Transparent Interconnection of Lots of Links (TRILL): Fine-Grained Labeling
RFC 7172
Document | Type |
RFC - Proposed Standard
(May 2014; No errata)
Updates RFC 6325
|
|
---|---|---|---|
Authors | Donald Eastlake , Mingui Zhang , Puneet Agarwal , Radia Perlman , Dinesh Dutt | ||
Last updated | 2015-10-14 | ||
Replaces | draft-eastlake-trill-rbridge-fine-labeling | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 7172 (Proposed Standard) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Ted Lemon | ||
IESG note | Erik Nordmark (nordmark@acm.org) is the Document Shepherd. | ||
Send notices to | (None) | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) D. Eastlake 3rd Request for Comments: 7172 M. Zhang Updates: 6325 Huawei Category: Standards Track P. Agarwal ISSN: 2070-1721 Broadcom R. Perlman Intel Labs D. Dutt Cumulus Networks May 2014 Transparent Interconnection of Lots of Links (TRILL): Fine-Grained Labeling Abstract The IETF has standardized Transparent Interconnection of Lots of Links (TRILL), a protocol for least-cost transparent frame routing in multi-hop networks with arbitrary topologies and link technologies, using link-state routing and a hop count. The TRILL base protocol standard supports the labeling of TRILL Data packets with up to 4K IDs. However, there are applications that require a larger number of labels providing configurable isolation of data. This document updates RFC 6325 by specifying optional extensions to the TRILL base protocol to safely accomplish this. These extensions, called fine- grained labeling, are primarily intended for use in large data centers, that is, those with more than 4K users requiring configurable data isolation from each other. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7172. Eastlake, et al. Standards Track [Page 1] RFC 7172 TRILL: Fine-Grained Labeling May 2014 Copyright Notice Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Eastlake, et al. Standards Track [Page 2] RFC 7172 TRILL: Fine-Grained Labeling May 2014 Table of Contents 1. Introduction ....................................................4 1.1. Terminology ................................................5 1.2. Contributors ...............................................5 2. Fine-Grained Labeling ...........................................5 2.1. Goals ......................................................6 2.2. Base Protocol TRILL Data Labeling ..........................7 2.3. Fine-Grained Labeling (FGL) ................................7 2.4. Reasons for VL and FGL Coexistence .........................9 3. VL versus FGL Label Differences ................................10 4. FGL Processing .................................................11 4.1. Ingress Processing ........................................11 4.1.1. Multi-Destination FGL Ingress ......................11 4.2. Transit Processing ........................................12 4.2.1. Unicast Transit Processing .........................12 4.2.2. Multi-Destination Transit Processing ...............12 4.3. Egress Processing .........................................13 4.4. Appointed Forwarders and the DRB ..........................14 4.5. Distribution Tree Construction ............................14 4.6. Address Learning ..........................................15 4.7. ESADI Extension ...........................................15 5. FGL TRILL Interaction with VL TRILL ............................15 5.1. FGL and VL Mixed Campus ...................................15 5.2. FGL and VL Mixed Links ....................................17 5.3. Summary of FGL-Safe Requirements ..........................18Show full document text