datatracker.ietf.org
Sign in
Version 5.12.0.p2, 2015-03-02
Report a bug

Transparent Interconnection of Lots of Links (TRILL): Fine-Grained Labeling
RFC 7172

Internet Engineering Task Force (IETF)                   D. Eastlake 3rd
Request for Comments: 7172                                      M. Zhang
Updates: 6325                                                     Huawei
Category: Standards Track                                     P. Agarwal
ISSN: 2070-1721                                                 Broadcom
                                                              R. Perlman
                                                              Intel Labs
                                                                 D. Dutt
                                                        Cumulus Networks
                                                                May 2014

         Transparent Interconnection of Lots of Links (TRILL):
                         Fine-Grained Labeling

Abstract

   The IETF has standardized Transparent Interconnection of Lots of
   Links (TRILL), a protocol for least-cost transparent frame routing in
   multi-hop networks with arbitrary topologies and link technologies,
   using link-state routing and a hop count.  The TRILL base protocol
   standard supports the labeling of TRILL Data packets with up to 4K
   IDs.  However, there are applications that require a larger number of
   labels providing configurable isolation of data.  This document
   updates RFC 6325 by specifying optional extensions to the TRILL base
   protocol to safely accomplish this.  These extensions, called fine-
   grained labeling, are primarily intended for use in large data
   centers, that is, those with more than 4K users requiring
   configurable data isolation from each other.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7172.

Eastlake, et al.             Standards Track                    [Page 1]
RFC 7172              TRILL: Fine-Grained Labeling              May 2014

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Eastlake, et al.             Standards Track                    [Page 2]
RFC 7172              TRILL: Fine-Grained Labeling              May 2014

Table of Contents

   1. Introduction ....................................................4
      1.1. Terminology ................................................5
      1.2. Contributors ...............................................5
   2. Fine-Grained Labeling ...........................................5
      2.1. Goals ......................................................6
      2.2. Base Protocol TRILL Data Labeling ..........................7
      2.3. Fine-Grained Labeling (FGL) ................................7
      2.4. Reasons for VL and FGL Coexistence .........................9
   3. VL versus FGL Label Differences ................................10
   4. FGL Processing .................................................11
      4.1. Ingress Processing ........................................11
           4.1.1. Multi-Destination FGL Ingress ......................11
      4.2. Transit Processing ........................................12
           4.2.1. Unicast Transit Processing .........................12
           4.2.2. Multi-Destination Transit Processing ...............12
      4.3. Egress Processing .........................................13
      4.4. Appointed Forwarders and the DRB ..........................14
      4.5. Distribution Tree Construction ............................14
      4.6. Address Learning ..........................................15
      4.7. ESADI Extension ...........................................15
   5. FGL TRILL Interaction with VL TRILL ............................15
      5.1. FGL and VL Mixed Campus ...................................15

[include full document text]