Mobile IPv6 Security Framework Using Transport Layer Security for Communication between the Mobile Node and Home Agent
RFC 6618
Document | Type | RFC - Experimental (May 2012; No errata) | |
---|---|---|---|
Authors | Jouni Korhonen , Basavaraj Patil , Hannes Tschofenig , Dirk Kroeselberg | ||
Last updated | 2015-10-14 | ||
Replaces | draft-korhonen-mext-mip6-altsec | ||
Stream | Internent Engineering Task Force (IETF) | ||
Formats | plain text html pdf htmlized (tools) htmlized bibtex | ||
Reviews | |||
Stream | WG state | WG Document | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 6618 (Experimental) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Jari Arkko | ||
IESG note | Basavaraj Patil (Basavaraj.Patil@nokia.com) is the document shepherd. | ||
Send notices to | (None) |
Internet Engineering Task Force (IETF) J. Korhonen, Ed. Request for Comments: 6618 Nokia Siemens Networks Category: Experimental B. Patil ISSN: 2070-1721 Nokia H. Tschofenig Nokia Siemens Networks D. Kroeselberg Siemens May 2012 Mobile IPv6 Security Framework Using Transport Layer Security for Communication between the Mobile Node and Home Agent Abstract Mobile IPv6 signaling between a Mobile Node (MN) and its Home Agent (HA) is secured using IPsec. The security association (SA) between an MN and the HA is established using Internet Key Exchange Protocol (IKE) version 1 or 2. The security model specified for Mobile IPv6, which relies on IKE/IPsec, requires interaction between the Mobile IPv6 protocol component and the IKE/IPsec module of the IP stack. This document proposes an alternate security framework for Mobile IPv6 and Dual-Stack Mobile IPv6, which relies on Transport Layer Security for establishing keying material and other bootstrapping parameters required to protect Mobile IPv6 signaling and data traffic between the MN and HA. Status of This Memo This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation. This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6618. Korhonen, et al. Experimental [Page 1] RFC 6618 TLS-Based MIPv6 Security Framework May 2012 Copyright Notice Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction ....................................................3 2. Terminology and Abbreviations ...................................4 3. Background ......................................................5 4. TLS-Based Security Establishment ................................5 4.1. Overview ...................................................5 4.2. Architecture ...............................................7 4.3. Security Association Management ............................7 4.4. Bootstrapping of Additional Mobile IPv6 Parameters .........9 4.5. Protecting Traffic between Mobile Node and Home Agent .....10 5. MN-to-HAC Communication ........................................10 5.1. Request-Response Message Framing over TLS-Tunnel ..........10 5.2. Request-Response Message Content Encoding .................11 5.3. Request-Response Message Exchange .........................12 5.4. Home Agent Controller Discovery ...........................13 5.5. Generic Request-Response Parameters .......................13 5.5.1. Mobile Node Identifier .............................13 5.5.2. Authentication Method ..............................13 5.5.3. Extensible Authentication Protocol Payload .........14 5.5.4. Status Code ........................................14 5.5.5. Message Authenticator ..............................14 5.5.6. Retry After ........................................14 5.5.7. End of Message Content .............................14 5.5.8. Random Values ......................................15 5.6. Security Association Configuration Parameters .............15 5.6.1. Security Parameter Index ...........................15Show full document text