Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network
RFC 6391
Document | Type |
RFC - Proposed Standard
(November 2011; No errata)
Updated by RFC 7274
|
|
---|---|---|---|
Authors | Vach Kompella , Ulrich Drafz , Clarence Filsfils , Shane Amante , Stewart Bryant , Joe Regan | ||
Last updated | 2018-12-20 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | WG Document | |
Document shepherd | Matthew Bocci | ||
IESG | IESG state | RFC 6391 (Proposed Standard) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Adrian Farrel | ||
IESG note | Matthew Bocci (matthew.bocci@alcatel-lucent.com) is the document shepherd | ||
Send notices to | (None) |
Internet Engineering Task Force (IETF) S. Bryant, Ed. Request for Comments: 6391 C. Filsfils Category: Standards Track Cisco Systems ISSN: 2070-1721 U. Drafz Deutsche Telekom V. Kompella J. Regan Alcatel-Lucent S. Amante Level 3 Communications, LLC November 2011 Flow-Aware Transport of Pseudowires over an MPLS Packet Switched Network Abstract Where the payload of a pseudowire comprises a number of distinct flows, it can be desirable to carry those flows over the Equal Cost Multiple Paths (ECMPs) that exist in the packet switched network. Most forwarding engines are able to generate a hash of the MPLS label stack and use this mechanism to balance MPLS flows over ECMPs. This document describes a method of identifying the flows, or flow groups, within pseudowires such that Label Switching Routers can balance flows at a finer granularity than individual pseudowires. The mechanism uses an additional label in the MPLS label stack. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6391. Bryant, et al. Standards Track [Page 1] RFC 6391 FAT-PW November 2011 Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction ....................................................3 1.1. Requirements Language ......................................4 1.2. ECMP in Label Switching Routers ............................4 1.3. Flow Label .................................................4 2. Native Service Processing Function ..............................5 3. Pseudowire Forwarder ............................................6 3.1. Encapsulation ..............................................7 4. Signalling the Presence of the Flow Label .......................8 4.1. Structure of Flow Label Sub-TLV ............................9 5. Static Pseudowires ..............................................9 6. Multi-Segment Pseudowires .......................................9 7. Operations, Administration, and Maintenance (OAM) ..............10 8. Applicability of PWs Using Flow Labels .........................11 8.1. Equal Cost Multiple Paths .................................12 8.2. Link Aggregation Groups ...................................13 8.3. Multiple RSVP-TE Paths ....................................13 8.4. The Single Large Flow Case ................................14 8.5. Applicability to MPLS-TP ..................................15 8.6. Asymmetric Operation ......................................15 9. Applicability to MPLS LSPs .....................................15 10. Security Considerations .......................................16 11. IANA Considerations ...........................................16 12. Congestion Considerations .....................................16 13. Acknowledgements ..............................................17 14. References ....................................................17 14.1. Normative References .....................................17 14.2. Informative References ...................................18 Bryant, et al. Standards Track [Page 2]Show full document text