Interworking Requirements to Support Operation of MPLS-TE over GMPLS Networks
RFC 5146
Network Working Group K. Kumaki, Ed.
Request for Comments: 5146 KDDI Corporation
Category: Informational March 2008
Interworking Requirements to Support Operation of MPLS-TE
over GMPLS Networks
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Abstract
Operation of a Multiprotocol Label Switching (MPLS) traffic
engineering (TE) network as a client network to a Generalized MPLS
(GMPLS) network has enhanced operational capabilities compared to
those provided by a coexistent protocol model (i.e., operation of
MPLS-TE over an independently managed transport layer).
The GMPLS network may be a packet or a non-packet network, and may
itself be a multi-layer network supporting both packet and non-packet
technologies. An MPLS-TE Label Switched Path (LSP) originates and
terminates on an MPLS Label Switching Router (LSR). The GMPLS
network provides transparent transport for the end-to-end MPLS-TE
LSP.
This document describes a framework and Service Provider requirements
for operating MPLS-TE networks over GMPLS networks.
Kumaki Informational [Page 1]
RFC 5146 Operating MPLS-TE over GMPLS Networks March 2008
Table of Contents
1. Introduction ....................................................3
1.1. Terminology ................................................4
2. Reference Model .................................................4
3. Detailed Requirements ...........................................5
3.1. End-to-End Signaling .......................................5
3.2. Triggered Establishment of GMPLS LSPs ......................5
3.3. Diverse Paths for End-to-End MPLS-TE LSPs ..................6
3.4. Advertisement of MPLS-TE Information via the GMPLS
Network ....................................................6
3.5. Selective Advertisement of MPLS-TE Information via
a Border Node ..............................................6
3.6. Interworking of MPLS-TE and GMPLS Protection ...............7
3.7. Independent Failure Recovery and Reoptimization ............7
3.8. Complexity and Risks .......................................7
3.9. Scalability Considerations .................................7
3.10. Performance Considerations ................................8
3.11. Management Considerations .................................8
4. Security Considerations .........................................8
5. Recommended Solution Architecture ...............................9
5.1. Use of Contiguous, Hierarchical, and Stitched LSPs ........10
5.2. MPLS-TE Control Plane Connectivity ........................10
5.3. Fast Reroute Protection ...................................10
5.4. GMPLS LSP Advertisement ...................................11
5.5. GMPLS Deployment Considerations ...........................11
6. Acknowledgments ................................................11
7. References .....................................................11
7.1. Normative References ......................................11
7.2. Informative References ....................................12
8. Contributors' Addresses ........................................13
Kumaki Informational [Page 2]
RFC 5146 Operating MPLS-TE over GMPLS Networks March 2008
1. Introduction
Multiprotocol Label Switching traffic engineering (MPLS-TE) networks
are often deployed over transport networks such that the transport
networks provide connectivity between the Label Switching Routers
(LSRs) in the MPLS-TE network. Increasingly, these transport
networks are operated using a Generalized Multiprotocol Label
Switching (GMPLS) control plane. Label Switched Paths (LSPs) in the
GMPLS network provide connectivity as virtual data links advertised
as TE links in the MPLS-TE network.
GMPLS protocols were developed as extensions to MPLS-TE protocols.
MPLS-TE is limited to the control of packet switching networks, but
GMPLS can also control technologies at layers one and two.
The GMPLS network may be managed by an operator as a separate network
(as it may have been when it was under management plane control
before the use of GMPLS as a control plane), but optimizations of
management and operation may be achieved by coordinating the use of
the MPLS-TE and GMPLS networks and operating the two networks with a
close client/server relationship.
GMPLS LSP setup may be triggered by the signaling of MPLS-TE LSPs in
Show full document text