Elliptic Curve Cryptography (ECC) Brainpool Curves for Transport Layer Security (TLS)
RFC 7027
Document | Type |
RFC - Informational
(October 2013; Errata)
Updates RFC 4492
Was draft-merkle-tls-brainpool (individual in sec area)
|
|
---|---|---|---|
Authors | Johannes Merkle , Manfred Lochter | ||
Last updated | 2015-10-14 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | (None) | |
Document shepherd | Dan Harkins | ||
Shepherd write-up | Show (last changed 2013-06-20) | ||
IESG | IESG state | RFC 7027 (Informational) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Sean Turner | ||
Send notices to | (None) | ||
IANA | IANA review state | IANA OK - Actions Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) J. Merkle Request for Comments: 7027 secunet Security Networks Updates: 4492 M. Lochter Category: Informational BSI ISSN: 2070-1721 October 2013 Elliptic Curve Cryptography (ECC) Brainpool Curves for Transport Layer Security (TLS) Abstract This document specifies the use of several Elliptic Curve Cryptography (ECC) Brainpool curves for authentication and key exchange in the Transport Layer Security (TLS) protocol. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7027. Copyright Notice Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Merkle & Lochter Informational [Page 1] RFC 7027 ECC Brainpool Curves for TLS October 2013 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Brainpool NamedCurve Types . . . . . . . . . . . . . . . . . . 2 3. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 3 4. Security Considerations . . . . . . . . . . . . . . . . . . . . 3 5. References . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5.1. Normative References . . . . . . . . . . . . . . . . . . . 4 5.2. Informative References . . . . . . . . . . . . . . . . . . 4 Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . . 6 A.1. 256-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . 7 A.2. 384-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . 8 A.3. 512-Bit Curve . . . . . . . . . . . . . . . . . . . . . . . 9 1. Introduction [RFC5639] specifies a new set of elliptic curve groups over finite prime fields for use in cryptographic applications. These groups, denoted as ECC Brainpool curves, were generated in a verifiably pseudo-random way and comply with the security requirements of relevant standards from ISO [ISO1] [ISO2], ANSI [ANSI1], NIST [FIPS], and SecG [SEC2]. [RFC4492] defines the usage of elliptic curves for authentication and key agreement in TLS 1.0 and TLS 1.1; these mechanisms may also be used with TLS 1.2 [RFC5246]. While the ASN.1 object identifiers defined in [RFC5639] already allow usage of the ECC Brainpool curves for TLS (client or server) authentication through reference in X.509 certificates according to [RFC3279] and [RFC5480], their negotiation for key exchange according to [RFC4492] requires the definition and assignment of additional NamedCurve IDs. This document specifies such values for three curves from [RFC5639]. 2. Brainpool NamedCurve Types According to [RFC4492], the name space NamedCurve is used for the negotiation of elliptic curve groups for key exchange during a handshake starting a new TLS session. This document adds new NamedCurve types to three elliptic curves defined in [RFC5639] as follows: enum { brainpoolP256r1(26), brainpoolP384r1(27), brainpoolP512r1(28) } NamedCurve; These curves are suitable for use with Datagram TLS [RFC6347]. Merkle & Lochter Informational [Page 2] RFC 7027 ECC Brainpool Curves for TLS October 2013 Test vectors for a Diffie-Hellman key exchange using these elliptic curves are provided in Appendix A. 3. IANA Considerations IANA has assigned numbers for the ECC Brainpool curves listed in Section 2 in the "EC Named Curve" [IANA-TLS] registry of theShow full document text