A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM)
RFC 4378
Document | Type | RFC - Informational (February 2006; No errata) | |
---|---|---|---|
Authors | Thomas Nadeau , David Allan | ||
Last updated | 2015-10-14 | ||
Replaces | draft-allan-mpls-oam-frmwk | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Stream | WG state | WG Document | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 4378 (Informational) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Alex Zinin | ||
Send notices to | dromasca@avaya.com, heard@pobox.com, bwijnen@lucent.com |
Network Working Group D. Allan, Ed. Request for Comments: 4378 Nortel Networks Category: Informational T. Nadeau, Ed. Cisco Systems, Inc. February 2006 A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM) Status of This Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2006). Abstract This document is a framework for how data plane protocols can be applied to operations and maintenance procedures for Multi-Protocol Label Switching (MPLS). The document is structured to outline how Operations and Management (OAM) functionality can be used to assist in fault, configuration, accounting, performance, and security management, commonly known by the acronym FCAPS. Table of Contents 1. Introduction ....................................................2 2. Terminology .....................................................2 3. Fault Management ................................................2 3.1. Fault Detection ............................................2 3.2. Diagnosis ..................................................6 3.3. Availability ...............................................7 4. Configuration Management ........................................7 5. Accounting ......................................................7 6. Performance Management ..........................................7 7. Security Management .............................................8 8. Security Considerations .........................................9 9. Acknowledgements ................................................9 10. Normative References ...........................................9 Allan & Nadeau Informational [Page 1] RFC 4378 A Framework for MPLS OAM February 2006 1. Introduction This memo outlines in broader terms how data plane protocols can assist in meeting the Operations and Management (OAM) requirements outlined in [RFC4377] and [Y1710] and can apply to the management functions of fault, configuration, accounting, performance, and security (commonly known as FCAPS) for MPLS networks, as defined in [RFC3031]. The approach of the document is to outline functionality, the potential mechanisms to provide the function, and the required applicability of data plane OAM functions. Included in the discussion are security issues specific to use of tools within a provider domain and use for inter-provider Label Switched Paths (LSPs). 2. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. OAM Operations and Management FCAPS Fault management, Configuration management, Administration management, Performance management, and Security management FEC Forwarding Equivalence Class ILM Incoming Label Map NHLFE Next Hop Label Forwarding Entry MIB Management Information Base LSR Label Switching Router RTT Round Trip Time 3. Fault Management 3.1. Fault Detection Fault detection encompasses the identification of all data plane failures between the ingress and egress of an LSP. This section will enumerate common failure scenarios and explain how one might (or might not) detect the situation. Allan & Nadeau Informational [Page 2] RFC 4378 A Framework for MPLS OAM February 2006 3.1.1. Enumeration and Detection of Types of Data Plane Faults Lower-layer faults: Lower-layer faults are those in the physical or virtual link that impact the transport of MPLS labeled packets between adjacent LSRs at the specific level of interest. Some physical links (such as SONET/SDH) may have link-layer OAM functionality and detect and notify the LSR of link-layer faults directly. Some physical links (such as Ethernet) may not have this capability and require MPLS or IP layer heartbeats to detect failures. However, once detected, reaction to these fault notifications is often the same as those described in the first case. Node failures: Node failures are those that impact the forwarding capability of a node component, including its entire set of links. This can be due to component failure, power outage, or reset of the controlShow full document text