Skip to main content

Indicating Resolver Support of DNSSEC
RFC 3225

Document Type RFC - Proposed Standard (December 2001)
Author David R. Conrad
Last updated 2013-03-02
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
IESG Responsible AD (None)
Send notices to (None)
RFC 3225
Network Working Group                                          D. Conrad
Request for Comments: 3225                                 Nominum, Inc.
Category: Standards Track                                  December 2001

                 Indicating Resolver Support of DNSSEC

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

   In order to deploy DNSSEC (Domain Name System Security Extensions)
   operationally, DNSSEC aware servers should only perform automatic
   inclusion of DNSSEC RRs when there is an explicit indication that the
   resolver can understand those RRs.  This document proposes the use of
   a bit in the EDNS0 header to provide that explicit indication and
   describes the necessary protocol changes to implement that
   notification.

1. Introduction

   DNSSEC [RFC2535] has been specified to provide data integrity and
   authentication to security aware resolvers and applications through
   the use of cryptographic digital signatures.  However, as DNSSEC is
   deployed, non-DNSSEC-aware clients will likely query DNSSEC-aware
   servers.  In such situations, the DNSSEC-aware server (responding to
   a request for data in a signed zone) will respond with SIG, KEY,
   and/or NXT records.  For reasons described in the subsequent section,
   such responses can have significant negative operational impacts for
   the DNS infrastructure.

   This document discusses a method to avoid these negative impacts,
   namely DNSSEC-aware servers should only respond with SIG, KEY, and/or
   NXT RRs when there is an explicit indication from the resolver that
   it can understand those RRs.

   For the purposes of this document, "DNSSEC security RRs" are
   considered RRs of type SIG, KEY, or NXT.

Conrad                      Standards Track                     [Page 1]
RFC 3225         Indicating Resolver Support of DNSSEC     December 2001

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2. Rationale

   Initially, as DNSSEC is deployed, the vast majority of queries will
   be from resolvers that are not DNSSEC aware and thus do not
   understand or support the DNSSEC security RRs.  When a query from
   such a resolver is received for a DNSSEC signed zone, the DNSSEC
   specification indicates the nameserver must respond with the
   appropriate DNSSEC security RRs.  As DNS UDP datagrams are limited to
   512 bytes [RFC1035], responses including DNSSEC security RRs have a
   high probability of resulting in a truncated response being returned
   and the resolver retrying the query using TCP.

   TCP DNS queries result in significant overhead due to connection
   setup and teardown.  Operationally, the impact of these TCP queries
   will likely be quite detrimental in terms of increased network
   traffic (typically five packets for a single query/response instead
   of two), increased latency resulting from the additional round trip
   times, increased incidences of queries failing due to timeouts, and
   significantly increased load on nameservers.

   In addition, in preliminary and experimental deployment of DNSSEC,
   there have been reports of non-DNSSEC aware resolvers being unable to
   handle responses which contain DNSSEC security RRs, resulting in the
   resolver failing (in the worst case) or entire responses being
   ignored (in the better case).

   Given these operational implications, explicitly notifying the
   nameserver that the client is prepared to receive (if not understand)
   DNSSEC security RRs would be prudent.

   Client-side support of DNSSEC is assumed to be binary -- either the
   client is willing to receive all DNSSEC security RRs or it is not
   willing to accept any.  As such, a single bit is sufficient to
   indicate client-side DNSSEC support.  As effective use of DNSSEC
   implies the need of EDNS0 [RFC2671], bits in the "classic" (non-EDNS
   enhanced DNS header) are scarce, and there may be situations in which
   non-compliant caching or forwarding servers inappropriately copy data
   from classic headers as queries are passed on to authoritative
   servers, the use of a bit from the EDNS0 header is proposed.

   An alternative approach would be to use the existence of an EDNS0
   header as an implicit indication of client-side support of DNSSEC.
   This approach was not chosen as there may be applications in which
   EDNS0 is supported but in which the use of DNSSEC is inappropriate.

Conrad                      Standards Track                     [Page 2]
RFC 3225         Indicating Resolver Support of DNSSEC     December 2001

3. Protocol Changes

   The mechanism chosen for the explicit notification of the ability of
   the client to accept (if not understand) DNSSEC security RRs is using
   the most significant bit of the Z field on the EDNS0 OPT header in
   the query.  This bit is referred to as the "DNSSEC OK" (DO) bit.  In
   the context of the EDNS0 OPT meta-RR, the DO bit is the first bit of
   the third and fourth bytes of the "extended RCODE and flags" portion
   of the EDNS0 OPT meta-RR, structured as follows:

                +0 (MSB)                +1 (LSB)
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0: |   EXTENDED-RCODE      |       VERSION         |
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2: |DO|                    Z                       |
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

   Setting the DO bit to one in a query indicates to the server that the
   resolver is able to accept DNSSEC security RRs.  The DO bit cleared
   (set to zero) indicates the resolver is unprepared to handle DNSSEC
   security RRs and those RRs MUST NOT be returned in the response
   (unless DNSSEC security RRs are explicitly queried for).  The DO bit
   of the query MUST be copied in the response.

   More explicitly, DNSSEC-aware nameservers MUST NOT insert SIG, KEY,
   or NXT RRs to authenticate a response as specified in [RFC2535]
   unless the DO bit was set on the request.  Security records that
   match an explicit SIG, KEY, NXT, or ANY query, or are part of the
   zone data for an AXFR or IXFR query, are included whether or not the
   DO bit was set.

   A recursive DNSSEC-aware server MUST set the DO bit on recursive
   requests, regardless of the status of the DO bit on the initiating
   resolver request.  If the initiating resolver request does not have
   the DO bit set, the recursive DNSSEC-aware server MUST remove DNSSEC
   security RRs before returning the data to the client, however cached
   data MUST NOT be modified.

   In the event a server returns a NOTIMP, FORMERR or SERVFAIL response
   to a query that has the DO bit set, the resolver SHOULD NOT expect
   DNSSEC security RRs and SHOULD retry the query without EDNS0 in
   accordance with section 5.3 of [RFC2671].

Conrad                      Standards Track                     [Page 3]
RFC 3225         Indicating Resolver Support of DNSSEC     December 2001

Security Considerations

   The absence of DNSSEC data in response to a query with the DO bit set
   MUST NOT be taken to mean no security information is available for
   that zone as the response may be forged or a non-forged response of
   an altered (DO bit cleared) query.

IANA Considerations

   EDNS0 [RFC2671] defines 16 bits as extended flags in the OPT record,
   these bits are encoded into the TTL field of the OPT record (RFC2671
   section 4.6).

   This document reserves one of these bits as the OK bit.  It is
   requested that the left most bit be allocated.  Thus the USE of the
   OPT record TTL field would look like

                +0 (MSB)                +1 (LSB)
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0: |   EXTENDED-RCODE      |       VERSION         |
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2: |DO|                    Z                       |
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Acknowledgements

   This document is based on a rough draft by Bob Halley with input from
   Olafur Gudmundsson, Andreas Gustafsson, Brian Wellington, Randy Bush,
   Rob Austein, Steve Bellovin, and Erik Nordmark.

References

   [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
             STD 13, RFC 1034, November 1987.

   [RFC1035] Mockapetris, P., "Domain Names - Implementation and
             Specifications", STD 13, RFC 1035, November 1987.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2535] Eastlake, D., "Domain Name System Security Extensions", RFC
             2535, March 1999.

   [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC
             2671, August 1999.

Conrad                      Standards Track                     [Page 4]
RFC 3225         Indicating Resolver Support of DNSSEC     December 2001

Author's Address

   David Conrad
   Nominum Inc.
   950 Charter Street
   Redwood City, CA 94063
   USA

   Phone: +1 650 381 6003
   EMail: david.conrad@nominum.com

Conrad                      Standards Track                     [Page 5]
RFC 3225         Indicating Resolver Support of DNSSEC     December 2001

Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Conrad                      Standards Track                     [Page 6]