Traffic Flow Measurement: Meter MIB
RFC 2064

Document Type RFC - Experimental (January 1997; No errata)
Obsoleted by RFC 2720
Last updated 2013-03-02
Stream IETF
Formats plain text pdf htmlized bibtex
Stream WG state (None)
Document shepherd No shepherd assigned
IESG IESG state RFC 2064 (Experimental)
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                        N. Brownlee
Request for Comments: 2064                    The University of Auckland
Category: Experimental                                      January 1997

                  Traffic Flow Measurement:  Meter MIB

Status of this Memo

   This memo defines an Experimental Protocol for the Internet
   community.  This memo does not specify an Internet standard of any
   kind.  Discussion and suggestions for improvement are requested.
   Distribution of this memo is unlimited.

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in TCP/IP-based internets.
   In particular, this memo defines managed objects used for obtaining
   traffic flow information from network traffic meters.

Table of Contents

   1 The Network Management Framework . . . . . . . . . . . . . . . .  1
   2 Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
     2.1 Format of Definitions . . . . .  . . . . . . . . . . . . . .  3
   3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
     3.1 Scope of Definitions, Textual Conventions  . . . . . . . . .  3
     3.2 Usage of the MIB variables  . . . . . . .  . . . . . . . . .  4
   4 Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . .  6
   5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 37
   6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
   7 Security Considerations  . . . . . . . . . . . . . . . . . . . . 38
   8 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 38

1 The Network Management Framework

   The Internet-standard Network Management Framework consists of three
   components.  They are:

      RFC 1155 defines the SMI, the mechanisms used for describing and
      naming objects for the purpose of management.  STD 16, RFC 1212
      defines a more concise description mechanism, which is wholly
      consistent with the SMI.

Brownlee                      Experimental                      [Page 1]
RFC 2064                       Meter MIB                    January 1997

      RFC 1156 defines MIB-I, the core set of managed objects for the
      Internet suite of protocols.  STD 17, RFC 1213 [1] defines MIB-II,
      an evolution of MIB-I based on implementation experience and new
      operational requirements.

      STD 15, RFC 1157 defines the SNMP, the protocol used for network
      access to managed objects.

      RFC 1442 [2] defines the SMI for version 2 of the Simple Network
      Management Protocol.

      RFCs 1443 and 1444 [3,4] define Textual Conventions and
      Conformance Statements for version 2 of the Simple Network
      Management Protocol.

      RFC 1452 [5] describes how versions 1 and 2 of the Simple Network
      Management Protocol should coexist.

   The Framework permits new objects to be defined for the purpose of
   experimentation and evaluation.

2 Objects

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB. Objects in the MIB are
   defined using the subset of Abstract Syntax Notation One (ASN.1) [6]
   defined in the SMI. In particular, each object has a name, a syntax,
   and an encoding.  The name is an object identifier, an
   administratively assigned name, which specifies an object type.  The
   object type together with an object instance serves to uniquely
   identify a specific instantiation of the object.  For human
   convenience, we often use a textual string, termed the OBJECT
   DESCRIPTOR, to also refer to the object type.

   The syntax of an object type defines the abstract data structure
   corresponding to that object type.  The ASN.1 language is used for
   this purpose.  However, the SMI [2] purposely restricts the ASN.1
   constructs which may be used.  These restrictions are explicitly made
   for simplicity.

   The encoding of an object type is simply how that object type is
   represented using the object type's syntax.  Implicitly tied to the
   notion of an object type's syntax and encoding is how the object type
   is represented when being transmitted on the network.

   The SMI specifies the use of the basic encoding rules of ASN.1 [7],
   subject to the additional requirements imposed by the SNMP.

Brownlee                      Experimental                      [Page 2]
RFC 2064                       Meter MIB                    January 1997

2.1 Format of Definitions

   Section 4 contains contains the specification of all object types
   contained in this MIB module.  These object types are defined using
   the conventions defined in [2] and [3].

3 Overview

   Traffic Flow Measurement seeks to provide a well-defined method for
   gathering traffic flow information from networks and internetworks.
   The background for this is given in "Traffic Flow Measurement:
   Background" [8].  The Realtime Traffic Flow Measurement (rtfm)
Show full document text