RIPng for IPv6
RFC 2080

Document Type RFC - Proposed Standard (January 1997; No errata)
Last updated 2013-03-02
Stream IETF
Formats plain text pdf html bibtex
Stream WG state (None)
Document shepherd No shepherd assigned
IESG IESG state RFC 2080 (Proposed Standard)
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                          G. Malkin
Request for Comments: 2080                                      Xylogics
Category: Standards Track                                     R. Minnear
                                                        Ipsilon Networks
                                                            January 1997

                             RIPng for IPv6

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Abstract

   This document specifies a routing protocol for an IPv6 internet.  It
   is based on protocols and algorithms currently in wide use in the
   IPv4 Internet.

   This specification represents the minimum change to the Routing
   Information Protocol (RIP), as specified in RFC 1058 [1] and RFC 1723
   [2], necessary for operation over IPv6 [3].

Acknowledgements

   This document is a modified version of RFC 1058, written by Chuck
   Hedrick [1].  The modifications reflect RIP-2 and IPv6 enhancements,
   but the original wording is his.

   We'd like to thank Dennis Ferguson and Thomas Narten for their input.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
   1.1   Theoretical Underpinnings  . . . . . . . . . . . . . . . . .  3
   1.2   Limitations of the Protocol  . . . . . . . . . . . . . . . .  3
   2.  Protocol Specification . . . . . . . . . . . . . . . . . . . .  4
   2.1   Message Format . . . . . . . . . . . . . . . . . . . . . . .  5
   2.1.1   Next Hop . . . . . . . . . . . . . . . . . . . . . . . . .  7
   2.2   Addressing Considerations  . . . . . . . . . . . . . . . . .  8
   2.3   Timers . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
   2.4   Input Processing . . . . . . . . . . . . . . . . . . . . . . 10
   2.4.1   Request Messages . . . . . . . . . . . . . . . . . . . . . 10
   2.4.2   Response Messages  . . . . . . . . . . . . . . . . . . . . 11

Malkin & Minnear            Standards Track                     [Page 1]
RFC 2080                     RIPng for IPv6                 January 1997

   2.5   Output Processing  . . . . . . . . . . . . . . . . . . . . . 14
   2.5.1   Triggered Updates  . . . . . . . . . . . . . . . . . . . . 14
   2.5.2   Generating Response Messages . . . . . . . . . . . . . . . 15
   2.6   Split Horizon  . . . . . . . . . . . . . . . . . . . . . . . 16
   3.  Control Functions  . . . . . . . . . . . . . . . . . . . . . . 17
   4.  Security Considerations. . . . . . . . . . . . . . . . . . . . 18
   References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 19

1. Introduction

   This memo describes one protocol in a series of routing protocols
   based on the Bellman-Ford (or distance vector) algorithm.  This
   algorithm has been used for routing computations in computer networks
   since the early days of the ARPANET.  The particular packet formats
   and protocol described here are based on the program "routed," which
   is included with the Berkeley distribution of Unix.

   In an international network, such as the Internet, it is very
   unlikely that a single routing protocol will used for the entire
   network.  Rather, the network will be organized as a collection of
   Autonomous Systems (AS), each of which will, in general, be
   administered by a single entity.  Each AS will have its own routing
   technology, which may differ among AS's.  The routing protocol used
   within an AS is referred to as an Interior Gateway Protocol (IGP).  A
   separate protocol, called an Exterior Gateway Protocol (EGP), is used
   to transfer routing information among the AS's.  RIPng was designed
   to work as an IGP in moderate-size AS's.  It is not intended for use
   in more complex environments.  For information on the context into
   which RIP version 1 (RIP-1) is expected to fit, see Braden and Postel
   [6].

   RIPng is one of a class of algorithms known as Distance Vector
   algorithms.  The earliest description of this class of algorithms
   known to the author is in Ford and Fulkerson [8].  Because of this,
   they are sometimes known as Ford-Fulkerson algorithms.  The term
   Bellman-Ford is also used, and derives from the fact that the
   formulation is based on Bellman's equation [4].  The presentation in
   this document is closely based on [5].  This document contains a
   protocol specification.  For an introduction to the mathematics of
Show full document text