
Internet Engineering Task Force (IETF) M. Wasserman
Request for Comments: 6296 Painless Security
Category: Experimental F. Baker
ISSN: 2070-1721 Cisco Systems
 June 2011

IPv6-to-IPv6 Network Prefix Translation

Abstract

 This document describes a stateless, transport-agnostic IPv6-to-IPv6
 Network Prefix Translation (NPTv6) function that provides the
 address-independence benefit associated with IPv4-to-IPv4 NAT
 (NAPT44) and provides a 1:1 relationship between addresses in the
 "inside" and "outside" prefixes, preserving end-to-end reachability
 at the network layer.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at

http://www.rfc-editor.org/info/rfc6296.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Wasserman & Baker Experimental [Page 1]

https://datatracker.ietf.org/doc/html/rfc5741#section-2
http://www.rfc-editor.org/info/rfc6296
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

RFC 6296 NPTv6 June 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. What is Address Independence? 4
1.2. NPTv6 Applicability 5
1.3. Requirements Terminology 7

2. NPTv6 Overview . 7
2.1. NPTv6: The Simplest Case 7
2.2. NPTv6 between Peer Networks 8
2.3. NPTv6 Redundancy and Load Sharing 9
2.4. NPTv6 Multihoming . 9
2.5. Mapping with No Per-Flow State 10
2.6. Checksum-Neutral Mapping 10

3. NPTv6 Algorithmic Specification 11
3.1. NPTv6 Configuration Calculations 11

 3.2. NPTv6 Translation, Internal Network to External Network . 12
 3.3. NPTv6 Translation, External Network to Internal Network . 12

3.4. NPTv6 with a /48 or Shorter Prefix 12
3.5. NPTv6 with a /49 or Longer Prefix 13
3.6. /48 Prefix Mapping Example 13
3.7. Address Mapping for Longer Prefixes 14

 4. Implications of Network Address Translator Behavioral
 Requirements . 15

4.1. Prefix Configuration and Generation 15
4.2. Subnet Numbering . 15
4.3. NAT Behavioral Requirements 15

5. Implications for Applications 16
 5.1. Recommendation for Network Planners Considering Use of
 NPTv6 Translation . 17

5.2. Recommendations for Application Writers 18
5.3. Recommendation for Future Work 18

6. A Note on Port Mapping . 18
7. Security Considerations 19
8. Acknowledgements . 19
9. References . 20
9.1. Normative References 20
9.2. Informative References 20

Appendix A. Why GSE? . 23
Appendix B. Verification Code 25

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 2]

RFC 6296 NPTv6 June 2011

1. Introduction

 This document describes a stateless IPv6-to-IPv6 Network Prefix
 Translation (NPTv6) function, designed to provide address
 independence to the edge network. It is transport-agnostic with
 respect to transports that do not checksum the IP header, such as
 SCTP, and to transports that use the TCP/UDP/DCCP (Datagram
 Congestion Control Protocol) pseudo-header and checksum [RFC1071].

 For reasons discussed in [RFC2993] and Section 5, the IETF does not
 recommend the use of Network Address Translation technology for IPv6.
 Where translation is implemented, however, this specification
 provides a mechanism that has fewer architectural problems than
 merely implementing a traditional stateful Network Address Translator
 in an IPv6 environment. It also provides a useful alternative to the
 complexities and costs imposed by multihoming using provider-
 independent addressing and the routing and network management issues
 of overlaid ISP address space. Some problems remain, however. The
 reader should consider the alternatives suggested in [RFC4864] and
 the considerations of [RFC5902] for improved approaches.

 The stateless approach described in this document has several
 ramifications:

 o Any security benefit that NAPT44 might offer is not present in
 NPTv6, necessitating the use of a firewall to obtain those
 benefits if desired. An example of such a firewall is described
 in [RFC6092].

 o End-to-end reachability is preserved, although the address used
 "inside" the edge network differs from the address used "outside"
 the edge network. This has implications for application referrals
 and other uses of Internet layer addresses.

 o If there are multiple identically configured prefix translators
 between two networks, there is no need for them to exchange
 dynamic state, as there is no dynamic state -- the algorithmic
 translation will be identical across each of them. The network
 can therefore asymmetrically route, load share, and fail-over
 among them without issue.

 o Since translation is 1:1 at the network layer, there is no need to
 modify port numbers or other transport parameters.

 o TCP sessions that authenticate peers using the TCP Authentication
 Option [RFC5925] cannot have their addresses translated, as the
 addresses are used in the calculation of the Message
 Authentication Code. This consideration applies in general to any

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc2993
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc5902
https://datatracker.ietf.org/doc/html/rfc6092
https://datatracker.ietf.org/doc/html/rfc5925

Wasserman & Baker Experimental [Page 3]

RFC 6296 NPTv6 June 2011

 UNilateral Self-Address Fixing (UNSAF) [RFC3424] Protocol, which
 the IAB recommends against the deployment of in an environment
 that changes Internet addresses.

 o Applications using the Internet Key Exchange Protocol Version 2
 (IKEv2) [RFC5996] should, at least in theory, detect the presence
 of the translator; while no NAT traversal solution is required,
 [RFC5996] would require such sessions to use UDP.

1.1. What is Address Independence?

 For the purposes of this document, IPv6 address independence consists
 of the following set of properties:

 From the perspective of the edge network:

 * The IPv6 addresses used inside the local network (for
 interfaces, access lists, and logs) do not need to be
 renumbered if the global prefix(es) assigned for use by the
 edge network are changed.

 * The IPv6 addresses used inside the edge network (for
 interfaces, access lists, and logs) or within other upstream
 networks (such as when multihoming) do not need to be
 renumbered when a site adds, drops, or changes upstream
 networks.

 * It is not necessary for an administration to convince an
 upstream network to route its internal IPv6 prefixes or for it
 to advertise prefixes derived from other upstream networks into
 it.

 * Unless it wants to optimize routing between multiple upstream
 networks in the process of multihoming, there is no need for a
 BGP exchange with the upstream network.

 From the perspective of the upstream network:

 * IPv6 addresses used by the edge network are guaranteed to have
 a provider-allocated prefix, eliminating the need and concern
 for BCP 38 [RFC2827] ingress filtering and the advertisement of
 customer-specific prefixes.

 Thus, address independence has ramifications for the edge network,
 networks it directly connects with (especially its upstream
 networks), and the Internet as a whole. The desire for address
 independence has been a primary driver for IPv4 NAT deployment in
 medium- to large-sized enterprise networks, including NAT deployments

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827

Wasserman & Baker Experimental [Page 4]

RFC 6296 NPTv6 June 2011

 in enterprises that have plenty of IPv4 provider-independent address
 space (from IPv4 "swamp space"). It has also been a driver for edge
 networks to become members of Regional Internet Registry (RIR)
 communities, seeking to obtain BGP Autonomous System Numbers and
 provider-independent prefixes, and as a result has been one of the
 drivers of the explosion of the IPv4 route table. Service providers
 have stated that the lack of address independence from their
 customers has been a negative incentive to deployment, due to the
 impact of customer routing expected in their networks.

 The Local Network Protection [RFC4864] document discusses a related
 concept called "Address Autonomy" as a benefit of NAPT44. [RFC4864]
 indicates that address autonomy can be achieved by the simultaneous
 use of global addresses on all nodes within a site that need external
 connectivity and Unique Local Addresses (ULAs) [RFC4193] for all
 internal communication. However, this solution fails to meet the
 requirement for address independence, because if an ISP renumbering
 event occurs, all of the hosts, routers, DHCP servers, Access Control
 Lists (ACLs), firewalls, and other internal systems that are
 configured with global addresses from the ISP will need to be
 renumbered before global connectivity is fully restored.

 The use of IPv6 provider-independent (PI) addresses has also been
 suggested as a means to fulfill the address-independence requirement.
 However, this solution requires that an enterprise qualify to receive
 a PI assignment and persuade its ISP to install specific routes for
 the enterprise's PI addresses. There are a number of practical
 issues with this approach, especially if there is a desire to route
 to a number of geographically and topologically diverse sites, which
 can sometimes involve coordinating with several ISPs to route
 portions of a single PI prefix. These problems have caused numerous
 enterprises with plenty of IPv4 swamp space to choose to use IPv4 NAT
 for part, or substantially all, of their internal network instead of
 using their provider-independent address space.

1.2. NPTv6 Applicability

 NPTv6 provides a simple and compelling solution to meet the address-
 independence requirement in IPv6. The address-independence benefit
 stems directly from the translation function of the network prefix
 translator. To avoid as many of the issues associated with NAPT44 as
 possible, NPTv6 is defined to include a two-way, checksum-neutral,
 algorithmic translation function, and nothing else.

 The fact that NPTv6 does not map ports and is checksum-neutral avoids
 the need for an NPTv6 Translator to rewrite transport layer headers.
 This makes it feasible to deploy new or improved transport layer

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc4193

Wasserman & Baker Experimental [Page 5]

RFC 6296 NPTv6 June 2011

 protocols without upgrading NPTv6 Translators. Similarly, since
 NPTv6 does not rewrite transport layer headers, NPTv6 will not
 interfere with encryption of the full IP payload in many cases.

 The default NPTv6 address-mapping mechanism is purely algorithmic, so
 NPTv6 translators do not need to maintain per-node or per-connection
 state, allowing deployment of more robust and adaptive networks than
 can be deployed using NAPT44. Since the default NPTv6 mapping can be
 performed in either direction, it does not interfere with inbound
 connection establishment, thus allowing internal nodes to participate
 in direct Peer-to-Peer applications without the application layer
 overhead one finds in many IPv4 Peer-to-Peer applications.

 Although NPTv6 compares favorably to NAPT44 in several ways, it does
 not eliminate all of the architectural problems associated with IPv4
 NAT, as described in [RFC2993]. NPTv6 involves modifying IP headers
 in transit, so it is not compatible with security mechanisms, such as
 the IPsec Authentication Header, that provide integrity protection
 for the IP header. NPTv6 may interfere with the use of application
 protocols that transmit IP addresses in the application-specific
 portion of the IP datagram. These applications currently require
 Application Layer Gateways (ALGs) to work correctly through NAPT44
 devices, and similar ALGs may be required for these applications to
 work through NPTv6 Translators. The use of separate internal and
 external prefixes creates complexity for DNS deployment, due to the
 desire for internal nodes to communicate with other internal nodes
 using internal addresses, while external nodes need to obtain
 external addresses to communicate with the same nodes. This
 frequently results in the deployment of "split DNS", which may add
 complexity to network configuration.

 The choice of address within the edge network bears consideration.
 One could use a ULA, which maximizes address independence. That
 could also be considered a misuse of the ULA; if the expectation is
 that a ULA prevents access to a system from outside the range of the
 ULA, NPTv6 overrides that. On the other hand, the administration is
 aware that it has made that choice and could deploy a second ULA for
 the purpose of privacy if it desired; the only prefix that will be
 translated is one that has an NPTv6 Translator configured to
 translate to or from it. Also, using any other global-scope address
 format makes one either obtain a PI prefix or be at the mercy of the
 agency from which it was allocated.

 There are significant technical impacts associated with the
 deployment of any prefix translation mechanism, including NPTv6, and
 we strongly encourage anyone who is considering the implementation or

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc2993

Wasserman & Baker Experimental [Page 6]

RFC 6296 NPTv6 June 2011

 deployment of NPTv6 to read [RFC4864] and [RFC5902], and to carefully
 consider the alternatives described in that document, some of which
 may cause fewer problems than NPTv6.

1.3. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. NPTv6 Overview

 NPTv6 may be implemented in an IPv6 router to map one IPv6 address
 prefix to another IPv6 prefix as each IPv6 datagram transits the
 router. A router that implements an NPTv6 prefix translation
 function is referred to as an NPTv6 Translator.

2.1. NPTv6: The Simplest Case

 In its simplest form, an NPTv6 Translator interconnects two network
 links, one of which is an "internal" network link attached to a leaf
 network within a single administrative domain and the other of which
 is an "external" network with connectivity to the global Internet.
 All of the hosts on the internal network will use addresses from a
 single, locally routed prefix, and those addresses will be translated
 to/from addresses in a globally routable prefix as IP datagrams
 transit the NPTv6 Translator. The lengths of these two prefixes will
 be functionally the same; if they differ, the longer of the two will
 limit the ability to use subnets in the shorter.

 External Network: Prefix = 2001:0DB8:0001:/48

 |
 |
 +-------------+
 | NPTv6 |
 | Translator |
 +-------------+
 |
 |

 Internal Network: Prefix = FD01:0203:0405:/48

 Figure 1: A Simple Translator

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc5902
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wasserman & Baker Experimental [Page 7]

RFC 6296 NPTv6 June 2011

 Figure 1 shows an NPTv6 Translator attached to two networks. In this
 example, the internal network uses IPv6 Unique Local Addresses (ULAs)
 [RFC4193] to represent the internal IPv6 nodes, and the external
 network uses globally routable IPv6 addresses to represent the same
 nodes.

 When an NPTv6 Translator forwards datagrams in the "outbound"
 direction, from the internal network to the external network, NPTv6
 overwrites the IPv6 source prefix (in the IPv6 header) with a
 corresponding external prefix. When datagrams are forwarded in the
 "inbound" direction, from the external network to the internal
 network, the IPv6 destination prefix is overwritten with a
 corresponding internal prefix. Using the prefixes shown in the
 diagram above, as an IP datagram passes through the NPTv6 Translator
 in the outbound direction, the source prefix (FD01:0203:0405:/48)
 will be overwritten with the external prefix (2001:0DB8:0001:/48).
 In an inbound datagram, the destination prefix (2001:0DB8:0001:/48)
 will be overwritten with the internal prefix (FD01:0203:0405:/48).
 In both cases, it is the local IPv6 prefix that is overwritten; the
 remote IPv6 prefix remains unchanged. Nodes on the internal network
 are said to be "behind" the NPTv6 Translator.

2.2. NPTv6 between Peer Networks

 NPTv6 can also be used between two private networks. In these cases,
 both networks may use ULA prefixes, with each subnet in one network
 mapped into a corresponding subnet in the other network, and vice
 versa. Or, each network may use ULA prefixes for internal addressing
 and global unicast addresses on the other network.

 Internal Prefix = FD01:4444:5555:/48

 V | External Prefix
 V | 2001:0DB8:6666:/48
 V +---------+ ^
 V | NPTv6 | ^
 V | Device | ^
 V +---------+ ^
 External Prefix | ^
 2001:0DB8:0001:/48 | ^

 Internal Prefix = FD01:0203:0405:/48

 Figure 2: Flow of Information in Translation

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc4193

Wasserman & Baker Experimental [Page 8]

RFC 6296 NPTv6 June 2011

2.3. NPTv6 Redundancy and Load Sharing

 In some cases, more than one NPTv6 Translator may be attached to a
 network, as shown in Figure 3. In such cases, NPTv6 Translators are
 configured with the same internal and external prefixes. Since there
 is only one translation, even though there are multiple translators,
 they map only one external address (prefix and Interface Identifier
 (IID)) to the internal address.

 External Network: Prefix = 2001:0DB8:0001:/48

 | |
 | |
 +-------------+ +-------------+
 | NPTv6 | | NPTv6 |
 | Translator | | Translator |
 | #1 | | #2 |
 +-------------+ +-------------+
 | |
 | |

 Internal Network: Prefix = FD01:0203:0405:/48

 Figure 3: Parallel Translators

2.4. NPTv6 Multihoming

 External Network #1: External Network #2:
 Prefix = 2001:0DB8:0001:/48 Prefix = 2001:0DB8:5555:/48
 --------------------------- --------------------------
 | |
 | |
 +-------------+ +-------------+
 | NPTv6 | | NPTv6 |
 | Translator | | Translator |
 | #1 | | #2 |
 +-------------+ +-------------+
 | |
 | |

 Internal Network: Prefix = FD01:0203:0405:/48

 Figure 4: Parallel Translators with Different Upstream Networks

 When multihoming, NPTv6 Translators are attached to an internal
 network, as shown in Figure 4, but are connected to different
 external networks. In such cases, NPTv6 Translators are configured
 with the same internal prefix but different external prefixes. Since

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 9]

RFC 6296 NPTv6 June 2011

 there are multiple translations, they map multiple external addresses
 (prefix and IID) to the common internal address. A system within the
 edge network is unable to determine which external address it is
 using apart from services such as Session Traversal Utilities for NAT
 (STUN) [RFC5389].

 Multihoming in this sense has one negative feature as compared with
 multihoming with a provider-independent address: when routes change
 between NPTv6 Translators, the translated prefix can change since the
 upstream network changes. This causes sessions and referrals
 dependent on it to fail as well. This is not expected to be a major
 issue, however, in networks where routing is generally stable.

2.5. Mapping with No Per-Flow State

 When NPTv6 is used as described in this document, no per-node or per-
 flow state is maintained in the NPTv6 Translator. Both inbound and
 outbound datagrams are translated algorithmically, using only
 information found in the IPv6 header. Due to this property, NPTv6's
 two-way, algorithmic address mapping can support both outbound and
 inbound connection establishment without the need for maintenance of
 mapping state or for state-priming or rendezvous mechanisms. This is
 a significant improvement over NAPT44 devices, but it also has
 significant security implications, which are described in Section 7.

2.6. Checksum-Neutral Mapping

 When a change is made to one of the IP header fields in the IPv6
 pseudo-header checksum (such as one of the IP addresses), the
 checksum field in the transport layer header may become invalid.
 Fortunately, an incremental change in the area covered by the
 Internet standard checksum [RFC1071] will result in a well-defined
 change to the checksum value [RFC1624]. So, a checksum change caused
 by modifying part of the area covered by the checksum can be
 corrected by making a complementary change to a different 16-bit
 field covered by the same checksum.

 The NPTv6 mapping mechanisms described in this document are checksum-
 neutral, which means that they result in IP headers that will
 generate the same IPv6 pseudo-header checksum when the checksum is
 calculated using the standard Internet checksum algorithm [RFC1071].
 Any changes that are made during translation of the IPv6 prefix are
 offset by changes to other parts of the IPv6 address. This results
 in transport layers that use the Internet checksum (such as TCP and
 UDP) calculating the same IPv6 pseudo-header checksum for both the
 internal and external forms of the same datagram, which avoids the
 need for the NPTv6 Translator to modify those transport layer headers
 to correct the checksum value.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1071

Wasserman & Baker Experimental [Page 10]

RFC 6296 NPTv6 June 2011

 The outgoing checksum correction is achieved by making a change to a
 16-bit section of the source address that is not used for routing in
 the external network. Due to the nature of checksum arithmetic, when
 the corresponding correction is applied to the same bits of
 destination address of the inbound packet, the Destination Address
 (DA) is returned to the correct internal value.

 As noted in Section 4.2, this mapping results in an edge network
 using a /48 external prefix to be unable to use subnet 0xFFFF.

3. NPTv6 Algorithmic Specification

 The [RFC4291] IPv6 Address is reproduced for clarity in Figure 5.

 0 15 16 31 32 47 48 63 64 79 80 95 96 111 112 127
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | Routing Prefix | Subnet| Interface Identifier (IID) |
 +-------+-------+-------+-------+-------+-------+-------+-------+

 Figure 5: Enumeration of the IPv6 Address [RFC4291]

3.1. NPTv6 Configuration Calculations

 When an NPTv6 Translation function is configured, it is configured
 with

 o one or more "internal" interfaces with their "internal" routing
 domain prefixes, and

 o one or more "external" interfaces with their "external" routing
 domain prefixes.

 In the simple case, there is one of each. If a single router
 provides NPTv6 translation services between a multiplicity of domains
 (as might be true when multihoming), each internal/external pair must
 be thought of as a separate NPTv6 Translator from the perspective of
 this specification.

 When an NPTv6 Translator is configured, the translation function
 first ensures that the internal and external prefixes are the same
 length, extending the shorter of the two with zeroes if necessary.
 These two prefixes will be used in the prefix translation function
 described in Sections 3.2 and 3.3.

 They are then zero-extended to /64 for the purposes of a calculation.
 The translation function calculates the one's complement sum of the
 16-bit words of the /64 external prefix and the /64 internal prefix.
 It then calculates the difference between these values: internal

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4291

Wasserman & Baker Experimental [Page 11]

RFC 6296 NPTv6 June 2011

 minus external. This value, called the "adjustment", is effectively
 constant for the lifetime of the NPTv6 Translator configuration and
 is used in per-datagram processing.

3.2. NPTv6 Translation, Internal Network to External Network

 When a datagram passes through the NPTv6 Translator from an internal
 to an external network, its IPv6 Source Address is either changed in
 two ways or results in the datagram being discarded:

 o If the internal subnet number has no mapping, such as being 0xFFFF
 or simply not mapped, discard the datagram. This SHOULD result in
 an ICMP Destination Unreachable.

 o The internal prefix is overwritten with the external prefix, in
 effect subtracting the difference between the two checksums (the
 adjustment) from the pseudo-header's checksum, and

 o A 16-bit word of the address has the adjustment added to it using
 one's complement arithmetic. If the result is 0xFFFF, it is
 overwritten as zero. The choice of word is as specified in
 Sections 3.4 or 3.5 as appropriate.

3.3. NPTv6 Translation, External Network to Internal Network

 When a datagram passes through the NPTv6 Translator from an external
 to an internal network, its IPv6 Destination Address is changed in
 two ways:

 o The external prefix is overwritten with the internal prefix, in
 effect adding the difference between the two checksums (the
 adjustment) to the pseudo-header's checksum, and

 o A 16-bit word of the address has the adjustment subtracted from it
 (bitwise inverted and added to it) using one's complement
 arithmetic. If the result is 0xFFFF, it is overwritten as zero.
 The choice of word is as specified in Section 3.4 or Section 3.5
 as appropriate.

3.4. NPTv6 with a /48 or Shorter Prefix

 When an NPTv6 Translator is configured with internal and external
 prefixes that are 48 bits in length (a /48) or shorter, the
 adjustment MUST be added to or subtracted from bits 48..63 of the
 address.

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 12]

RFC 6296 NPTv6 June 2011

 This mapping results in no modification of the Interface Identifier
 (IID), which is held in the lower half of the IPv6 address, so it
 will not interfere with future protocols that may use unique IIDs for
 node identification.

 NPTv6 Translator implementations MUST implement the /48 mapping.

3.5. NPTv6 with a /49 or Longer Prefix

 When an NPTv6 Translator is configured with internal and external
 prefixes that are longer than 48 bits in length (such as a /52, /56,
 or /60), the adjustment must be added to or subtracted from one of
 the words in bits 64..79, 80..95, 96..111, or 112..127 of the
 address. While the choice of word is immaterial as long as it is
 consistent, these words MUST be inspected in that sequence and the
 first that is not initially 0xFFFF chosen, for consistency's sake.

 NPTv6 Translator implementations SHOULD implement the mapping for
 longer prefixes.

3.6. /48 Prefix Mapping Example

 For the network shown in Figure 1, the Internal Prefix is FD01:0203:
 0405:/48, and the External Prefix is 2001:0DB8:0001:/48.

 If a node with internal address FD01:0203:0405:0001::1234 sends an
 outbound datagram through the NPTv6 Translator, the resulting
 external address will be 2001:0DB8:0001:D550::1234. The resulting
 address is obtained by calculating the checksum of both the internal
 and external 48-bit prefixes, subtracting the internal prefix from
 the external prefix using one's complement arithmetic to calculate
 the "adjustment", and adding the adjustment to the 16-bit subnet
 field (in this case, 0x0001).

 To show the work:

 The one's complement checksum of FD01:0203:0405 is 0xFCF5. The one's
 complement checksum of 2001:0DB8:0001 is 0xD245. Using one's
 complement arithmetic, 0xD245 - 0xFCF5 = 0xD54F. The subnet in the
 original datagram is 0x0001. Using one's complement arithmetic,
 0x0001 + 0xD54F = 0xD550. Since 0xD550 != 0xFFFF, it is not changed
 to 0x0000.

 So, the value 0xD550 is written in the 16-bit subnet area, resulting
 in a mapped external address of 2001:0DB8:0001:D550::1234.

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 13]

RFC 6296 NPTv6 June 2011

 When a response datagram is received, it will contain the destination
 address 2001:0DB8:0001:D550::0001, which will be mapped back to FD01:
 0203:0405:0001::1234 using the inverse mapping algorithm.

 In this case, the difference between the two prefixes will be
 calculated as follows:

 Using one's complement arithmetic, 0xFCF5 - 0xD245 = 0x2AB0. The
 subnet in the original datagram = 0xD550. Using one's complement
 arithmetic, 0xD550 + 0x2AB0 = 0x0001. Since 0x0001 != 0xFFFF, it is
 not changed to 0x0000.

 So the value 0x0001 is written into the subnet field, and the
 internal value of the subnet field is properly restored.

3.7. Address Mapping for Longer Prefixes

 If the prefix being mapped is longer than 48 bits, the algorithm is
 slightly more complex. A common case will be that the internal and
 external prefixes are of different lengths. In such a case, the
 shorter prefix is zero-extended to the length of the longer as
 described in Section 3.1 for the purposes of overwriting the prefix.
 Then, they are both zero-extended to 64 bits to facilitate one's
 complement arithmetic. The "adjustment" is calculated using those
 64-bit prefixes.

 For example, if the internal prefix is a /48 ULA and the external
 prefix is a /56 provider-allocated prefix, the ULA becomes a /56 with
 zeros in bits 48..55. For purposes of one's complement arithmetic,
 they are then both zero-extended to 64 bits. A side effect of this
 is that a subset of the subnets possible in the shorter prefix is
 untranslatable. While the security value of this is debatable, the
 administration may choose to use them for subnets that it knows need
 no external accessibility.

 We then find the first word in the IID that does not have the value
 0xFFFF, trying bits 64..79, and then 80..95, 96..111, and finally
 112..127. We perform the same calculation (with the same proof of
 correctness) as in Section 3.6 but apply it to that word.

 Although any 16-bit portion of an IPv6 IID could contain 0xFFFF, an
 IID of all-ones is a reserved anycast identifier that should not be
 used on the network [RFC2526]. If an NPTv6 Translator discovers a
 datagram with an IID of all-zeros while performing address mapping,
 that datagram MUST be dropped, and an ICMPv6 Parameter Problem error
 SHOULD be generated [RFC4443].

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc2526
https://datatracker.ietf.org/doc/html/rfc4443

Wasserman & Baker Experimental [Page 14]

RFC 6296 NPTv6 June 2011

 Note: This mechanism does involve modification of the IID; it may not
 be compatible with future mechanisms that use unique IIDs for node
 identification.

4. Implications of Network Address Translator Behavioral Requirements

4.1. Prefix Configuration and Generation

 NPTv6 Translators MUST support manual configuration of internal and
 external prefixes and MUST NOT place any restrictions on those
 prefixes except that they be valid IPv6 unicast prefixes as described
 in [RFC4291]. They MAY also support random generation of ULA
 addresses on command. Since the most common place anticipated for
 the implementation of an NPTv6 Translator is a Customer Premises
 Equipment (CPE) router, the reader is urged to consider the
 requirements of [RFC6204].

4.2. Subnet Numbering

 For reasons detailed in Appendix B, a network using NPTv6 Translation
 and a /48 external prefix MUST NOT use the value 0xFFFF to designate
 a subnet that it expects to be translated.

4.3. NAT Behavioral Requirements

 NPTv6 Translators MUST support hairpinning behavior, as defined in
 the NAT Behavioral Requirements for UDP document [RFC4787]. This
 means that when an NPTv6 Translator receives a datagram on the
 internal interface that has a destination address that matches the
 site's external prefix, it will translate the datagram and forward it
 internally. This allows internal nodes to reach other internal nodes
 using their external, global addresses when necessary.

 Conceptually, the datagram leaves the domain (is translated as
 described in Section 3.2) and returns (is again translated as
 described in Section 3.3). As a result, the datagram exchange will
 be through the NPTv6 Translator in both directions for the lifetime
 of the session. The alternative would be to require the NPTv6
 Translator to drop the datagram, forcing the sender to use the
 correct internal prefix for its peer. Performing only the external-
 to-internal translation results in the datagram being sent from the
 untranslated internal address of the source to the translated and
 therefore internal address of its peer, which would enable the
 session to bypass the NPTv6 Translator for future datagrams. It
 would also mean that the original sender would be unlikely to
 recognize the response when it arrived.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6204
https://datatracker.ietf.org/doc/html/rfc4787

Wasserman & Baker Experimental [Page 15]

RFC 6296 NPTv6 June 2011

 Because NPTv6 does not perform port mapping and uses a one-to-one,
 reversible-mapping algorithm, none of the other NAT behavioral
 requirements apply to NPTv6.

5. Implications for Applications

 NPTv6 Translation does not create several of the problems known to
 exist with other kinds of NATs as discussed in [RFC2993]. In
 particular, NPTv6 Translation is stateless, so a "reset" or brief
 outage of an NPTv6 Translator does not break connections that
 traverse the translation function, and if multiple NPTv6 Translators
 exist between the same two networks, the load can shift or be
 dynamically load shared among them. Also, an NPTv6 Translator does
 not aggregate traffic for several hosts/interfaces behind a fewer
 number of external addresses, so there is no inherent expectation for
 an NPTv6 Translator to block new inbound flows from external hosts
 and no issue with a filter or blacklist associated with one prefix
 within the domain affecting another. A firewall can, of course, be
 used in conjunction with an NPTv6 Translator; this would allow the
 network administrator more flexibility to specify security policy
 than would be possible with a traditional NAT.

 However, NPTv6 Translation does create difficulties for some kinds of
 applications. Some examples include:

 o An application instance "behind" an NPTv6 Translator will see a
 different address for its connections than its peers "outside" the
 NPTv6 Translator.

 o An application instance "outside" an NPTv6 Translator will see a
 different address for its connections than any peer "inside" an
 NPTv6 Translator.

 o An application instance wishing to establish communication with a
 peer "behind" an NPTv6 Translator may need to use a different
 address to reach that peer depending on whether the instance is
 behind the same NPTv6 Translator or external to it. Since an
 NPTv6 Translator implements hairpinning (Section 4.3), it suffices
 for applications to always use their external addresses. However,
 this creates inefficiencies in the local network and may also
 complicate implementation of the NPTv6 Translator. [RFC3484] also
 would prefer the private address in such a case in order to reduce
 those inefficiencies.

 o An application instance that moves from a realm "behind" an NPTv6
 Translator to a realm that is "outside" the network, or vice
 versa, may find that it is no longer able to reach its peers at
 the same addresses it was previously able to use.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc2993
https://datatracker.ietf.org/doc/html/rfc3484

Wasserman & Baker Experimental [Page 16]

RFC 6296 NPTv6 June 2011

 o An application instance that is intermittently communicating with
 a peer that moves from behind an NPTv6 Translator to "outside" of
 it, or vice versa, may find that it is no longer able to reach
 that peer at the same address that it had previously used.

 Many, but not all, of the applications that are adversely affected by
 NPTv6 Translation are those that do "referrals" -- where an
 application instance passes its own addresses, and/or addresses of
 its peers, to other peers. (Some believe referrals are inherently
 undesirable; others believe that they are necessary in some
 circumstances. A discussion of the merits of referrals, or lack
 thereof, is beyond the scope of this document.)

 To some extent, the incidence of these difficulties can be reduced by
 DNS hacks that attempt to expose addresses "behind" an NPTv6
 Translator only to hosts that are also behind the same NPTv6
 Translator and perhaps to also expose only the "internal" addresses
 of hosts behind the NPTv6 Translator to other hosts behind the same
 NPTv6 Translator. However, this cannot be a complete solution. A
 full discussion of these issues is out of scope for this document,
 but briefly: (a) reliance on DNS to solve this problem depends on
 hosts always making queries from DNS servers in the same realm as
 they are (or on DNS interception proxies, which create their own
 problems) and on mobile hosts/applications not caching those results;
 (b) reliance on DNS to solve this problem depends on network
 administrators on all networks using such applications to reliably
 and accurately maintain current DNS entries for every host using
 those applications; and (c) reliance on DNS to solve this problem
 depends on applications always using DNS names, even though they
 often must run in environments where DNS names are not reliably
 maintained for every host. Other issues are that there is often no
 single distinguished name for a host and no reliable way for a host
 to determine what DNS names are associated with it and which names
 are appropriate to use in which contexts.

5.1. Recommendation for Network Planners Considering Use of NPTv6
 Translation

 In light of the above, network planners considering the use of NPTv6
 translation should carefully consider the kinds of applications that
 they will need to run in the future and determine whether the
 address-stability and provider-independence benefits are consistent
 with their application requirements.

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 17]

RFC 6296 NPTv6 June 2011

5.2. Recommendations for Application Writers

 Several mechanisms (e.g., STUN [RFC5389], Traversal Using Relays
 around NAT (TURN) [RFC5766], and Interactive Connectivity
 Establishment (ICE) [RFC5245]) have been used with traditional IPv4
 NAT to circumvent some of the limitations of such devices. Similar
 mechanisms could also be applied to circumvent some of the issues
 with an NPTv6 Translator. However, all of these require the
 assistance of an external server or a function co-located with the
 translator that can tell an "internal" host what its "external"
 addresses are.

5.3. Recommendation for Future Work

 It might be desirable to define a general mechanism that would allow
 hosts within a translation domain to determine their external
 addresses and/or request that inbound traffic be permitted. If such
 a mechanism were to be defined, it would ideally be general enough to
 also accommodate other types of NAT likely to be encountered by IPV6
 applications, in particular IPv4/IPv6 Translation [RFC6144] [RFC6147]
 [RFC6145] [RFC6146] [RFC6052]. For this and other reasons, such a
 mechanism is beyond the scope of this document.

6. A Note on Port Mapping

 In addition to overwriting IP addresses when datagrams are forwarded,
 NAPT44 devices overwrite the source port number in outbound traffic
 and the destination port number in inbound traffic. This mechanism
 is called "port mapping".

 The major benefit of port mapping is that it allows multiple
 computers to share a single IPv4 address. A large number of internal
 IPv4 addresses (typically from one of the [RFC1918] private address
 spaces) can be mapped into a single external, globally routable IPv4
 address, with the local port number used to identify which internal
 node should receive each inbound datagram. This address-
 amplification feature is not generally foreseen as a necessity at
 this time.

 Since port mapping requires rewriting a portion of the transport
 layer header, it requires NAPT44 devices to be aware of all of the
 transport protocols that they forward, thus stifling the development
 of new and improved transport protocols and preventing the use of
 IPsec encryption. Modifying the transport layer header is
 incompatible with security mechanisms that encrypt the full IP
 payload and restricts the NAPT44 to forwarding transport layers that
 use weak checksum algorithms that are easily recalculated in routers.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6144
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6052
https://datatracker.ietf.org/doc/html/rfc1918

Wasserman & Baker Experimental [Page 18]

RFC 6296 NPTv6 June 2011

 Since there is significant detriment caused by modifying transport
 layer headers and very little, if any, benefit to the use of port
 mapping in IPv6, NPTv6 Translators that comply with this
 specification MUST NOT perform port mapping.

7. Security Considerations

 When NPTv6 is deployed using either of the two-way, algorithmic
 mappings defined in this document, it allows direct inbound
 connections to internal nodes. While this can be viewed as a benefit
 of NPTv6 versus NAPT44, it does open internal nodes to attacks that
 would be more difficult in a NAPT44 network. From a security
 standpoint, although this situation is not substantially worse than
 running IPv6 with no NAT, some enterprises may assume that an NPTv6
 Translator will offer similar protection to a NAPT44 device.

 The port mapping mechanism in NAPT44 implementations requires that
 state be created in both directions. This has lead to an industry-
 wide perception that NAT functionality is the same as a stateful
 firewall. It is not. The translation function of the NAT only
 creates dynamic state in one direction and has no policy. For this
 reason, it is RECOMMENDED that NPTv6 Translators also implement
 firewall functionality such as described in [RFC6092], with
 appropriate configuration options including turning it on or off.

 When [RFC4864] talks about randomizing the subnet identifier, the
 idea is to make it harder for worms to guess a valid subnet
 identifier at an advertised network prefix. This should not be
 interpreted as endorsing concealment of the subnet identifier behind
 the obfuscating function of a translator such as NPTv6. [RFC4864]
 specifically talks about how to obtain the desired properties of
 concealment without using a translator. Topology hiding when using
 NAT is often ineffective in environments where the topology is
 visible in application layer messaging protocols such as DNS, SIP,
 SMTP, etc. If the information were not available through the
 application layer, [RFC2993] would not be valid.

 Due to the potential interactions with IKEv2/IPsec NAT traversal, it
 would be valuable to test interactions of NPTv6 with various aspects
 of current-day IKEv2/IPsec NAT traversal.

8. Acknowledgements

 The checksum-neutral algorithmic address mapping described in this
 document is based on email written by Iljtsch van Beijnum.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc6092
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc2993

Wasserman & Baker Experimental [Page 19]

RFC 6296 NPTv6 June 2011

 The following people provided advice or review comments that
 substantially improved this document: Allison Mankin, Christian
 Huitema, Dave Thaler, Ed Jankiewicz, Eric Kline, Iljtsch van Beijnum,
 Jari Arkko, Keith Moore, Mark Townsley, Merike Kaeo, Ralph Droms,
 Remi Despres, Steve Blake, and Tony Hain.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2526] Johnson, D. and S. Deering, "Reserved IPv6 Subnet Anycast
 Addresses", RFC 2526, March 1999.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, October 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

9.2. Informative References

 [GSE] O'Dell, M., "GSE - An Alternate Addressing Architecture
 for IPv6", Work in Progress, February 1997.

 [NIST] NIST, "Draft NIST Framework and Roadmap for Smart Grid
 Interoperability Standards, Release 1.0", September 2009.

 [RFC1071] Braden, R., Borman, D., Partridge, C., and W. Plummer,
 "Computing the Internet checksum", RFC 1071,
 September 1988.

 [RFC1624] Rijsinghani, A., "Computation of the Internet Checksum via
 Incremental Update", RFC 1624, May 1994.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2526
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918

Wasserman & Baker Experimental [Page 20]

RFC 6296 NPTv6 June 2011

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC2993] Hain, T., "Architectural Implications of NAT", RFC 2993,
 November 2000.

 [RFC3424] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

 [RFC3484] Draves, R., "Default Address Selection for Internet
 Protocol version 6 (IPv6)", RFC 3484, February 2003.

 [RFC4864] Van de Velde, G., Hain, T., Droms, R., Carpenter, B., and
 E. Klein, "Local Network Protection for IPv6", RFC 4864,
 May 2007.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC5902] Thaler, D., Zhang, L., and G. Lebovitz, "IAB Thoughts on
 IPv6 Network Address Translation", RFC 5902, July 2010.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, September 2010.

 [RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
 Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
 October 2010.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc2993
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc4864
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5902
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6052

Wasserman & Baker Experimental [Page 21]

RFC 6296 NPTv6 June 2011

 [RFC6092] Woodyatt, J., "Recommended Simple Security Capabilities in
 Customer Premises Equipment (CPE) for Providing
 Residential IPv6 Internet Service", RFC 6092,
 January 2011.

 [RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation", RFC 6144, April 2011.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, April 2011.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 April 2011.

 [RFC6204] Singh, H., Beebee, W., Donley, C., Stark, B., and O.
 Troan, "Basic Requirements for IPv6 Customer Edge
 Routers", RFC 6204, April 2011.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc6092
https://datatracker.ietf.org/doc/html/rfc6144
https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc6204

Wasserman & Baker Experimental [Page 22]

RFC 6296 NPTv6 June 2011

Appendix A. Why GSE?

 For the purpose of this discussion, let us oversimplify the
 Internet's structure by distinguishing between two broad classes of
 networks: transit and edge. A "transit network", in this context, is
 a network that provides connectivity services to other networks. Its
 Autonomous System (AS) number may show up in a non-final position in
 BGP AS paths, or in the case of mobile and residential broadband
 networks, it may offer network services to smaller networks that
 cannot justify RIR membership. An "edge network", in contrast, is
 any network that is not a transit network; it is the ultimate
 customer, and while it provides internal connectivity for its own
 use, it is a consumer of transit services in other respects. In
 terms of routing, a network in the transit domain generally needs
 some way to make choices about how it routes to other networks; an
 edge network is generally quite satisfied with a simple default
 route.

 The [GSE] proposal, and as a result this proposal (which is similar
 to GSE in most respects and inspired by it), responds directly to
 current concerns in the RIR communities. Edge networks are used to
 an environment in IPv4 in which their addressing is disjoint from
 that of their upstream transit networks; it is either provider
 independent, or a network prefix translator makes their external
 address distinct from their internal address, and they like the
 distinction. In IPv6, there is a mantra that edge network addresses
 should be derived from their upstream, and if they have multiple
 upstreams, edge networks are expected to design their networks to use
 all of those prefixes equivalently. They see this as unnecessary and
 unwanted operational complexity and, as a result, are pushing very
 hard in the RIR communities for provider-independent addressing.

 Widespread use of provider-independent addressing has a natural and
 perhaps unavoidable side effect that is likely to be very expensive
 in the long term. With widespread PI addressing, the routing table
 will enumerate the networks at the edge of the transit domain, the
 edge networks, rather than enumerate the transit domain. Per the BGP
 Update Report of 17 December 2010, there are currently over 36,000
 Autonomous Systems being advertised in BGP, of which over 15,000
 advertise only one prefix. There are in the neighborhood of 5000 ASs
 that show up in a non-final position in AS paths, and perhaps another
 5000 networks whose AS numbers are terminal in more than one AS path.
 In other words, we have prefixes for some 36,000 transit and edge
 networks in the route table now, many of which arguably need an
 Autonomous System number only for multihoming. The vast majority of
 networks (2/3) having the tools necessary to multihome are not

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 23]

RFC 6296 NPTv6 June 2011

 visibly doing so and would be well served by any solution that gives
 them address independence without the overhead of RIR membership and
 BGP routing.

 Current growth estimates suggest that we could easily see that be on
 the order of 10,000,000 within fifteen years. Tens of thousands of
 entries in the route table are very survivable; while our protocols
 and computers will likely do quite well with tens of millions of
 routes, the heat produced and power consumed by those routers, and
 the inevitable impact on the cost of those routers, is not a good
 outcome. To avoid having a massive and unscalable route table, we
 need to find a way that is politically acceptable and returns us to
 enumerating the transit domain, not the edge.

 There have been a number of proposals. As described, Shim6 moves the
 complexity to the edge, and the edge is rebelling. Geographic
 addressing in essence forces ISPs to "own" geographic territory from
 a routing perspective, as otherwise there is no clue in the address
 as to what network a datagram should be delivered to in order to
 reach it. Metropolitan Addressing can imply regulatory authority
 and, even if it is implemented using internet exchange consortia,
 visits a great deal of complexity on the transit networks that
 directly serve the edge. The one that is likely to be most
 acceptable is any proposal that enables an edge network to be
 operationally independent of its upstreams, with no obligation to
 renumber when it adds, drops, or changes ISPs, and with no additional
 burden placed either on the ISP or the edge network as a result.
 From an application perspective, an additional operational
 requirement in the words of the Roadmap for the Smart Grid [NIST] is
 that

 "...the network should provide the capability to enable an
 application in a particular domain to communicate with an
 application in any other domain over the information network, with
 proper management control as to who and where applications can be
 inter-connected."

 In other words, the structure of the network should allow for and
 enable appropriate access control, but the structure of the network
 should not inherently limit access.

 The GSE model, by statelessly translating the prefix between an edge
 network and its upstream transit network, accomplishes that with a
 minimum of fuss and bother. Stated in the simplest terms, it enables
 the edge network to behave as if it has a provider-independent prefix
 from a multihoming and renumbering perspective without the overhead
 of RIR membership or maintenance of BGP connectivity, and it enables

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 24]

RFC 6296 NPTv6 June 2011

 the transit networks to aggressively aggregate what are from their
 perspective provider-allocated customer prefixes, to maintain a
 rational-sized routing table.

Appendix B. Verification Code

 This non-normative appendix is presented as a proof of concept; it is
 in no sense optimized. For example, one's complement arithmetic is
 implemented in portable subroutines, where operational
 implementations might use one's complement arithmetic instructions
 through a pragma; such implementations probably need to explicitly
 force 0xFFFF to 0x0000, as the instruction will not. The original
 purpose of the code was to verify whether or not it was necessary to
 suppress 0xFFFF by overwriting with zero and whether predicted issues
 with subnet numbering were real.

 The point is to

 o demonstrate that if one or the other representation of zero is not
 used in the word in which the checksum is updated, the program
 maps inner and outer addresses in a manner that is,
 mathematically, 1:1 and onto (each inner address maps to a unique
 outer address, and that outer address maps back to exactly the
 same inner address), and

 o give guidance on the suppression of 0xFFFF checksums.

 In short, in one's complement arithmetic, x-x=0 but will take the
 negative representation of zero. If 0xFFFF results are forced to the
 value 0x0000, as is recommended in [RFC1071], the word the checksum
 is adjusted in cannot be initially 0xFFFF, as on the return it will
 be forced to 0. If 0xFFFF results are not forced to the value 0x0000
 as is recommended in [RFC1071], the word the checksum is adjusted in
 cannot be initially 0, as on the return it will be calculated as
 0+(~0) = 0xFFFF. We chose to follow [RFC1071]'s recommendations,
 which implies a requirement to not use 0xFFFF as a subnet number in
 networks with a /48 external prefix.

 /*
 * Copyright (c) 2011 IETF Trust and the persons identified as
 * authors of the code. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.

https://datatracker.ietf.org/doc/html/rfc6296
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071

Wasserman & Baker Experimental [Page 25]

RFC 6296 NPTv6 June 2011

 *
 * - Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 *
 * - Neither the name of Internet Society, IETF or IETF Trust, nor
 * the names of specific contributors, may be used to endorse or
 * promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
 #include "stdio.h"
 #include "assert.h"
 /*
 * program to verify the NPTv6 algorithm
 *
 * argument:
 * Perform negative zero suppression: boolean
 *
 * method:
 * We specify an internal and an external prefix. The prefix
 * length is presumed to be the common length of both and, for
 * this, is a /48. We perform the three algorithms specified.
 * The "datagram" address is in effect the source address
 * internal->external and the destination address
 * external->internal.
 */
 unsigned short inner_init[] = {
 0xFD01, 0x0203, 0x0405, 1, 2, 3, 4, 5};
 unsigned short outer_init[] = {
 0x2001, 0x0db8, 0x0001, 1, 2, 3, 4, 5};
 unsigned short inner[8];
 unsigned short datagram[8];
 unsigned char checksum[65536] = {0};

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 26]

RFC 6296 NPTv6 June 2011

 unsigned short outer[8];
 unsigned short adjustment;
 unsigned short suppress;
 /*
 * One's complement sum.
 * return number1 + number2
 */
 unsigned short
 add1(number1, number2)
 unsigned short number1;
 unsigned short number2;
 {
 unsigned int result;

 result = number1;
 result += number2;
 if (suppress) {
 while (0xFFFF <= result) {
 result = result + 1 - 0x10000;
 }
 } else {
 while (0xFFFF < result) {
 result = result + 1 - 0x10000;
 }
 }
 return result;
 }

 /*
 * One's complement difference
 * return number1 - number2
 */
 unsigned short
 sub1(number1, number2)
 unsigned short number1;
 unsigned short number2;
 {
 return add1(number1, ~number2);
 }

 /*
 * return one's complement sum of an array of numbers
 */
 unsigned short
 sum1(numbers, count)
 unsigned short *numbers;
 int count;
 {

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 27]

RFC 6296 NPTv6 June 2011

 unsigned int result;

 result = *numbers++;
 while (--count > 0) {
 result += *numbers++;
 }

 if (suppress) {
 while (0xFFFF <= result) {
 result = result + 1 - 0x10000;
 }
 } else {
 while (0xFFFF < result) {
 result = result + 1 - 0x10000;
 }
 }
 return result;
 }

 /*
 * NPTv6 initialization: Section 3.1 assuming Section 3.4
 *
 * Create the /48, a source address in internal format, and a
 * source address in external format. Calculate the adjustment
 * if one /48 is overwritten with the other.
 */
 void
 nptv6_initialization(subnet)
 unsigned short subnet;
 {
 int i;
 unsigned short inner48;
 unsigned short outer48;

 /* Initialize the internal and external prefixes. */
 for (i = 0; i < 8; i++) {
 inner[i] = inner_init[i];
 outer[i] = outer_init[i];
 }
 inner[3] = subnet;
 outer[3] = subnet;
 /* Calculate the checksum adjustment. */
 inner48 = sum1(inner, 3);
 outer48 = sum1(outer, 3);
 adjustment = sub1(inner48, outer48);
 }

 /*

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 28]

RFC 6296 NPTv6 June 2011

 * NPTv6 datagram from edge to transit: Section 3.2 assuming
 * Section 3.4
 *
 * Overwrite the prefix in the source address with the outer
 * prefix and adjust the checksum.
 */
 void
 nptv6_inner_to_outer()
 {
 int i;

 /* Let's get the source address into the datagram. */
 for (i = 0; i < 8; i++) {
 datagram[i] = inner[i];
 }

 /* Overwrite the prefix with the outer prefix. */
 for (i = 0; i < 3; i++) {
 datagram[i] = outer[i];
 }

 /* Adjust the checksum. */
 datagram[3] = add1(datagram[3], adjustment);
 }

 /*
 * NPTv6 datagram from transit to edge: Section 3.3 assuming
 * Section 3.4
 *
 * Overwrite the prefix in the destination address with the
 * inner prefix and adjust the checksum.
 */
 void
 nptv6_outer_to_inner()
 {
 int i;

 /* Overwrite the prefix with the outer prefix. */
 for (i = 0; i < 3; i++) {
 datagram[i] = inner[i];
 }

 /* Adjust the checksum. */
 datagram[3] = sub1(datagram[3], adjustment);
 }

 /*
 * Main program

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 29]

RFC 6296 NPTv6 June 2011

 */
 main(argc, argv)
 int argc;
 char **argv;
 {
 unsigned subnet;
 int i;

 if (argc < 2) {
 fprintf(stderr, "usage: nptv6 supression\n");
 assert(0);
 }
 suppress = atoi(argv[1]);
 assert(suppress <= 1);

 for (subnet = 0; subnet < 0x10000; subnet++) {
 /* Section 3.1: initialize the system */
 nptv6_initialization(subnet);

 /* Section 3.2: take a datagram from inside to outside */
 nptv6_inner_to_outer();

 /* The resulting checksum value should be unique. */
 if (checksum[subnet]) {
 printf("inner->outer duplicated checksum: "
 "inner: %x:%x:%x:%x:%x:%x:%x:%x(%x) "
 "calculated: %x:%x:%x:%x:%x:%x:%x:%x(%x)\n",
 inner[0], inner[1], inner[2], inner[3],
 inner[4], inner[5], inner[6], inner[7],
 sum1(inner, 8), datagram[0], datagram[1],
 datagram[2], datagram[3], datagram[4],
 datagram[5], datagram[6], datagram[7],
 sum1(datagram, 8));
 }

 checksum[subnet] = 1;

 /*
 * The resulting checksum should be the same as the inner
 * address's checksum.
 */
 if (sum1(datagram, 8) != sum1(inner, 8)) {
 printf("inner->outer incorrect: "
 "inner: %x:%x:%x:%x:%x:%x:%x:%x(%x) "
 "calculated: %x:%x:%x:%x:%x:%x:%x:%x(%x)\n",
 inner[0], inner[1], inner[2], inner[3],
 inner[4], inner[5], inner[6], inner[7],
 sum1(inner, 8),

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 30]

RFC 6296 NPTv6 June 2011

 datagram[0], datagram[1], datagram[2], datagram[3],
 datagram[4], datagram[5], datagram[6], datagram[7],
 sum1(datagram, 8));
 }

 /* Section 3.3: take a datagram from outside to inside */
 nptv6_outer_to_inner();

 /*
 * The returning datagram should have the same checksum it
 * left with.
 */
 if (sum1(datagram, 8) != sum1(inner, 8)) {
 printf("outer->inner checksum incorrect: "
 "calculated: %x:%x:%x:%x:%x:%x:%x:%x(%x) "
 "inner: %x:%x:%x:%x:%x:%x:%x:%x(%x)\n",
 datagram[0], datagram[1], datagram[2], datagram[3],
 datagram[4], datagram[5], datagram[6], datagram[7],
 sum1(datagram, 8), inner[0], inner[1], inner[2],
 inner[3], inner[4], inner[5], inner[6], inner[7],
 sum1(inner, 8));
 }

 /*
 * And every octet should calculate back to the same inner
 * value.
 */
 for (i = 0; i < 8; i++) {
 if (inner[i] != datagram[i]) {
 printf("outer->inner different: "
 "calculated: %x:%x:%x:%x:%x:%x:%x:%x "
 "inner: %x:%x:%x:%x:%x:%x:%x:%x\n",
 datagram[0], datagram[1], datagram[2],
 datagram[3], datagram[4], datagram[5],
 datagram[6], datagram[7], inner[0], inner[1],
 inner[2], inner[3], inner[4], inner[5],
 inner[6], inner[7]);
 break;
 }
 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc6296

Wasserman & Baker Experimental [Page 31]

RFC 6296 NPTv6 June 2011

Authors' Addresses

 Margaret Wasserman
 Painless Security
 North Andover, MA 01845
 USA

 Phone: +1 781 405 7464
 EMail: mrw@painless-security.com
 URI: http://www.painless-security.com

 Fred Baker
 Cisco Systems
 Santa Barbara, California 93117
 USA

 Phone: +1-408-526-4257
 EMail: fred@cisco.com

https://datatracker.ietf.org/doc/html/rfc6296
http://www.painless-security.com

Wasserman & Baker Experimental [Page 32]

