Diameter Routing Message Priority
RFC 7944
Document | Type |
RFC - Proposed Standard
(August 2016; No errata)
Was draft-ietf-dime-drmp (dime WG)
|
|
---|---|---|---|
Author | Steve Donovan | ||
Last updated | 2016-08-04 | ||
Replaces | draft-donovan-dime-drmp | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Lionel Morand | ||
Shepherd write-up | Show (last changed 2016-02-25) | ||
IESG | IESG state | RFC 7944 (Proposed Standard) | |
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Stephen Farrell | ||
Send notices to | "Lionel Morand" <lionel.morand@orange.com> | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) S. Donovan Request for Comments: 7944 Oracle Category: Standards Track August 2016 ISSN: 2070-1721 Diameter Routing Message Priority Abstract When making routing and resource allocation decisions, Diameter nodes currently have no generic mechanism to determine the relative priority of Diameter messages. This document addresses this by defining a mechanism to allow Diameter endpoints to indicate the relative priority of Diameter transactions. With this information, Diameter nodes can factor that priority into routing, resource allocation, and overload abatement decisions. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7944. Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Donovan Standards Track [Page 1] RFC 7944 DOIC August 2016 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Applicability . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology and Abbreviations . . . . . . . . . . . . . . . . 4 3. Conventions Used in This Document . . . . . . . . . . . . . . 4 4. Problem Statement . . . . . . . . . . . . . . . . . . . . . . 5 5. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.1. First-Responder-Related Signaling . . . . . . . . . . . . 6 5.2. Emergency-Call-Related Signaling . . . . . . . . . . . . 6 5.3. Differentiated Services . . . . . . . . . . . . . . . . . 7 5.4. Application-Specific Priorities . . . . . . . . . . . . . 7 6. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 8 7. Extensibility . . . . . . . . . . . . . . . . . . . . . . . . 10 8. Normative Behavior . . . . . . . . . . . . . . . . . . . . . 10 9. Attribute Value Pairs . . . . . . . . . . . . . . . . . . . . 12 9.1. DRMP AVP . . . . . . . . . . . . . . . . . . . . . . . . 12 9.2. Attribute Value Pair Flag Rules . . . . . . . . . . . . . 13 10. Considerations When Defining Application Priorities . . . . . 14 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15 11.1. AVP Codes . . . . . . . . . . . . . . . . . . . . . . . 15 12. Security Considerations . . . . . . . . . . . . . . . . . . . 15 12.1. Potential Threat Modes . . . . . . . . . . . . . . . . . 15 12.2. Denial-of-Service Attacks . . . . . . . . . . . . . . . 16 12.3. End-to-End Security Issues . . . . . . . . . . . . . . . 16 13. References . . . . . . . . . . . . . . . . . . . . . . . . . 17 13.1. Normative References . . . . . . . . . . . . . . . . . . 17 13.2. Informative References . . . . . . . . . . . . . . . . . 17 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 18 1. Introduction The Diameter Overload Indication Conveyance (DOIC) solution [RFC7683] for Diameter overload control introduces scenarios where Diameter routing decisions made by Diameter nodes can be influenced by the overload state of other Diameter nodes. This includes the scenarios where Diameter endpoints and Diameter Agents can throttle requests as a result of the target for the request being overloaded. With currently available mechanisms, these Diameter nodes do not have a mechanism to differentiate request message priorities when making these throttling decisions. As such, all requests are treated the same, meaning that all requests have the same probability of being throttled.Show full document text