ISO Transport Service on top of the TCP Version: 3
RFC 1006

Document Type RFC - Internet Standard (May 1987; No errata)
Updated by RFC 2126
Obsoletes RFC 983
Also known as STD 35
Last updated 2013-03-02
Stream Legacy
Formats plain text pdf html bibtex
Stream Legacy state (None)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state RFC 1006 (Internet Standard)
Telechat date
Responsible AD (None)
Send notices to (None)
M. Rose & D. Cass                                               [Page 1]



Network Working Group                    Marshall T. Rose, Dwight E. Cass
Request for Comments: RFC 1006    Northrop Research and Technology Center
Obsoletes: RFC 983                                               May 1987

                ISO Transport Service on top of the TCP
                               Version: 3

Status of this Memo

   This memo specifies a standard for the Internet community. Hosts
   on the Internet that choose to implement ISO transport services
   on top of the TCP are expected to adopt and implement this
   standard.  TCP port 102 is reserved for hosts which implement this
   standard.  Distribution of this memo is unlimited.

   This memo specifies version 3 of the protocol and supersedes
   [RFC983].  Changes between the protocol as described in Request for
   Comments 983 and this memo are minor, but are unfortunately
   incompatible.

M. Rose & D. Cass                                               [Page 1]
RFC 1006                                                        May 1987

1.  Introduction and Philosophy

      The Internet community has a well-developed, mature set of
      transport and internetwork protocols (TCP/IP), which are quite
      successful in offering network and transport services to
      end-users. The CCITT and the ISO have defined various session,
      presentation, and application recommendations which have been
      adopted by the international community and numerous vendors.
      To the largest extent possible, it is desirable to offer these
      higher level directly in the ARPA Internet, without disrupting
      existing facilities.  This permits users to develop expertise
      with ISO and CCITT applications which previously were not
      available in the ARPA Internet.  It also permits a more
      graceful convergence and transition strategy from
      TCP/IP-based networks to ISO-based networks in the
      medium-and long-term.

      There are two basic approaches which can be taken when "porting"
      an ISO or CCITT application to a TCP/IP environment.  One
      approach is to port each individual application separately,
      developing local protocols on top of the TCP.  Although this is
      useful in the short-term (since special-purpose interfaces to the
      TCP can be developed quickly), it lacks generality.

      A second approach is based on the observation that both the ARPA
      Internet protocol suite and the ISO protocol suite are both
      layered systems (though the former uses layering from a more
      pragmatic perspective).  A key aspect of the layering principle
      is that of layer-independence.  Although this section is
      redundant for most readers, a slight bit of background material
      is necessary to introduce this concept.

      Externally, a layer is defined by two definitions:

         a service-offered definition, which describes the services
         provided by the layer and the interfaces it provides to
         access those services; and,

         a service-required definitions, which describes the services
         used by the layer and the interfaces it uses to access those
         services.

      Collectively, all of the entities in the network which co-operate
      to provide the service are known as the service-provider.
      Individually, each of these entities is known as a service-peer.

      Internally, a layer is defined by one definition:

          a protocol definition, which describes the rules which each
          service-peer uses when communicating with other service-peers.

M. Rose & D. Cass                                               [Page 2]
RFC 1006                                                        May 1987

      Putting all this together, the service-provider uses the protocol
      and services from the layer below to offer the its service to the
      layer above.  Protocol verification, for instance, deals with
      proving that this in fact happens (and is also a fertile field
      for many Ph.D. dissertations in computer science).

      The concept of layer-independence quite simply is:

          IF one preserves the services offered by the service-provider

          THEN the service-user is completely naive with respect to the
          protocol which the service-peers use

      For the purposes of this memo, we will use the layer-independence
      to define a Transport Service Access Point (TSAP) which appears
      to be identical to the services and interfaces offered by the
      ISO/CCITT TSAP (as defined in [ISO8072]), but we will in fact
      implement the ISO TP0 protocol on top of TCP/IP (as defined in
      [RFC793,RFC791]), not on top of the the ISO/CCITT network
      protocol.  Since the transport class 0 protocol is used over the
      TCP/IP connection, it achieves identical functionality as
Show full document text