Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks
RFC 5817
Internet Engineering Task Force (IETF) Z. Ali
Request for Comments: 5817 JP. Vasseur
Category: Informational A. Zamfir
ISSN: 2070-1721 Cisco Systems, Inc.
J. Newton
Cable and Wireless
April 2010
Graceful Shutdown in MPLS and Generalized MPLS
Traffic Engineering Networks
Abstract
MPLS-TE Graceful Shutdown is a method for explicitly notifying the
nodes in a Traffic Engineering (TE) enabled network that the TE
capability on a link or on an entire Label Switching Router (LSR) is
going to be disabled. MPLS-TE graceful shutdown mechanisms are
tailored toward addressing planned outage in the network.
This document provides requirements and protocol mechanisms to reduce
or eliminate traffic disruption in the event of a planned shutdown of
a network resource. These operations are equally applicable to both
MPLS-TE and its Generalized MPLS (GMPLS) extensions.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5817.
Ali, et al. Informational [Page 1]
RFC 5817 MPLS Graceful Shutdown April 2010
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
1. Introduction ....................................................3
2. Terminology .....................................................3
3. Requirements for Graceful Shutdown ..............................4
4. Mechanisms for Graceful Shutdown ................................5
4.1. OSPF / IS-IS Mechanisms for Graceful Shutdown ..............5
4.2. RSVP-TE Signaling Mechanisms for Graceful Shutdown .........6
5. Manageability Considerations ....................................8
6. Security Considerations .........................................8
7. Acknowledgments .................................................8
8. References ......................................................9
8.1. Normative References .......................................9
8.2. Informative References .....................................9
Ali, et al. Informational [Page 2]
RFC 5817 MPLS Graceful Shutdown April 2010
1. Introduction
When outages in a network are planned (e.g., for maintenance
purposes), some mechanisms can be used to avoid traffic disruption.
This is in contrast with unplanned network element failure, where
traffic disruption can be minimized thanks to recovery mechanisms,
but may not be avoided. Therefore, a Service Provider may desire to
gracefully (temporarily or indefinitely) remove a TE link, a group of
Show full document text