The Profile for Algorithms and Key Sizes for Use in the Resource Public Key Infrastructure (RPKI)
RFC 6485
Document | Type |
RFC - Proposed Standard
(February 2012; Errata)
Obsoleted by RFC 7935
|
|
---|---|---|---|
Last updated | 2015-10-14 | ||
Replaces | draft-huston-sidr-rpki-algs | ||
Stream | IETF | ||
Formats | plain text pdf html bibtex | ||
Reviews | |||
Stream | WG state | WG Document | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 6485 (Proposed Standard) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Stewart Bryant | ||
IESG note | Sandra Murphy (sandra.murphy@sparta.com) is the document shepherd. | ||
Send notices to | (None) |
Internet Engineering Task Force (IETF) G. Huston Request for Comments: 6485 APNIC Category: Standards Track February 2012 ISSN: 2070-1721 The Profile for Algorithms and Key Sizes for Use in the Resource Public Key Infrastructure (RPKI) Abstract This document specifies the algorithms, algorithms' parameters, asymmetric key formats, asymmetric key size, and signature format for the Resource Public Key Infrastructure (RPKI) subscribers that generate digital signatures on certificates, Certificate Revocation Lists, and signed objects as well as for the relying parties (RPs) that verify these digital signatures. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6485. Copyright Notice Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Huston Standards Track [Page 1] RFC 6485 RPKI Algorithm Profile February 2012 1. Introduction This document specifies: * the digital signature algorithm and parameters; * the hash algorithm and parameters; * the public and private key formats; and, * the signature format used by Resource Public Key Infrastructure (RPKI) subscribers when they apply digital signatures to certificates, Certificate Revocation Lists (CRLs), and signed objects (e.g., Route Origin Authorizations (ROAs) and manifests). Relying parties (RPs) also use the algorithms defined in this document to verify RPKI subscribers' digital signatures [RFC6480]. This document is referenced by other RPKI profiles and specifications, including the RPKI Certificate Policy (CP) [RFC6484], the RPKI Certificate Profile [RFC6487], the SIDR Architecture [RFC6480], and the Signed Object Template for the RPKI [RFC6488]. Familiarity with these documents is assumed. 1.1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 2. Algorithms Two cryptographic algorithms are used in the RPKI: * The signature algorithm used in certificates, CRLs, and signed objects is RSA Public-Key Cryptography Standards (PKCS) #1 Version 1.5 (sometimes referred to as "RSASSA-PKCS1-v1_5") from Section 5 of [RFC4055]. * The hashing algorithm used in certificates, CRLs, and signed objects is SHA-256 [SHS]. The hashing algorithm is not identified by itself when used in certificates and CRLs, as they are combined with the digital signature algorithm (see below). When used in the Cryptographic Message Syntax (CMS) SignedData, the hash algorithm (in this case, the hash algorithm is sometimes called a message digest algorithm) is identified by itself. For CMS SignedData, the object identifier and parameters for SHA-256 (as defined in [RFC5754]) MUST be used Huston Standards Track [Page 2] RFC 6485 RPKI Algorithm Profile February 2012 when populating the digestAlgorithms and digestAlgorithm fields. NOTE: The exception to the above hashing algorithm is the use of SHA-1 [SHS] when Certification Authorities (CAs) generate authority and subject key identifiers [RFC6487]. When used to generate and verify digital signatures the hash and digital signature algorithms are referred together, i.e., "RSA PKCS#1 v1.5 with SHA-256" or more simply "RSA with SHA-256". The Object Identifier (OID) sha256withRSAEncryption from [RFC4055] MUST be used.Show full document text