (Appendix A.4.4.9). Note that
unknown objects indicate explicitly how they should be treated and
are not covered by the above statement.

Query: A Query MUST be sent in D-mode using the special Q-mode
encapsulation. In addition to the common header, it contains certain
mandatory control objects, and MAY contain a signalling application
payload. A stack proposal and configuration data MUST be included if
the message exchange relates to setup of a messaging association, and
this is the case even if the Query is intended only for refresh
(since a routing change might have taken place in the meantime). The
R-flag MUST always be set (R=1) in a Query, since this message always
elicits a Response.

Query = Common-Header
[ NAT-Traversal-Object ]
Message-Routing-Information
Session-Identifier
Network-Layer-Information
Query-Cookie
[ Stack-Proposal Stack-Configuration-Data ]
[ NSLP-Data ]

Response: A Response MUST be sent in D-mode if no existing messaging
association can be re-used. If one is being re-used, the Response
MUST be sent in C-mode. It MUST echo the MRI, SID, and Query-Cookie
of the Query, and carries its own Network-Layer-Information. If the
message exchange relates to setup of a new messaging association,
which MUST involve a D-mode Response, a Responder-Cookie MUST be
included, as well as the Responder's own stack proposal and
configuration data. The R-flag MUST be set (R=1) if a Responder-
Cookie is present but otherwise is optional; if the R-flag is set, a
Confirm MUST be sent as a reply. Therefore, in particular, a Confirm
will always be required if a new MA is being set up. Note that the
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direction of this MRI will be inverted compared to that in the Query,

that is, an upstream MRI becomes downstream and vice versa (see
Section 3.3).

Response = Common-Header
[ NAT-Traversal-Object ]
Message-Routing-Information
Session-Identifier
Network-Layer-Information
Query-Cookie
[ Responder-Cookie
[ Stack-Proposal Stack-Configuration-Data ] ]
[ NSLP-Data ]

Confirm: A Confirm MUST be sent in C-mode if a messaging association
is being used for this routing state, and MUST be sent before other
messages for this routing state if an association is being set up.
If no messaging association is being used, the Confirm MUST be sent
in D-mode. The Confirm MUST include the MRI (with inverted
direction) and SID, and echo the Responder-Cookie if the Response
carried one. 1In C-mode, the Confirm MUST also echo the Stack-
Proposal from the Response (if present) so it can be verified that
this has not been tampered with. The first Confirm on a new
association MUST also repeat the Stack-Configuration-Data from the

original Query in an abbreviated form, just containing the MA-Hold-
Time.

Confirm = Common-Header
Message-Routing-Information
Session-Identifier
Network-Layer-Information
[ Responder-Cookie

[ Stack-Proposal
[ Stack-Configuration-Data ] ] ]
[ NSLP-Data ]

Data: The Data message is used to transport NSLP data without
modifying GIST state. It contains no control objects, but only the
MRI and SID associated with the NSLP data being transferred.
Network-Layer-Information (NLI) MUST be carried in the D-mode case,
but MUST NOT be included otherwise.

Data = Common-Header
[ NAT-Traversal-Object ]
Message-Routing-Information
Session-Identifier
[ Network-Layer-Information ]
NSLP-Data
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Error: An Error message reports a problem determined at the GIST
level. (Errors generated by signalling applications are reported in
NSLP-Data payloads and are not treated specially by GIST.) If the
message is being sent in D-mode, the originator of the error message
MUST include its own Network-Layer-Information object. All other
information related to the error is carried in a GIST-Error-Data
object.

Error = Common-Header
[ NAT-Traversal-Object ]
[ Network-Layer-Information ]
GIST-Error-Data

MA-Hello: This message MUST be sent only in C-mode. It contains the
common header, with a NSLPID of zero, and a message identifier, the
Hello-ID. It always indicates that a node wishes to keep a messaging
association open, and if sent with R=0 and zero Hello-ID this is its
only function. A node MAY also invoke a diagnostic request/reply
exchange by setting R=1 and providing a non-zero Hello-ID; in this
case, the peer MUST send another MA-Hello back along the messaging
association echoing the same Hello-ID and with R=0. Use of this
diagnostic is entirely at the discretion of the initiating node.

MA-Hello = Common-Header
Hello-ID

5.2. Information Elements

This section describes the content of the various objects that can be
present in each GIST message, both the common header and the
individual TLVs. The bit formats are provided in Appendix A.

5.2.1. The Common Header

Each message begins with a fixed format common header, which contains
the following information:

Version: The version number of the GIST protocol. This
specification defines GIST version 1.

GIST hop count: A hop count to prevent a message from looping
indefinitely.

Length: The number of 32-bit words in the message following the
common header.

Upper layer identifier (NSLPID): This gives the specific NSLP for
which this message is used.
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Context-free flag: This flag is set (C=1) if the receiver has to be
able to process the message without supporting routing state. The
C-flag MUST be set for Query messages, and also for Data messages
sent in Q-mode. The C-fla