Skip to main content

Mechanism for Performing Label Switched Path Ping (LSP Ping) over MPLS Tunnels
RFC 6424

Document Type RFC - Proposed Standard (November 2011)
Obsoleted by RFC 8029
Updated by RFC 7537
Updates RFC 4379
Authors George Swallow , Nitin Bahadur , Kireeti Kompella
Last updated 2015-10-14
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
IESG Responsible AD Stewart Bryant
Send notices to (None)
RFC 6424
Internet Engineering Task Force (IETF)                        N. Bahadur
Request for Comments: 6424                                   K. Kompella
Updates: 4379                                     Juniper Networks, Inc.
Category: Standards Track                                     G. Swallow
ISSN: 2070-1721                                            Cisco Systems
                                                           November 2011

      Mechanism for Performing Label Switched Path Ping (LSP Ping)
                           over MPLS Tunnels

Abstract

   This document describes methods for performing LSP ping (specified in
   RFC 4379) traceroute over MPLS tunnels and for traceroute of stitched
   MPLS Label Switched Paths (LSPs).  The techniques outlined in RFC
   4379 are insufficient to perform traceroute Forwarding Equivalency
   Class (FEC) validation and path discovery for an LSP that goes over
   other MPLS tunnels or for a stitched LSP.  This document deprecates
   the Downstream Mapping TLV (defined in RFC 4379) in favor of a new
   TLV that, along with other procedures outlined in this document, can
   be used to trace such LSPs.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6424.

Bahadur, et al.              Standards Track                    [Page 1]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Bahadur, et al.              Standards Track                    [Page 2]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.1.  Conventions Used in This Document  . . . . . . . . . . . .  4
   2.  Motivation . . . . . . . . . . . . . . . . . . . . . . . . . .  4
   3.  Packet Format  . . . . . . . . . . . . . . . . . . . . . . . .  5
     3.1.  Summary of Changes . . . . . . . . . . . . . . . . . . . .  5
     3.2.  New Return Codes . . . . . . . . . . . . . . . . . . . . .  6
       3.2.1.  Return Code per Downstream . . . . . . . . . . . . . .  6
       3.2.2.  Return Code for Stitched LSPs  . . . . . . . . . . . .  6
     3.3.  Downstream Detailed Mapping TLV  . . . . . . . . . . . . .  7
       3.3.1.  Sub-TLVs . . . . . . . . . . . . . . . . . . . . . . .  9
         3.3.1.1.  Multipath Data Sub-TLV . . . . . . . . . . . . . .  9
     3.4.  Deprecation of Downstream Mapping TLV  . . . . . . . . . . 13
   4.  Performing MPLS Traceroute on Tunnels  . . . . . . . . . . . . 13
     4.1.  Transit Node Procedure . . . . . . . . . . . . . . . . . . 13
       4.1.1.  Addition of a New Tunnel . . . . . . . . . . . . . . . 13
       4.1.2.  Transition between Tunnels . . . . . . . . . . . . . . 14
       4.1.3.  Modification to FEC Validation Procedure on Transit  . 16
     4.2.  Modification to FEC Validation Procedure on Egress . . . . 16
     4.3.  Ingress Node Procedure . . . . . . . . . . . . . . . . . . 17
       4.3.1.  Processing Downstream Detailed Mapping TLV . . . . . . 17
         4.3.1.1.  Stack Change Sub-TLV Not Present . . . . . . . . . 17
         4.3.1.2.  Stack Change Sub-TLV(s) Present  . . . . . . . . . 17
       4.3.2.  Modifications to Handling a Return Code 3 Reply. . . . 19
       4.3.3.  Handling of New Return Codes . . . . . . . . . . . . . 19
     4.4.  Handling Deprecated Downstream Mapping TLV . . . . . . . . 20
   5.  Security Considerations  . . . . . . . . . . . . . . . . . . . 20
   6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 21
   7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 22
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 22
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 22

Bahadur, et al.              Standards Track                    [Page 3]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

1.  Introduction

   This documents describes methods for performing LSP ping (specified
   in [RFC4379]) traceroute over MPLS tunnels.  The techniques in
   [RFC4379] outline a traceroute mechanism that includes Forwarding
   Equivalency Class (FEC) validation and Equal Cost Multi-Path (ECMP)
   path discovery.  Those mechanisms are insufficient and do not provide
   details when the FEC being traced traverses one or more MPLS tunnels
   and when Label Switched Path (LSP) stitching [RFC5150] is in use.
   This document deprecates the Downstream Mapping TLV [RFC4379],
   introducing instead a new TLV that is more extensible and that
   enables retrieval of detailed information.  Using the new TLV format
   along with the existing definitions of [RFC4379], this document
   describes procedures by which a traceroute request can correctly
   traverse MPLS tunnels with proper FEC and label validations.

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Motivation

   An LSP ping traceroute may cross multiple MPLS tunnels en route to
   the destination.  Let us consider a simple case.

   A          B          C           D           E
   o -------- o -------- o --------- o --------- o
     \_____/  | \______/   \______/  | \______/
       LDP    |   RSVP       RSVP    |    LDP
              |                      |
               \____________________/
                        LDP

                      Figure 1: LDP over RSVP Tunnel

   When a traceroute is initiated from router A, router B returns
   downstream mapping information for node C in the MPLS echo reply.
   The next MPLS echo request reaches router C with an LDP FEC.  Node C
   is a pure RSVP node and does not run LDP.  Node C will receive the
   MPLS echo request with two labels but only one FEC in the Target FEC
   stack.  Consequently, node C will be unable to perform a complete FEC
   validation.  It will let the trace continue by just providing next-
   hop information based on the incoming label, and by looking up the
   forwarding state associated with that label.  However, ignoring FEC
   validation defeats the purpose of control-plane validations.  The

Bahadur, et al.              Standards Track                    [Page 4]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   MPLS echo request should contain sufficient information to allow node
   C to perform FEC validations to catch any misrouted echo requests.

   The above problem can be extended for a generic case of hierarchical
   tunnels or stitched tunnels (e.g., B-C can be a separate RSVP tunnel
   and C-D can be a separate RSVP tunnel).  The problem of FEC
   validation for tunnels can be solved if the transit routers (router B
   in the above example) provide some information to the ingress
   regarding the start of a new tunnel.

   Stitched LSPs involve two or more LSP segments stitched together.
   The LSP segments can be signaled using the same or different
   signaling protocols.  In order to perform an end-to-end trace of a
   stitched LSP, the ingress needs to know FEC information regarding
   each of the stitched LSP segments.  For example, consider the figure
   below.

   A          B          C           D          E         F
   o -------- o -------- o --------- o -------- o ------- o
     \_____/    \______/   \______/    \______/  \_______/
       LDP        LDP         BGP         RSVP      RSVP

                          Figure 2: Stitched LSP

   Consider ingress (A) tracing end-to-end stitched LSP A--F.  When an
   MPLS echo request reaches router C, there is a FEC stack change
   happening at router C.  With current LSP ping [RFC4379] mechanisms,
   there is no way to convey this information to A.  Consequently, when
   the next echo request reaches router D, router D will know nothing
   about the LDP FEC that A is trying to trace.

   Thus, the procedures defined in [RFC4379] do not make it possible for
   the ingress node to:

   1.  Know that tunneling has occurred.

   2.  Trace the path of the tunnel.

   3.  Trace the path of stitched LSPs.

3.  Packet Format

3.1.  Summary of Changes

   In many cases, there is a need to associate additional data in the
   MPLS echo reply.  In most cases, the additional data needs to be
   associated on a per-downstream-neighbor basis.  Currently, the MPLS
   echo reply contains one Downstream Mapping TLV (DSMAP) per downstream

Bahadur, et al.              Standards Track                    [Page 5]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   neighbor.  However, the DSMAP format is not extensible; hence, it is
   not possible to associate more information with a downstream
   neighbor.  This document defines a new extensible format for the
   DSMAP and provides mechanisms for solving the tunneled LSP ping
   problem using the new format.  In summary, this document makes the
   following TLV changes:

   o  Addition of new Downstream Detailed Mapping TLV (DDMAP).

   o  Deprecation of existing Downstream Mapping TLV (DSMAP).

   o  Addition of Downstream FEC stack change sub-TLV to DDMAP.

3.2.  New Return Codes

3.2.1.  Return Code per Downstream

   A new Return Code is being defined "See DDM TLV for Return Code and
   Return Subcode" (Section 6.3) to indicate that the Return Code is per
   Downstream Detailed Mapping TLV (Section 3.3).  This Return Code MUST
   be used only in the message header and MUST be set only in the MPLS
   echo reply message.  If the Return Code is set in the MPLS echo
   request message, then it MUST be ignored.  When this Return Code is
   set, each Downstream Detailed Mapping TLV MUST have an appropriate
   Return Code and Return Subcode.  This Return Code MUST be used when
   there are multiple downstreams for a given node (such as Point to
   Multipoint (P2MP) or Equal Cost Multi-Path (ECMP)), and the node
   needs to return a Return Code/Return Subcode for each downstream.
   This Return Code MAY be used even when there is only one downstream
   for a given node.

3.2.2.  Return Code for Stitched LSPs

   When a traceroute is being performed on stitched LSPs
   (Section 4.1.2), the stitching point SHOULD indicate the stitching
   action to the node performing the trace.  This is done by setting the
   Return Code to "Label switched with FEC change" (Section 6.3).  If a
   node is performing FEC hiding, then it MAY choose to set the Return
   Code to a value (specified in [RFC4379]) other than "Label switched
   with FEC change".  The Return Code "Label switched with FEC change"
   MUST NOT be used if no FEC stack sub-TLV (Section 3.3.1.3) is present
   in the Downstream Detailed Mapping TLV(s).  This new Return Code MAY
   be used for hierarchical LSPs (for indicating the start or end of an
   outer LSP).

Bahadur, et al.              Standards Track                    [Page 6]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

3.3.  Downstream Detailed Mapping TLV

        Type #   Value Field
        ------   ------------

        20       Downstream Detailed Mapping

   The Downstream Detailed Mapping object is a TLV that MAY be included
   in an MPLS echo request message.  Only one Downstream Detailed
   Mapping object may appear in an echo request.  The presence of a
   Downstream Detailed Mapping object is a request that Downstream
   Detailed Mapping objects be included in the MPLS echo reply.  If the
   replying router is the destination (Label Edge Router) of the FEC,
   then a Downstream Detailed Mapping TLV SHOULD NOT be included in the
   MPLS echo reply.  Otherwise, the replying router SHOULD include a
   Downstream Detailed Mapping object for each interface over which this
   FEC could be forwarded.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               MTU             | Address Type  |    DS Flags   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Downstream Address (4 or 16 octets)             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Downstream Interface Address (4 or 16 octets)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Return Code  | Return Subcode|        Sub-tlv Length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                                                               .
      .                      List of Sub-TLVs                         .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 3: Downstream Detailed Mapping TLV

   The Downstream Detailed Mapping TLV format is derived from the
   Downstream Mapping TLV format.  The key change is that variable
   length and optional fields have been converted into sub-TLVs.  The
   fields have the same use and meaning as in [RFC4379].  A summary of
   the fields taken from the Downstream Mapping TLV is as below:

   Maximum Transmission Unit (MTU)

      The MTU is the size in octets of the largest MPLS frame (including
      label stack) that fits on the interface to the Downstream Label
      Switching Router (LSR).

Bahadur, et al.              Standards Track                    [Page 7]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   Address Type

      The Address Type indicates if the interface is numbered or
      unnumbered.  It also determines the length of the Downstream IP
      Address and Downstream Interface fields.

   DS Flags

      The DS Flags field is a bit vector of various flags.

   Downstream Address and Downstream Interface Address

      IPv4 addresses and interface indices are encoded in 4 octets; IPv6
      addresses are encoded in 16 octets.  For details regarding setting
      the address value, refer to [RFC4379].

   The newly added sub-TLVs and their fields are as described below.

   Return Code

      The Return Code is set to zero by the sender.  The receiver can
      set it to one of the values specified in the "Multi-Protocol Label
      Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
      registry, "Return Codes" sub-registry.

      If the receiver sets a non-zero value of the Return Code field in
      the Downstream Detailed Mapping TLV, then the receiver MUST also
      set the Return Code field in the echo reply header to "See DDM TLV
      for Return Code and Return Subcode" (Section 6.3).  An exception
      to this is if the receiver is a bud node [RFC4461] and is replying
      as both an egress and a transit node with a Return Code of 3
      ("Replying router is an egress for the FEC at stack-depth <RSC>")
      in the echo reply header.

      If the Return Code of the echo reply message is not set to either
      "See DDM TLV for Return Code and Return Subcode" (Section 6.3) or
      "Replying router is an egress for the FEC at stack-depth <RSC>",
      then the Return Code specified in the Downstream Detailed Mapping
      TLV MUST be ignored.

   Return Subcode

      The Return Subcode is set to zero by the sender.  The receiver can
      set it to one of the values specified in the "Multi-Protocol Label
      Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
      registry, "Return Codes" sub-registry.  This field is filled in
      with the stack-depth for those codes that specify the stack-depth.
      For all other codes, the Return Subcode MUST be set to zero.

Bahadur, et al.              Standards Track                    [Page 8]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

      If the Return Code of the echo reply message is not set to either
      "See DDM TLV for Return Code and Return Subcode" (Section 6.3) or
      "Replying router is an egress for the FEC at stack-depth <RSC>",
      then the Return Subcode specified in the Downstream Detailed
      Mapping TLV MUST be ignored.

   Sub-tlv Length

      Total length in bytes of the sub-TLVs associated with this TLV.

3.3.1.  Sub-TLVs

   This section defines the sub-TLVs that MAY be included as part of the
   Downstream Detailed Mapping TLV.

        Sub-Type    Value Field
        ---------   ------------
          1         Multipath data
          2         Label stack
          3         FEC stack change

3.3.1.1.  Multipath Data Sub-TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Multipath Type |       Multipath Length        |Reserved (MBZ) |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                  (Multipath Information)                      |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 4: Multipath Sub-TLV

   The multipath data sub-TLV includes Multipath Information.  The sub-
   TLV fields and their usage is as defined in [RFC4379].  A brief
   summary of the fields is as below:

   Multipath Type

      The type of the encoding for the Multipath Information.

   Multipath Length

      The length in octets of the Multipath Information.

Bahadur, et al.              Standards Track                    [Page 9]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   MBZ

      MUST be set to zero when sending; MUST be ignored on receipt.

   Multipath Information

      Encoded multipath data, according to the Multipath Type.

3.3.1.2.  Label Stack Sub-TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Downstream Label                |    Protocol   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                                                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Downstream Label                |    Protocol   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 5: Label Stack Sub-TLV

   The Label stack sub-TLV contains the set of labels in the label stack
   as it would have appeared if this router were forwarding the packet
   through this interface.  Any Implicit Null labels are explicitly
   included.  The number of label/protocol pairs present in the sub-TLV
   is determined based on the sub-TLV data length.  The label format and
   protocol type are as defined in [RFC4379].  When the Downstream
   Detailed Mapping TLV is sent in the echo reply, this sub-TLV MUST be
   included.

   Downstream Label

      A Downstream label is 24 bits, in the same format as an MPLS label
      minus the Time to Live (TTL) field, i.e., the MSBit of the label
      is bit 0, the LSBit is bit 19, the Traffic Class (TC) field
      [RFC5462] is bits 20-22, and S is bit 23.  The replying router
      SHOULD fill in the TC field and S bit; the LSR receiving the echo
      reply MAY choose to ignore these.

   Protocol

      This specifies the label distribution protocol for the Downstream
      label.

Bahadur, et al.              Standards Track                   [Page 10]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

3.3.1.3.  FEC Stack Change Sub-TLV

   A router MUST include the FEC stack change sub-TLV when the
   downstream node in the echo reply has a different FEC Stack than the
   FEC Stack received in the echo request.  One or more FEC stack change
   sub-TLVs MAY be present in the Downstream Detailed Mapping TLV.  The
   format is as below.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Operation Type | Address Type  | FEC-tlv length|  Reserved     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Remote Peer Address (0, 4 or 16 octets)             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                         FEC TLV                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 6: FEC Stack Change Sub-TLV

   Operation Type

      The operation type specifies the action associated with the FEC
      stack change.  The following operation types are defined:

        Type #     Operation
        ------     ---------
        1          Push
        2          Pop

   Address Type

      The Address Type indicates the remote peer's address type.  The
      Address Type is set to one of the following values.  The length of
      the peer address is determined based on the address type.  The
      address type MAY be different from the address type included in
      the Downstream Detailed Mapping TLV.  This can happen when the LSP
      goes over a tunnel of a different address family.  The address
      type MAY be set to Unspecified if the peer address is either
      unavailable or the transit router does not wish to provide it for
      security or administrative reasons.

Bahadur, et al.              Standards Track                   [Page 11]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

        Type #   Address Type   Address length
        ------   ------------   --------------

        0        Unspecified    0
        1        IPv4           4
        2        IPv6           16

   FEC TLV Length

      Length in bytes of the FEC TLV.

   Reserved

      This field is reserved for future use and MUST be set to zero.

   Remote Peer Address

      The remote peer address specifies the remote peer that is the
      next-hop for the FEC being currently traced.  For example, in the
      LDP over RSVP case in Figure 1, router B would respond back with
      the address of router D as the remote peer address for the LDP FEC
      being traced.  This allows the ingress node to provide information
      regarding FEC peers.  If the operation type is PUSH, the remote
      peer address is the address of the peer from which the FEC being
      pushed was learned.  If the operation type is POP, the remote peer
      address MAY be set to Unspecified.

      For upstream-assigned labels [RFC5331], an operation type of POP
      will have a remote peer address (the upstream node that assigned
      the label) and this SHOULD be included in the FEC stack change
      sub-TLV.  The remote peer address MAY be set to Unspecified if the
      address needs to be hidden.

   FEC TLV

      The FEC TLV is present only when the FEC-tlv length field is non-
      zero.  The FEC TLV specifies the FEC associated with the FEC stack
      change operation.  This TLV MAY be included when the operation
      type is POP.  It MUST be included when the operation type is PUSH.
      The FEC TLV contains exactly one FEC from the list of FECs
      specified in [RFC4379].  A Nil FEC MAY be associated with a PUSH
      operation if the responding router wishes to hide the details of
      the FEC being pushed.

Bahadur, et al.              Standards Track                   [Page 12]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   FEC stack change sub-TLV operation rules are as follows:

   a.  A FEC stack change sub-TLV containing a PUSH operation MUST NOT
       be followed by a FEC stack change sub-TLV containing a POP
       operation.

   b.  One or more POP operations MAY be followed by one or more PUSH
       operations.

   c.  One FEC stack change sub-TLV MUST be included per FEC stack
       change.  For example, if 2 labels are going to be pushed, then
       one FEC stack change sub-TLV MUST be included for each FEC.

   d.  A FEC splice operation (an operation where one FEC ends and
       another FEC starts, see Figure 7) MUST be performed by including
       a POP type FEC stack change sub-TLV followed by a PUSH type FEC
       stack change sub-TLV.

   e.  A Downstream detailed mapping TLV containing only one FEC stack
       change sub-TLV with Pop operation is equivalent to IS_EGRESS
       (Return Code 3, [RFC4379]) for the outermost FEC in the FEC
       stack.  The ingress router performing the MPLS traceroute MUST
       treat such a case as an IS_EGRESS for the outermost FEC.

3.4.  Deprecation of Downstream Mapping TLV

   This document deprecates the Downstream Mapping TLV.  LSP ping
   procedures should now use the Downstream Detailed Mapping TLV.
   Detailed procedures regarding interoperability between the deprecated
   TLV and the new TLV are specified in Section 4.4.

4.  Performing MPLS Traceroute on Tunnels

   This section describes the procedures to be followed by an LSP
   ingress node and LSP transit nodes when performing MPLS traceroute
   over MPLS tunnels.

4.1.  Transit Node Procedure

4.1.1.  Addition of a New Tunnel

   A transit node (Figure 1) knows when the FEC being traced is going to
   enter a tunnel at that node.  Thus, it knows about the new outer FEC.
   All transit nodes that are the origination point of a new tunnel
   SHOULD add the FEC stack change sub-TLV (Section 3.3.1.3) to the
   Downstream Detailed Mapping TLV (Figure 3) in the echo reply.  The
   transit node SHOULD add one FEC stack change sub-TLV of operation
   type PUSH, per new tunnel being originated at the transit node.

Bahadur, et al.              Standards Track                   [Page 13]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   A transit node that sends a Downstream FEC stack change sub-TLV in
   the echo reply SHOULD fill the address of the remote peer; which is
   the peer of the current LSP being traced.  If the transit node does
   not know the address of the remote peer, it MUST set the address type
   to Unspecified.

   The Label stack sub-TLV MUST contain one additional label per FEC
   being PUSHed.  The label MUST be encoded as per Figure 5.  The label
   value MUST be the value used to switch the data traffic.  If the
   tunnel is a transparent pipe to the node, i.e. the data-plane trace
   will not expire in the middle of the new tunnel, then a FEC stack
   change sub-TLV SHOULD NOT be added and the Label stack sub-TLV SHOULD
   NOT contain a label corresponding to the hidden tunnel.

   If the transit node wishes to hide the nature of the tunnel from the
   ingress of the echo request, then it MAY not want to send details
   about the new tunnel FEC to the ingress.  In such a case, the transit
   node SHOULD use the Nil FEC.  The echo reply would then contain a FEC
   stack change sub-TLV with operation type PUSH and a Nil FEC.  The
   value of the label in the Nil FEC MUST be set to zero.  The remote
   peer address type MUST be set to Unspecified.  The transit node
   SHOULD add one FEC stack change sub-TLV of operation type PUSH, per
   new tunnel being originated at the transit node.  The Label stack
   sub-TLV MUST contain one additional label per FEC being PUSHed.  The
   label value MUST be the value used to switch the data traffic.

4.1.2.  Transition between Tunnels

   A          B          C           D          E         F
   o -------- o -------- o --------- o -------- o ------- o
     \_____/    \______/   \______/    \______/  \_______/
       LDP        LDP         BGP         RSVP      RSVP

                          Figure 7: Stitched LSPs

   In the above figure, we have three separate LSP segments stitched at
   C and D.  Node C SHOULD include two FEC stack change sub-TLVs.  One
   with a POP operation for the LDP FEC and one with the PUSH operation
   for the BGP FEC.  Similarly, node D SHOULD include two FEC stack
   change sub-TLVs, one with a POP operation for the BGP FEC and one
   with a PUSH operation for the RSVP FEC.  Nodes C and D SHOULD set the
   Return Code to "Label switched with FEC change" (Section 6.3) to
   indicate change in FEC being traced.

   If node C wishes to perform FEC hiding, it SHOULD respond back with
   two FEC stack change sub-TLVs, one POP followed by one PUSH.  The POP
   operation MAY either exclude the FEC TLV (by setting the FEC TLV
   length to 0) or set the FEC TLV to contain the LDP FEC.  The PUSH

Bahadur, et al.              Standards Track                   [Page 14]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   operation SHOULD have the FEC TLV containing the Nil FEC.  The Return
   Code SHOULD be set to "Label switched with FEC change".

   If node C performs FEC hiding and node D also performs FEC hiding,
   then node D MAY choose to not send any FEC stack change sub-TLVs in
   the echo reply since the number of labels has not changed (for the
   downstream of node D) and the FEC type also has not changed (Nil
   FEC).  In such a case, node D MUST NOT set the Return Code to "Label
   switched with FEC change".  If node D performs FEC hiding, then node
   F will respond as IS_EGRESS for the Nil FEC.  The ingress (node A)
   will know that IS_EGRESS corresponds to the end-to-end LSP.

   A          B          C           D           E           F
   o -------- o -------- o --------- o --------- o --------- o
     \_____/  |\____________________/            |\_______/
       LDP    |\       RSVP-A                    |    LDP
              | \_______________________________/|
              |       RSVP-B                     |
               \________________________________/
                               LDP

                        Figure 8: Hierarchical LSPs

   In the above figure, we have an end-to-end LDP LSP between nodes A
   and F.  The LDP LSP goes over RSVP LSP RSVP-B.  LSP RSVP-B itself
   goes over another RSVP LSP RSVP-A.  When node A initiates a
   traceroute for the end-to-end LDP LSP, then following sequence of FEC
   stack change sub-TLVs will be performed

   Node B:

   Respond with two FEC stack change sub-TLVs: PUSH RSVP-B, PUSH RSVP-A.

   Node D:

   Respond with Return Code 3 when RSVP-A is the top of FEC stack.  When
   the echo request contains RSVP-B as top of stack, respond with
   Downstream information for node E and an appropriate Return Code.

Bahadur, et al.              Standards Track                   [Page 15]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   If node B is performing tunnel hiding, then:

   Node B:

   Respond with two FEC stack change sub-TLVs: PUSH Nil FEC, PUSH Nil
   FEC.

   Node D:

   If D determines that the Nil FEC corresponds to RSVP-A, which
   terminates at D, then it SHOULD respond with Return Code 3.  D can
   also respond with FEC stack change sub-TLV: POP (since D knows that
   number of labels towards next-hop is decreasing).  Both responses
   would be valid.

   A          B          C        D        E       F       G
   o -------- o -------- o ------ o ------ o ----- o ----- o
        LDP       LDP        BGP   \  RSVP    RSVP /  LDP
                                    \_____________/
                                         LDP

                   Figure 9: Stitched Hierarchical LSPs

   In the above case, node D will send three FEC stack change sub-TLVs.
   One POP (for the BGP FEC) followed by two PUSHes (one for LDP and one
   for RSVP).  Nodes C and D SHOULD set the Return Code to "Label
   switched with FEC change" (Section 6.3) to indicate change in FEC
   being traced.

4.1.3.  Modification to FEC Validation Procedure on Transit

   Section 4.4 of [RFC4379] specifies Target FEC stack validation
   procedures.  This document enhances the FEC validation procedures as
   follows.  If the outermost FEC of the target FEC stack is the Nil
   FEC, then the node MUST skip the target FEC validation completely.
   This is to support FEC hiding, in which the outer hidden FEC can be
   the Nil FEC.

4.2.  Modification to FEC Validation Procedure on Egress

   Section 4.4 of [RFC4379] specifies Target FEC stack validation
   procedures.  This document enhances the FEC validation procedures as
   follows.  If the outermost FEC of the Target FEC stack is the Nil
   FEC, then the node MUST skip the target FEC validation completely.
   This is to support FEC hiding, in which the outer hidden FEC can be
   the Nil FEC.

Bahadur, et al.              Standards Track                   [Page 16]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

4.3.  Ingress Node Procedure

   It is the responsibility of an ingress node to understand tunnel
   within tunnel semantics and LSP stitching semantics when performing a
   MPLS traceroute.  This section describes the ingress node procedure
   based on the kind of reply an ingress node receives from a transit
   node.

4.3.1.  Processing Downstream Detailed Mapping TLV

   Downstream Detailed Mapping TLV should be processed in the same way
   as the Downstream Mapping TLV, defined in Section 4.4 of [RFC4379].
   This section describes the procedures for processing the new elements
   introduced in this document.

4.3.1.1.  Stack Change Sub-TLV Not Present

   This would be the default behavior as described in [RFC4379].  The
   ingress node MUST perform MPLS echo reply processing as per the
   procedures in [RFC4379].

4.3.1.2.  Stack Change Sub-TLV(s) Present

   If one or more FEC stack change sub-TLVs (Section 3.3.1.3) are
   received in the MPLS echo reply, the ingress node SHOULD process them
   and perform some validation.

   The FEC stack changes are associated with a downstream neighbor and
   along a particular path of the LSP.  Consequently, the ingress will
   need to maintain a FEC stack per path being traced (in case of
   multipath).  All changes to the FEC stack resulting from the
   processing of FEC stack change sub-TLV(s) should be applied only for
   the path along a given downstream neighbor.  The following algorithm
   should be followed for processing FEC stack change sub-TLVs.

Bahadur, et al.              Standards Track                   [Page 17]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

    push_seen = FALSE
    fec_stack_depth = current-depth-of-fec-stack-being-traced
    saved_fec_stack = current_fec_stack

    while (sub-tlv = get_next_sub_tlv(downstream_detailed_map_tlv))

        if (sub-tlv == NULL) break

        if (sub-tlv.type == FEC-Stack-Change) {

            if (sub-tlv.operation == POP) {
                if (push_seen) {
                    Drop the echo reply
                    current_fec_stack = saved_fec_stack
                    return
                }

                if (fec_stack_depth == 0) {
                    Drop the echo reply
                    current_fec_stack = saved_fec_stack
                    return
                }

                Pop FEC from FEC stack being traced
                fec_stack_depth--;
            }

            if (sub-tlv.operation == PUSH) {
                push_seen = 1
                Push FEC on FEC stack being traced
                fec_stack_depth++;
            }
         }
     }

     if (fec_stack_depth == 0) {
         Drop the echo reply
         current_fec_stack = saved_fec_stack
         return
     }

         Figure 10: FEC Stack Change Sub-TLV Processing Guideline

Bahadur, et al.              Standards Track                   [Page 18]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   The next MPLS echo request along the same path should use the
   modified FEC stack obtained after processing the FEC stack change
   sub-TLVs.  A non-Nil FEC guarantees that the next echo request along
   the same path will have the Downstream Detailed Mapping TLV validated
   for IP address, Interface address, and label stack mismatches.

   If the top of the FEC stack is a Nil FEC and the MPLS echo reply does
   not contain any FEC stack change sub-TLVs, then it does not
   necessarily mean that the LSP has not started traversing a different
   tunnel.  It could be that the LSP associated with the Nil FEC
   terminated at a transit node and at the same time a new LSP started
   at the same transit node.  The Nil FEC would now be associated with
   the new LSP (and the ingress has no way of knowing this).  Thus, it
   is not possible to build an accurate hierarchical LSP topology if a
   traceroute contains Nil FECs.

4.3.2.  Modifications to Handling a Return Code 3 Reply.

   The procedures above allow the addition of new FECs to the original
   FEC being traced.  Consequently, a reply from a downstream node with
   Return Code 3 (IS_EGRESS) may not necessarily be for the FEC being
   traced.  It could be for one of the new FECs that was added.  On
   receipt of an IS_EGRESS reply, the LSP ingress should check if the
   depth of Target FEC sent to the node that just responded, was the
   same as the depth of the FEC that was being traced.  If it was not,
   then it should pop an entry from the Target FEC stack and resend the
   request with the same TTL (as previously sent).  The process of
   popping a FEC is to be repeated until either the LSP ingress receives
   a non-IS_EGRESS reply or until all the additional FECs added to the
   FEC stack have already been popped.  Using an IS_EGRESS reply, an
   ingress can build a map of the hierarchical LSP structure traversed
   by a given FEC.

4.3.3.  Handling of New Return Codes

   When the MPLS echo reply Return Code is "Label switched with FEC
   change" (Section 3.2.2), the ingress node SHOULD manipulate the FEC
   stack as per the FEC stack change sub-TLVs contained in the
   downstream detailed mapping TLV.  A transit node can use this Return
   Code for stitched LSPs and for hierarchical LSPs.  In case of ECMP or
   P2MP, there could be multiple paths and Downstream Detailed Mapping
   TLVs with different Return Codes (Section 3.2.1).  The ingress node
   should build the topology based on the Return Code per ECMP path/P2MP
   branch.

Bahadur, et al.              Standards Track                   [Page 19]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

4.4.  Handling Deprecated Downstream Mapping TLV

   The Downstream Mapping TLV has been deprecated.  Applications should
   now use the Downstream Detailed Mapping TLV.  The following
   procedures SHOULD be used for backward compatibility with routers
   that do not support the Downstream Detailed Mapping TLV.

   o  The Downstream Mapping TLV and the Downstream Detailed Mapping TLV
      MUST never be sent together in the same MPLS echo request or in
      the same MPLS echo reply.

   o  If the echo request contains a Downstream Detailed Mapping TLV and
      the corresponding echo reply contains a Return Code 2 ("One or
      more of the TLVs was not understood"), then the sender of the echo
      request MAY resend the echo request with the Downstream Mapping
      TLV (instead of the Downstream Detailed Mapping TLV).  In cases
      where a detailed reply is needed, the sender can choose to ignore
      the router that does not support the Downstream Detailed Mapping
      TLV.

   o  If the echo request contains a Downstream Mapping TLV, then a
      Downstream Detailed Mapping TLV MUST NOT be sent in the echo
      reply.  This is to handle the case that the sender of the echo
      request does not support the new TLV.  The echo reply MAY contain
      Downstream Mapping TLV(s).

   o  If echo request forwarding is in use (such that the echo request
      is processed at an intermediate LSR and then forwarded on), then
      the intermediate router is responsible for making sure that the
      TLVs being used among the ingress, intermediate and destination
      are consistent.  The intermediate router MUST NOT forward an echo
      request or an echo reply containing a Downstream Detailed Mapping
      TLV if it itself does not support that TLV.

5.  Security Considerations

   1.  If a network operator wants to prevent tracing inside a tunnel,
       one can use the Pipe Model [RFC3443], i.e., hide the outer MPLS
       tunnel by not propagating the MPLS TTL into the outer tunnel (at
       the start of the outer tunnel).  By doing this, MPLS traceroute
       packets will not expire in the outer tunnel and the outer tunnel
       will not get traced.

   2.  If one doesn't wish to expose the details of the new outer LSP,
       then the Nil FEC can be used to hide those details.  Using the
       Nil FEC ensures that the trace progresses without false negatives
       and all transit nodes (of the new outer tunnel) perform some
       minimal validations on the received MPLS echo requests.

Bahadur, et al.              Standards Track                   [Page 20]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

   Other security considerations, as discussed in [RFC4379], are also
   applicable to this document.

6.  IANA Considerations

6.1.  New TLV

   IANA has assigned a TLV type value to the following TLV from the
   "Multiprotocol Label Switching Architecture (MPLS) Label Switched
   Paths (LSPs) Ping Parameters" registry, "TLVs and sub-TLVs" sub-
   registry.

   Downstream Detailed Mapping TLV (see Section 3.3): 20.

6.2.  New Sub-TLV Types and Associated Registry

   IANA has registered the Sub-Type field of Downstream Detailed Mapping
   TLV.  The valid range for this is 0-65535.  Assignments in the range
   0-16383 and 32768-49161 are made via Standards Action as defined in
   [RFC3692]; assignments in the range 16384-31743 and 49162-64511 are
   made via Specification Required [RFC4379]; values in the range 31744-
   32767 and 64512-65535 are for Vendor Private Use, and MUST NOT be
   allocated.  If a sub-TLV has a Type that falls in the range for
   Vendor Private Use, the Length MUST be at least 4, and the first four
   octets MUST be that vendor's SMI Enterprise Code, in network octet
   order.  The rest of the Value field is private to the vendor.

   IANA has assigned the following sub-TLV types (see Section 3.3.1):

   Multipath data: 1

   Label stack: 2

   FEC stack change: 3

6.3.  New Return Codes

   IANA has assigned new Return Code values from the "Multi-Protocol
   Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
   registry, "Return Codes" sub-registry, as follows using a Standards
   Action value.

       Value    Meaning
       -----    -------
       14       See DDM TLV for Return Code and Return Subcode
       15       Label switched with FEC change

Bahadur, et al.              Standards Track                   [Page 21]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

7.  Acknowledgements

   The authors would like to thank Yakov Rekhter and Adrian Farrel for
   their suggestions on the document.

8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3692]  Narten, T., "Assigning Experimental and Testing Numbers
              Considered Useful", BCP 82, RFC 3692, January 2004.

   [RFC4379]  Kompella, K. and G. Swallow, "Detecting Multi-Protocol
              Label Switched (MPLS) Data Plane Failures", RFC 4379,
              February 2006.

8.2.  Informative References

   [RFC3443]  Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
              in Multi-Protocol Label Switching (MPLS) Networks",
              RFC 3443, January 2003.

   [RFC4461]  Yasukawa, S., "Signaling Requirements for Point-to-
              Multipoint Traffic-Engineered MPLS Label Switched Paths
              (LSPs)", RFC 4461, April 2006.

   [RFC5150]  Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel,
              "Label Switched Path Stitching with Generalized
              Multiprotocol Label Switching Traffic Engineering (GMPLS
              TE)", RFC 5150, February 2008.

   [RFC5331]  Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream
              Label Assignment and Context-Specific Label Space",
              RFC 5331, August 2008.

   [RFC5462]  Andersson, L. and R. Asati, "Multiprotocol Label Switching
              (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
              Class" Field", RFC 5462, February 2009.

Bahadur, et al.              Standards Track                   [Page 22]
RFC 6424               LSP Ping over MPLS Tunnels          November 2011

Authors' Addresses

   Nitin Bahadur
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   EMail: nitinb@juniper.net
   URI:   www.juniper.net

   Kireeti Kompella
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   EMail: kireeti@juniper.net
   URI:   www.juniper.net

   George Swallow
   Cisco Systems
   1414 Massachusetts Ave
   Boxborough, MA  01719
   US

   EMail: swallow@cisco.com
   URI:   www.cisco.com

Bahadur, et al.              Standards Track                   [Page 23]