Configuration and Provisioning for Wireless Access Points (CAPWAP) Problem Statement
RFC 3990
Document | Type | RFC - Informational (February 2005; No errata) | |
---|---|---|---|
Authors | Bob O'Hara , James Kempf , Pat Calhoun | ||
Last updated | 2015-10-14 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 3990 (Informational) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Bert Wijnen | ||
Send notices to | bob@airespace.com, dorothy.gellert@nokia.com |
Network Working Group B. O'Hara Request for Comments: 3990 P. Calhoun Category: Informational Airespace J. Kempf Docomo Labs USA February 2005 Configuration and Provisioning for Wireless Access Points (CAPWAP) Problem Statement Status of This Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2005). Abstract This document describes the Configuration and Provisioning for Wireless Access Points (CAPWAP) problem statement. 1. Introduction With the approval of the 802.11 standard by the IEEE in 1997, wireless LANs (WLANs) began a slow entry into enterprise networks. The limited data rates of the original 802.11 standard, only 1 and 2 Mbps, limited the widespread adoption of the technology. 802.11 found wide deployment in vertical applications, such as inventory management, point of sale, and transportation management. Pioneering enterprises began to deploy 802.11, mostly for experimentation. In 1999, the IEEE approved the 802.11a and 802.11b amendments to the base standard, increasing the available data rate to 54 and 11 Mbps, respectively, and expanding to a new radio band. This removed one of the significant factors holding back adoption of 802.11 in large enterprise networks. These large deployments were bound by the definition and functionality of an 802.11 Access Point (AP), as described in the 802.11 standard. The techniques required extensive use of layer 2 bridging and widespread VLANs to ensure the proper operation of higher layer protocols. Deployments of 802.11 WLANs as large as several thousand APs have been described. O'Hara, et al. Informational [Page 1] RFC 3990 CAPWAP Problem Statement February 2005 Large deployments of 802.11 WLANs have introduced several problems that require solutions. The limitations on the scalability of bridging should come as no surprise to the networking community, as similar limitations arose in the early 1980s for wired network bridging during the expansion and interconnection of wired local area networks. This document will describe the problems introduced by the large-scale deployment of 802.11 WLANs in enterprise networks. 2. Problem Statement Large WLAN deployments introduce several problems. First, each AP is an IP-addressable device requiring management, monitoring, and control. Deployment of a large WLAN will typically double the number of network infrastructure devices that require management. This presents a significant additional burden to the network administration resources and is often a hurdle to adoption of wireless technologies, particularly because the configuration of each access point is nearly identical to the next. This near-sameness often leads to misconfiguration and improper operation of the WLAN. Second, distributing and maintaining a consistent configuration throughout the entire set of access points in the WLAN is problematic. Access point configuration consists of both long-term static information (such as addressing and hardware settings) and more dynamic provisioning information (such as individual WLAN settings and security parameters). Large WLAN installations that have to update dynamic provisioning information in all the APs in the WLAN require a prolonged phase-over time. As each AP is updated, the WLAN will not have a single, consistent configuration. Third, dealing effectively with the dynamic nature of the WLAN medium itself is difficult. Due to the shared nature of the wireless medium (shared with APs in the same WLAN, with APs in other WLANs, and with devices that are not APs at all), parameters controlling the wireless medium on each AP must be monitored frequently and modified in a coordinated fashion to maximize WLAN performance. This must be coordinated among all the access points, to minimize the interference of one access point with its neighbors. Manually monitoring these metrics and determining a new, optimum configuration for the parameters related to the wireless medium is a task that takes significant time and effort. Fourth, securing access to the network and preventing installation of unauthorized access points is challenging. Physical locations for access points are often difficult to secure since their location must often be outside of a locked network closet or server room. Theft ofShow full document text