Skip to main content

GOST R 34.10-2012: Digital Signature Algorithm
RFC 7091

Document Type RFC - Informational (December 2013)
Updates RFC 5832
Was draft-dolmatov-gost34102012 (individual)
Authors Vasily Dolmatov , Alexey Degtyarev
Last updated 2013-12-16
RFC stream Independent Submission
Formats
IESG Responsible AD (None)
Send notices to (None)
RFC 7091
Independent Submission                                  V. Dolmatov, Ed.
Request for Comments: 7091                                  A. Degtyarev
Updates: 5832                                            Cryptocom, Ltd.
Category: Informational                                    December 2013
ISSN: 2070-1721

             GOST R 34.10-2012: Digital Signature Algorithm

Abstract

   This document provides information about the Russian Federal standard
   for digital signatures (GOST R 34.10-2012), which is one of the
   Russian cryptographic standard algorithms (called GOST algorithms).
   Recently, Russian cryptography is being used in Internet
   applications, and this document provides information for developers
   and users of GOST R 34.10-2012 regarding digital signature generation
   and verification.  This document updates RFC 5832.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7091.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Dolmatov & Degtyarev          Informational                     [Page 1]
RFC 7091                    GOST R 34.10-2012              December 2013

Table of Contents

   1. Introduction ....................................................2
      1.1. General Information ........................................2
      1.2. The Purpose of GOST R 34.10-2012 ...........................3
      1.3. Requirements Language ......................................3
   2. Scope ...........................................................3
   3. Definitions and Notations .......................................4
      3.1. Definitions ................................................4
      3.2. Notations ..................................................6
   4. General Statements ..............................................7
   5. Mathematical Conventions ........................................8
      5.1. Mathematical Definitions ...................................9
      5.2. Digital Signature Parameters ..............................10
      5.3. Binary Vectors ............................................12
   6. Main Processes .................................................12
      6.1. Digital Signature Generation Process ......................13
      6.2. Digital Signature Verification ............................13
   7. Test Examples (Appendix to GOST R 34.10-2012) ..................14
      7.1. The Digital Signature Scheme Parameters ...................15
      7.2. Digital Signature Process (Algorithm I) ...................17
      7.3. Verification Process of Digital Signature (Algorithm II) ..18
   8. Security Considerations ........................................19
   9. References .....................................................19
      9.1. Normative References ......................................19
      9.2. Informative References ....................................20

1.  Introduction

1.1.  General Information

   1.  GOST R 34.10-2012 [GOST3410-2012] was developed by the Center for
       Information Protection and Special Communications of the Federal
       Security Service of the Russian Federation with participation of
       the open joint-stock company "Information Technologies and
       Communication Systems" (InfoTeCS JSC).

   2.  GOST R 34.10-2012 was approved and introduced by Decree #215 of
       the Federal Agency on Technical Regulating and Metrology on
       07.08.2012.

   3.  GOST R 34.10-2012 replaces GOST R 34.10-2001 [GOST3410-2001], a
       national standard of the Russian Federation.

   GOST R 34.10-2001 is superseded by GOST R 34.10-2012 from 1 January
   2013.  That means that all new systems that are presented for
   certification MUST use GOST R 34.10-2012 and MAY use

Dolmatov & Degtyarev          Informational                     [Page 2]
RFC 7091                    GOST R 34.10-2012              December 2013

   GOST R 34.10-2001 also for maintaining compatibility with existing
   systems.  Usage of GOST R 34.10-2001 in current systems is allowed at
   least for a 5-year period.

   This document updates RFC 5832 [RFC5832].

   This document is an English translation of GOST R 34.10-2012;
   [RFC6986] is an English translation of GOST R 34.11-2012; and
   [RFC5832] is an English translation of GOST R 34.10-2001.

   Terms and conceptions of this standard comply with the following
   international standards:

   o  ISO 2382-2 [ISO2382-2],
   o  ISO/IEC 9796 [ISO9796-2][ISO9796-3],
   o  series of standards ISO/IEC 14888 [ISO14888-1] [ISO14888-2]
      [ISO14888-3] [ISO14888-4], and
   o  series of standards ISO/IEC 10118 [ISO10118-1] [ISO10118-2]
      [ISO10118-3] [ISO10118-4].

1.2.  The Purpose of GOST R 34.10-2012

   GOST R 34.10-2012 describes the generation and verification processes
   for digital signatures, based on operations with an elliptic curve
   points group, defined over a prime finite field.

   The necessity for developing this standard is caused by the need to
   implement digital signatures of varying resistance due to growth of
   computer technology.  Digital signature security is based on the
   complexity of discrete logarithm calculation in an elliptic curve
   points group and also on the security of the hash function used
   (according to GOST R 34.11-2012 [GOST3411-2012]).

1.3.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Scope

   GOST R 34.10-2012 defines an electronic digital signature (or simply
   digital signature) scheme, digital signature generation and
   verification processes for a given message (document), meant for
   transmission via insecure public telecommunication channels in data
   processing systems of different purposes.

Dolmatov & Degtyarev          Informational                     [Page 3]
RFC 7091                    GOST R 34.10-2012              December 2013

   Use of a digital signature based on GOST R 34.10-2012 makes
   transmitted messages more resistant to forgery and loss of integrity,
   in comparison with the digital signature scheme prescribed by the
   previous standard.

   GOST R 34.10-2012 is recommended for the creation, operation, and
   modernization of data processing systems of various purposes.

3.  Definitions and Notations

3.1.  Definitions

   The following terms are used in the standard:

   appendix: bit string that is formed by a digital signature and by the
      arbitrary text field [ISO14888-1].

   signature key: element of secret data that is specific to the subject
      and used only by this subject during the signature generation
      process [ISO14888-1].

   verification key: element of data mathematically linked to the
      signature key data element that is used by the verifier during the
      digital signature verification process [ISO14888-1].

   domain parameter: element of data that is common for all the subjects
      of the digital signature scheme, known or accessible to all the
      subjects [ISO14888-1].

   signed message: a set of data elements that consists of the message
      and the appendix, which is a part of the message [ISO14888-1].

   pseudorandom number sequence: a sequence of numbers that is obtained
      during some arithmetic (calculation) process, used in a specific
      case instead of a true random number sequence.

   random number sequence: a sequence of numbers of which none can be
      predicted (calculated) using only the preceding numbers of the
      same sequence.

   verification process: a process that uses the signed message, the
      verification key, and the digital signature scheme parameters as
      initial data and that gives the conclusion about digital signature
      validity or invalidity as a result [ISO14888-1].

Dolmatov & Degtyarev          Informational                     [Page 4]
RFC 7091                    GOST R 34.10-2012              December 2013

   signature generation process: a process that uses the message, the
      signature key, and the digital signature scheme parameters as
      initial data and that generates the digital signature as the
      result [ISO14888-1].

   witness: element of data that states to the verifier whether the
      digital signature is valid or invalid.

   random number: a number chosen from the definite number set in such a
      way that every number from the set can be chosen with equal
      probability.

   message: string of bits of a limited length [ISO14888-1].

   hash code: string of bits that is a result of the hash function
      [ISO14888-1].

   hash function: the function that maps bit strings onto bit strings of
      fixed length observing the following properties:

      1.  it is difficult to calculate the input data that is the pre-
          image of the given function value;

      2.  it is difficult to find another input data that is the pre-
          image of the same function value as is the given input data;
          and

      3.  it is difficult to find a pair of different input data that
          produces the same hash function value.

      [ISO14888-1]

      Notes:

      1.  Property 1 in the context of the digital signature area means
          that it is impossible to recover the initial message using the
          digital signature; property 2 means that it is difficult to
          find another (falsified) message that produces the same
          digital signature as a given message; property 3 means that it
          is difficult to find a pair of different messages that both
          produce the same signature.

      2.  In this standard, the terms "hash function", "cryptographic
          hash function", "hashing function", and "cryptographic hashing
          function" are synonymous to provide terminological succession
          to native legal documents currently in force and scientific
          publications.

Dolmatov & Degtyarev          Informational                     [Page 5]
RFC 7091                    GOST R 34.10-2012              December 2013

   (electronic) digital signature: string of bits that are obtained as a
      result of the signature generation process [ISO14888-1].

      Notes:

      1.  A string of bits that is a signature may have an internal
          structure depending on the specific signature generation
          mechanism.

      2.  In this standard, the terms "electronic signature", "digital
          signature", and "electronic digital signature" are synonymous
          to provide terminological succession to native legal documents
          currently in force and scientific publications.

3.2.  Notations

   The following notations are used in this standard:

   V_l          set of all binary vectors of an l-bit length

   V_all        set of all binary vectors of an arbitrary finite length

   Z            set of all integers

   p            prime number, p > 3

   GF(p)        finite prime field represented by a set of integers {0,
                1, ..., p - 1}

   b (mod p)    minimal non-negative number, congruent to b modulo p

   M            user's message, M belongs to V_all

   (H1 || H2 )  concatenation of two binary vectors

   a, b         elliptic curve coefficients

   m            points of the elliptic curve group order

   q            subgroup order of group of points of the elliptic curve

   O            zero point of the elliptic curve

   P            elliptic curve point of order q

   d            integer - a signature key

   Q            elliptic curve point - a verification key

Dolmatov & Degtyarev          Informational                     [Page 6]
RFC 7091                    GOST R 34.10-2012              December 2013

   zeta         digital signature for the message M

   ^            the power operator

   /=           non-equality

   sqrt         square root

4.  General Statements

   A commonly accepted digital signature scheme (model) consists of
   three processes:

   -  generation of a pair of keys (for signature generation and for
      signature verification),

   -  signature generation, and

   -  signature verification.

   In GOST R 34.10-2012, a process for generating a pair of keys (for
   signature and verification) is not defined.  Characteristics and ways
   to realize the process are defined by involved subjects, who
   determine corresponding parameters by their agreement.

   The digital signature mechanism is defined by the realization of two
   main processes (Section 6):

   -  signature generation (Section 6.1), and

   -  signature verification (Section 6.2).

   The digital signature is meant for the authentication of the
   signatory of the electronic message.  Besides, digital signature
   usage gives an opportunity to provide the following properties during
   signed message transmission:

   -  realization of control of the transmitted signed message
      integrity,

   -  proof of the authorship of the signatory of the message, and

   -  protection of the message against possible forgery.

   A schematic representation of the signed message is shown in
   Figure 1.

Dolmatov & Degtyarev          Informational                     [Page 7]
RFC 7091                    GOST R 34.10-2012              December 2013

                                   appendix
                                      |
                      +-------------------------------+
                      |                               |
      +-----------+   +------------------------+- - - +
      | message M |---| digital signature zeta | text |
      +-----------+   +------------------------+- - - +

                       Figure 1: Signed Message Scheme

   The field "digital signature" is supplemented by the field "text"
   that can contain, for example, identifiers of the signatory of the
   message and/or time label.

   The digital signature scheme defined in GOST R 34.10-2012 must be
   implemented using operations of the elliptic curve points group,
   defined over a finite prime field, and also with the use of the hash
   function.

   The cryptographic security of the digital signature scheme is based
   on the complexity of solving the problem of the calculation of the
   discrete logarithm in the elliptic curve points group and also on the
   security of the hash function used.  The hash function calculation
   algorithm is defined in GOST R 34.11-2012 [GOST3411-2012].

   The digital signature scheme parameters needed for signature
   generation and verification are defined in Section 5.2.  This
   standard provides the opportunity to select one of two options for
   parameter requirements.

   GOST R 34.10-2012 does not determine the process for generating the
   parameters needed for the digital signature scheme.  Possible sets of
   these parameters are defined, for example, in [RFC4357].

   The digital signature represented as a binary vector of a 512- or
   1024-bit length must be calculated using a definite set of rules, as
   stated in Section 6.1.

   The digital signature of the received message is accepted or denied
   in accordance with the set of rules, as stated in Section 6.2.

5.  Mathematical Conventions

   To define a digital signature scheme, it is necessary to describe
   basic mathematical objects used in the signature generation and
   verification processes.  This section lays out basic mathematical
   definitions and requirements for the parameters of the digital
   signature scheme.

Dolmatov & Degtyarev          Informational                     [Page 8]
RFC 7091                    GOST R 34.10-2012              December 2013

5.1.  Mathematical Definitions

   Suppose a prime number p > 3 is given.  Then, an elliptic curve E,
   defined over a finite prime field GF(p), is the set of number pairs
   (x,y), where x and y belong to Fp, satisfying the identity:

   y^2 = x^3 + a * x + b (mod p),                                    (1)

   where a, b belong to GF(p) and 4 * a^3 + 27 * b^2 is not congruent to
   zero modulo p.

   An invariant of the elliptic curve is the value J(E), satisfying the
   equality:

                      4 * a^3
   J(E) = 1728 * ------------------ (mod p)                          (2)
                 4 * a^3 + 27 * b^2

   Elliptic curve E coefficients a, b are defined in the following way
   using the invariant J(E):

   | a = 3 * k (mod p),
   |                                                                 (3)
   | b = 2 * k (mod p),

                 J(E)
   where k = ----------- (mod p), J(E) /= 0 or 1728
             1728 - J(E)

   The pairs (x, y) satisfying the identity (1) are called "the elliptic
   curve E points"; x and y are called x- and y-coordinates of the
   point, correspondingly.

   We will denote elliptic curve points as Q(x, y) or just Q.  Two
   elliptic curve points are equal if their x- and y-coordinates are
   equal.

   On the set of all elliptic curve E points, we will define the
   addition operation, denoted by "+".  For two arbitrary elliptic curve
   E points Q1 (x1, y1) and Q2 (x2, y2), we will consider several
   variants.

   Suppose coordinates of points Q1 and Q2 satisfy the condition x1 /=
   x2.  In this case, their sum is defined as a point Q3 (x3, y3), with
   coordinates defined by congruencies:

Dolmatov & Degtyarev          Informational                     [Page 9]
RFC 7091                    GOST R 34.10-2012              December 2013

   | x3 = lambda^2 - x1 - x2 (mod p),
   |                                                                 (4)
   | y3 = lambda * (x1 - x3) - y1 (mod p),

                   y1 - y2
   where lambda = -------- (mod p).
                   x1 - x2

   If x1 = x2 and y1 = y2 /= 0, then we will define point Q3 coordinates
   in the following way:

   | x3 = lambda^2 - x1 * 2 (mod p),
   |                                                                 (5)
   | y3 = lambda * (x1 - x3) - y1 (mod p),

                  3 * x1^2 + a
   where lambda = ------------ (mod p)
                     y1 * 2

   If x1 = x2 and y1 = -y2 (mod p), then the sum of points Q1 and Q2 is
   called a zero point O, without determination of its x- and y-
   coordinates.  In this case, point Q2 is called a negative of point
   Q1.  For the zero point, the equalities hold:

   O + Q = Q + O = Q,                                                (6)

   where Q is an arbitrary point of elliptic curve E.

   A set of all points of elliptic curve E, including the zero point,
   forms a finite abelian (commutative) group of order m regarding the
   introduced addition operation.  For m, the following inequalities
   hold:

   p + 1 - 2 * sqrt(p) =< m =< p + 1 + 2 * sqrt(p)                   (7)

   The point Q is called "a point of multiplicity k", or just "a
   multiple point of the elliptic curve E", if for some point P, the
   following equality holds:

   Q = P + ... + P = k * P                                           (8)
       -----+-----
            k

5.2.  Digital Signature Parameters

   The digital signature parameters are:

   -  prime number p is an elliptic curve modulus.

Dolmatov & Degtyarev          Informational                    [Page 10]
RFC 7091                    GOST R 34.10-2012              December 2013

   -  elliptic curve E, defined by its invariant J(E) or by coefficients
      a, b belonging to GF(p).

   -  integer m is an elliptic curve E points group order.

   -  prime number q is an order of a cyclic subgroup of the elliptic
      curve E points group, which satisfies the following conditions:

   | m = nq, n belongs to Z, n >= 1
   |                                                                 (9)
   | 2^254 < q < 2^256 or 2^508 < q < 2^512

   -  point P /= O of an elliptic curve E, with coordinates (x_p, y_p),
      satisfying the equality q * P = O.

   -  hash function h(.):V_all -> V_l, which maps the messages
      represented as binary vectors of arbitrary finite length onto
      binary vectors of an l-bit length.  The hash function is defined
      in GOST R 34.11-2012 [GOST3411-2012].

      If 2^254 < q < 2^256, then l = 256.
      If 2^508 < q < 2^512, then l = 512.

   Every user of the digital signature scheme must have its personal
   keys:

   -  signature key, which is an integer d, satisfying the inequality 0
      < d < q;

   -  verification key, which is an elliptic curve point Q with
      coordinates (x_q, y_q), satisfying the equality d * P = Q.

   The previously introduced digital signature parameters must satisfy
   the following requirements:

   -  it is necessary that the condition p^t /= 1 (mod q) holds for all
      integers t = 1, 2, ..., B, where

      B = 31  if 2^254 < q < 2^256, or
      B = 131 if 2^508 < q < 2^512;

   -  it is necessary that the inequality m /= p holds;

   -  the curve invariant must satisfy the condition J(E) /= 0, 1728.

Dolmatov & Degtyarev          Informational                    [Page 11]
RFC 7091                    GOST R 34.10-2012              December 2013

5.3.  Binary Vectors

   To determine the digital signature generation and verification
   processes, it is necessary to map the set of integers onto the set of
   binary vectors of an l-bit length.

   Consider the following binary vector of an l-bit length where low-
   order bits are placed on the right, and high-order ones are placed on
   the left:

   H = (alpha[l-1], ..., alpha[0]), H belongs to V_l                (10)

   where alpha[i], i = 0, ..., l-1 are equal to 1 or to 0.  The number
   alpha belonging to Z is mapped onto the binary vector h, if the
   equality holds:

   alpha = alpha[0]*2^0 + alpha[1]*2^1 + ... + alpha[l-1]*2^(l-1)   (11)

   For two binary vectors H1 and H2:

   H1 = (alpha[l-1], ..., alpha[0]),
                                                                    (12)
   H2 = (beta[l-1], ..., beta[0]),

   which correspond to integers alpha and beta, we define a
   concatenation (union) operation in the following way:

   H1||H2 = (alpha[l-1], ..., alpha[0], beta[l-1], ..., beta[0])    (13)

   that is a binary vector of 2*l-bit length, consisting of coefficients
   of the vectors H1 and H2.

   On the other hand, the introduced formulae define a way to divide a
   binary vector H of 2*l-bit length into two binary vectors of l-bit
   length, where H is the concatenation of the two.

6.  Main Processes

   In this section, the digital signature generation and verification
   processes of a user's message are defined.

   To realize the processes, it is necessary that all users know the
   digital signature scheme parameters, which satisfy the requirements
   of Section 5.2.

   Besides, every user must have the signature key d and the
   verification key Q(x_q, y_q), which also must satisfy the
   requirements of Section 5.2.

Dolmatov & Degtyarev          Informational                    [Page 12]
RFC 7091                    GOST R 34.10-2012              December 2013

6.1.  Digital Signature Generation Process

   It is necessary to perform the following actions (steps) to obtain
   the digital signature for the message M belonging to V_all.  This is
   Algorithm I.

   Step 1.  Calculate the message hash code M:

            H = h(M)                                                (14)

   Step 2.  Calculate an integer alpha, the binary representation of
            which is the vector H, and determine:

            e = alpha (mod q)                                       (15)

            If e = 0, then assign e = 1.

   Step 3.  Generate a random (pseudorandom) integer k, satisfying the
            inequality:

            0 < k < q                                               (16)

   Step 4.  Calculate the elliptic curve point C = k * P and determine:

            r = x_C (mod q),                                        (17)

            where x_C is the x-coordinate of the point C.  If r = 0,
            return to step 3.

   Step 5.  Calculate the value:

            s = (r * d + k * e) (mod q)                             (18)

            If s = 0, return to Step 3.

   Step 6.  Calculate the binary vectors R and S, corresponding to r and
            s, and determine the digital signature zeta = (R || S) as a
            concatenation of these two binary vectors.

   The initial data of this process are the signature key d and the
   message M to be signed.  The output result is the digital signature
   zeta.

6.2.  Digital Signature Verification

   To verify the digital signature for the received message M, it is
   necessary to perform the following actions (steps).  This is
   Algorithm II.

Dolmatov & Degtyarev          Informational                    [Page 13]
RFC 7091                    GOST R 34.10-2012              December 2013

   Step 1.  Calculate the integers r and s using the received signature
            zeta.  If the inequalities 0 < r < q, 0 < s < q hold, go to
            the next step.  Otherwise, the signature is invalid.

   Step 2.  Calculate the hash code of the received message M:

            H = h(M)                                                (19)

   Step 3.  Calculate the integer alpha, the binary representation of
            which is the vector H, and determine if:

            e = alpha (mod q)                                       (20)

            If e = 0, then assign e = 1.

   Step 4.  Calculate the value:

            v = e^(-1) (mod q)                                      (21)

   Step 5.  Calculate the values:

            z1 = s * v (mod q), z2 = -r * v (mod q)                 (22)

   Step 6.  Calculate the elliptic curve point C = z1 * P + z2 * Q and
            determine:

            R = x_C (mod q),                                        (23)

            where x_C is x-coordinate of the point.

   Step 7.  If the equality R = r holds, then the signature is accepted.
            Otherwise, the signature is invalid.

   The input data of the process are the signed message M, the digital
   signature zeta, and the verification key Q.  The output result is the
   witness of the signature validity or invalidity.

7.  Test Examples (Appendix to GOST R 34.10-2012)

   This section is included in GOST R 34.10-2012 as a reference appendix
   but is not officially mentioned as a part of the standard.

   The values given here for the parameters p, a, b, m, q, P, the
   signature key d, and the verification key Q are recommended only for
   testing the correctness of actual realizations of the algorithms
   described in GOST R 34.10-2012.

Dolmatov & Degtyarev          Informational                    [Page 14]
RFC 7091                    GOST R 34.10-2012              December 2013

   All numerical values are introduced in decimal and hexadecimal
   notations.  The numbers beginning with 0x are in hexadecimal
   notation.  The symbol "\\" denotes that the number continues on the
   next line.  For example, the notation:

      12345\\
      67890

      0x499602D2

   represents 1234567890 in decimal and hexadecimal number systems,
   respectively.

7.1.  The Digital Signature Scheme Parameters

   The following parameters must be used for digital signature
   generation and verification (see Section 5.2).

7.1.1.  Elliptic Curve Modulus

   The following value is assigned to parameter p in this example:

   p = 57896044618658097711785492504343953926\\
       634992332820282019728792003956564821041

   p = 0x8000000000000000000000000000\\
       000000000000000000000000000000000431

7.1.2.  Elliptic Curve Coefficients

   Parameters a and b take the following values in this example:

   a = 7
   a = 0x7

   b = 43308876546767276905765904595650931995\\
       942111794451039583252968842033849580414

   b = 0x5FBFF498AA938CE739B8E022FBAFEF40563\\
       F6E6A3472FC2A514C0CE9DAE23B7E

7.1.3.  Elliptic Curve Points Group Order

   Parameter m takes the following value in this example:

   m = 5789604461865809771178549250434395392\\
       7082934583725450622380973592137631069619

Dolmatov & Degtyarev          Informational                    [Page 15]
RFC 7091                    GOST R 34.10-2012              December 2013

   m = 0x80000000000000000000000000000\\
       00150FE8A1892976154C59CFC193ACCF5B3

7.1.4.  Order of Cyclic Subgroup of Elliptic Curve Points Group

   Parameter q takes the following value in this example:

   q = 5789604461865809771178549250434395392\\
       7082934583725450622380973592137631069619

   q = 0x80000000000000000000000000000001\\
       50FE8A1892976154C59CFC193ACCF5B3

7.1.5.  Elliptic Curve Point Coordinates

   Point P coordinates take the following values in this example:

   x_p = 2
   x_p = 0x2

   y_p = 40189740565390375033354494229370597\\
         75635739389905545080690979365213431566280

   y_p = 0x8E2A8A0E65147D4BD6316030E16D19\\
         C85C97F0A9CA267122B96ABBCEA7E8FC8

7.1.6.  Signature Key

   It is supposed, in this example, that the user has the following
   signature key d:

   d = 554411960653632461263556241303241831\\
       96576709222340016572108097750006097525544

   d = 0x7A929ADE789BB9BE10ED359DD39A72C\\
       11B60961F49397EEE1D19CE9891EC3B28

7.1.7.  Verification Key

   It is supposed, in this example, that the user has the verification
   key Q with the following coordinate values:

   x_q = 57520216126176808443631405023338071\\
         176630104906313632182896741342206604859403

   x_q = 0x7F2B49E270DB6D90D8595BEC458B5\\
         0C58585BA1D4E9B788F6689DBD8E56FD80B

Dolmatov & Degtyarev          Informational                    [Page 16]
RFC 7091                    GOST R 34.10-2012              December 2013

   y_q = 17614944419213781543809391949654080\\
         031942662045363639260709847859438286763994

   y_q = 0x26F1B489D6701DD185C8413A977B3\\
         CBBAF64D1C593D26627DFFB101A87FF77DA

7.2.  Digital Signature Process (Algorithm I)

   Suppose that after Steps 1-3 in Algorithm I (Section 6.1) are
   performed, the following numerical values are obtained:

   e = 2079889367447645201713406156150827013\\
       0637142515379653289952617252661468872421

   e = 0x2DFBC1B372D89A1188C09C52E0EE\\
       C61FCE52032AB1022E8E67ECE6672B043EE5

   k = 538541376773484637314038411479966192\\
       41504003434302020712960838528893196233395

   k = 0x77105C9B20BCD3122823C8CF6FCC\\
       7B956DE33814E95B7FE64FED924594DCEAB3

   And the multiple point C = k * P has the coordinates:

   x_C = 297009809158179528743712049839382569\\
         90422752107994319651632687982059210933395

   x_C = 0x41AA28D2F1AB148280CD9ED56FED\\
         A41974053554A42767B83AD043FD39DC0493

   y[C] = 328425352786846634770946653225170845\\
          06804721032454543268132854556539274060910

   y[C] = 0x489C375A9941A3049E33B34361DD\\
          204172AD98C3E5916DE27695D22A61FAE46E

   Parameter r = x_C (mod q) takes the value:

   r = 297009809158179528743712049839382569\\
       90422752107994319651632687982059210933395

   r = 0x41AA28D2F1AB148280CD9ED56FED\\
       A41974053554A42767B83AD043FD39DC0493

Dolmatov & Degtyarev          Informational                    [Page 17]
RFC 7091                    GOST R 34.10-2012              December 2013

   Parameter s = (r * d + k * e)(mod q) takes the value:

   s = 57497340027008465417892531001914703\\
       8455227042649098563933718999175515839552

   s = 0x1456C64BA4642A1653C235A98A602\\
       49BCD6D3F746B631DF928014F6C5BF9C40

7.3.  Verification Process of Digital Signature (Algorithm II)

   Suppose that after Steps 1-3 in Algorithm II (Section 6.2) are
   performed, the following numerical value is obtained:

   e = 2079889367447645201713406156150827013\\
       0637142515379653289952617252661468872421

   e = 0x2DFBC1B372D89A1188C09C52E0EE\\
       C61FCE52032AB1022E8E67ECE6672B043EE5

   And the parameter v = e^(-1) (mod q) takes the value:

   v = 176866836059344686773017138249002685\\
       62746883080675496715288036572431145718978

   v = 0x271A4EE429F84EBC423E388964555BB\\
       29D3BA53C7BF945E5FAC8F381706354C2

   The parameters z1 = s * v (mod q) and z2 = -r * v (mod q) take the
   values:

   z1 = 376991675009019385568410572935126561\\
        08841345190491942619304532412743720999759

   z1 = 0x5358F8FFB38F7C09ABC782A2DF2A\\
        3927DA4077D07205F763682F3A76C9019B4F

   z2 = 141719984273434721125159179695007657\\
        6924665583897286211449993265333367109221

   z2 = 0x3221B4FBBF6D101074EC14AFAC2D4F7\\
        EFAC4CF9FEC1ED11BAE336D27D527665

   The point C = z1 * P + z2 * Q has the coordinates:

   x_C = 2970098091581795287437120498393825699\\
         0422752107994319651632687982059210933395

Dolmatov & Degtyarev          Informational                    [Page 18]
RFC 7091                    GOST R 34.10-2012              December 2013

   x_C = 0x41AA28D2F1AB148280CD9ED56FED\\
         A41974053554A42767B83AD043FD39DC0493

   y[C] = 3284253527868466347709466532251708450\\
          6804721032454543268132854556539274060910

   y[C] = 0x489C375A9941A3049E33B34361DD\\
          204172AD98C3E5916DE27695D22A61FAE46E

   Then the parameter R = x_C (mod q) takes the value:

   R = 2970098091581795287437120498393825699\\
       0422752107994319651632687982059210933395

   R = 0x41AA28D2F1AB148280CD9ED56FED\\
       A41974053554A42767B83AD043FD39DC0493

   Since the equality R = r holds, the digital signature is accepted.

8.  Security Considerations

   This entire document is about security considerations.

9.  References

9.1.  Normative References

   [GOST3410-2001]  "Information technology.  Cryptographic data
                    security.  Signature and verification processes of
                    [electronic] digital signature", GOST R 34.10-2001,
                    Gosudarstvennyi Standard of Russian Federation,
                    Government Committee of Russia for Standards, 2001.
                    (In Russian)

   [GOST3410-2012]  "Information technology.  Cryptographic data
                    security.  Signature and verification processes of
                    [electronic] digital signature", GOST R 34.10-2012,
                    Federal Agency on Technical Regulating and
                    Metrology, 2012.

   [GOST3411-2012]  "Information technology.  Cryptographic Data
                    Security.  Hashing function", GOST R 34.11-2012,
                    Federal Agency on Technical Regulating and
                    Metrology, 2012.

   [RFC2119]        Bradner, S., "Key words for use in RFCs to Indicate
                    Requirement Levels", BCP 14, RFC 2119, March 1997.

Dolmatov & Degtyarev          Informational                    [Page 19]
RFC 7091                    GOST R 34.10-2012              December 2013

   [RFC4357]        Popov, V., Kurepkin, I., and S. Leontiev,
                    "Additional Cryptographic Algorithms for Use with
                    GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001,
                    and GOST R 34.11-94 Algorithms", RFC 4357, January
                    2006.

9.2.  Informative References

   [ISO2382-2]      ISO, "Data processing - Vocabulary - Part 2:
                    Arithmetic and logic operations", ISO 2382-2, 1976.

   [ISO9796-2]      ISO/IEC, "Information technology - Security
                    techniques - Digital signatures giving message
                    recovery - Part 2: Integer factorization based
                    mechanisms", ISO/IEC 9796-2, 2010.

   [ISO9796-3]      ISO/IEC, "Information technology - Security
                    techniques - Digital signature schemes giving
                    message recovery - Part 3: Discrete logarithm based
                    mechanisms", ISO/IEC 9796-3, 2006.

   [ISO14888-1]     ISO/IEC, "Information technology - Security
                    techniques - Digital signatures with appendix - Part
                    1: General", ISO/IEC 14888-1, 2008.

   [ISO14888-2]     ISO/IEC, "Information technology - Security
                    techniques - Digital signatures with appendix - Part
                    2: Integer factorization based mechanisms", ISO/IEC
                    14888-2, 2008.

   [ISO14888-3]     ISO/IEC, "Information technology - Security
                    techniques - Digital signatures with appendix - Part
                    3: Discrete logarithm based mechanisms", ISO/IEC
                    14888-3,2006.

   [ISO14888-4]     ISO/IEC, "Information technology - Security
                    techniques - Digital signatures with appendix - Part
                    3: Discrete logarithm based mechanisms.  Amendment
                    1.  Elliptic Curve Russian Digital Signature
                    Algorithm, Schnorr Digital Signature Algorithm,
                    Elliptic Curve Schnorr Digital Signature Algorithm,
                    and Elliptic Curve Full Schnorr Digital Signature
                    Algorithm", ISO/IEC 14888-3:2006/Amd 1, 2010.

   [ISO10118-1]     ISO/IEC, "Information technology - Security
                    techniques - Hash-functions - Part 1: General",
                    ISO/IEC 10118-1, 2000.

Dolmatov & Degtyarev          Informational                    [Page 20]
RFC 7091                    GOST R 34.10-2012              December 2013

   [ISO10118-2]     ISO/IEC, "Information technology - Security
                    techniques - Hash-functions - Part 2: Hash-
                    functions using an n-bit block cipher algorithm",
                    ISO/IEC 10118-2, 2010.

   [ISO10118-3]     ISO/IEC, "Information technology - Security
                    techniques - Hash-functions - Part 3: Dedicated
                    hash-functions", ISO/IEC 10118-3, 2004.

   [ISO10118-4]     ISO/IEC, "Information technology - Security
                    techniques - Hash-functions - Part 4: Hash-
                    functions using modular arithmetic", ISO/IEC
                    10118-4, 1998.

   [RFC5832]        Dolmatov, V., Ed., "GOST R 34.10-2001: Digital
                    Signature Algorithm", RFC 5832, March 2010.

   [RFC6986]        Dolmatov, V., Ed., and A. Degtyarev, "GOST R
                    34.11-2012: Hash Function", RFC 6986, August 2013.

Authors' Addresses

   Vasily Dolmatov (editor)
   Cryptocom, Ltd.
   14 Kedrova St., Bldg. 2
   Moscow, 117218
   Russian Federation

   EMail: dol@cryptocom.ru

   Alexey Degtyarev
   Cryptocom, Ltd.
   14 Kedrova St., Bldg. 2
   Moscow, 117218
   Russian Federation

   EMail: alexey@renatasystems.org

Dolmatov & Degtyarev          Informational                    [Page 21]