Migrating from X.400(84) to X.400(88)
RFC 1615

Document Type RFC - Informational (May 1994; No errata)
Last updated 2013-03-02
Stream Legacy
Formats plain text html pdf htmlized bibtex
Stream Legacy state (None)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state RFC 1615 (Informational)
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                        J. Houttuin
Request for Comments: 1615                              RARE Secretariat
RARE Technical Report: 9                                      J. Craigie
Category: Informational                               Joint Network Team
                                                                May 1994

                 Migrating from X.400(84) to X.400(88)

Status of this Memo

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.


   In the context of a European pilot for an X.400(88) messaging
   service, this document compares such a service to its X.400(84)
   predecessor.  It is aimed at a technical audience with a knowledge of
   electronic mail in general and X.400 protocols in particular.


   This document compares X.400(88) to X.400(84) and describes what
   problems can be anticipated in the migration, especially considering
   the migration from the existing X.400(84) infrastructure created by
   the COSINE MHS project to an X.400(88) infrastructure. It not only
   describes the technical complications, but also the effect the
   transition will have on the end users, especially concerning
   interworking between end users of the 84 and the 88 services.

Table of Contents

   1. New Functionality                                              2
   2. OSI Supporting Layers                                          3
   3. General Extension Mechanism                                    5
   4. Interworking                                                   5
      4.1. Mixed 84/88 Domains                                       5
      4.2. Generation of OR-Name Extensions from X.400(84)           6
      4.3. Distribution List Interworking with X.400(84)             8
      4.4. P2 Interworking                                          10
   5. Topology for Migration                                        11
   6. Conclusion                                                    12
   7. Security Considerations                                       13
   Appendix A - DL-expanded and Redirected Messages in X.400(84)    14
   Appendix B - Bibliography                                        14
   Appendix C - MHS Terminology                                     15

Houttuin & Craigie                                              [Page 1]
RFC 1615         Migrating from X.400(84) to X.400(88)          May 1994

   Appendix D - Abbreviations                                       16
   Authors' Addresses                                               17

1. New Functionality

   Apart from the greater maturity of the standard and the fact that it
   makes proper use of the Presentation Layer, the principal features of
   most use to the European R&D world in X.400(88) not contained in
   X.400(84) are:

    - A powerful mechanism for arbitrarily nested Distribution
      Lists including the ability for DL owners to control access
      to their lists and to control the destination of nondelivery
      reports. The current endemic use of DLs in the research
      community makes this a fundamental requirement.

    - The Message Store (MS) and its associated protocol, P7. The
      Message Store provides a server for remote User Agents (UAs)
      on Workstations and PCs enabling messages to be held for
      their recipient, solving the problems of non-continuous
      availability and variability of network addresses of such
      UAs. It provides powerful selection mechanisms allowing the
      user to select messages from the store to be transferred to
      the workstation/PC. This facility is not catered for
      adequately by the P3 protocol of X.400(84) and provides a
      major incentive for transition.

    - Use of X.500 Directories. Support for use of Directory Names
      in MHS will allow a transition from use of O/R Addresses to
      Directory Names when X.500 Directories become widespread,
      thus removing the need for users to know about MHS
      topological addressing components.

    - The provision of message Security services including
      authentication, confidentiality, integrity and non-
      repudiation as well as secure access between MHS components
      may be important for a section of the research community.

    - Redirection of messages, both by the recipient if
      temporarily unable to receive them, and by the originator in
      the event of failure to deliver to the intended recipient.

    - Use of additional message body encodings such as ISO 8613
      ODA (Office Document Architecture) reformattable documents or
      proprietary word processor formats.

Houttuin & Craigie                                              [Page 2]
RFC 1615         Migrating from X.400(84) to X.400(88)          May 1994

    - Physical Delivery services that cater for the delivery of an
Show full document text