Network Transport Circuit Breakers
RFC 8084
Document | Type |
RFC - Best Current Practice
(March 2017; No errata)
Also known as BCP 208
|
|
---|---|---|---|
Author | Gorry Fairhurst | ||
Last updated | 2017-03-07 | ||
Replaces | draft-fairhurst-tsvwg-circuit-breaker | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | David Black | ||
Shepherd write-up | Show (last changed 2015-09-28) | ||
IESG | IESG state | RFC 8084 (Best Current Practice) | |
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Spencer Dawkins | ||
Send notices to | (None) | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | No IANA Actions |
Internet Engineering Task Force (IETF) G. Fairhurst Request for Comments: 8084 University of Aberdeen BCP: 208 March 2017 Category: Best Current Practice ISSN: 2070-1721 Network Transport Circuit Breakers Abstract This document explains what is meant by the term "network transport Circuit Breaker". It describes the need for Circuit Breakers (CBs) for network tunnels and applications when using non-congestion- controlled traffic and explains where CBs are, and are not, needed. It also defines requirements for building a CB and the expected outcomes of using a CB within the Internet. Status of This Memo This memo documents an Internet Best Current Practice. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8084. Copyright Notice Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Fairhurst Best Current Practice [Page 1] RFC 8084 March 2017 Table of Contents 1. Introduction ....................................................2 1.1. Types of CBs ...............................................5 2. Terminology .....................................................6 3. Design of a CB (What makes a good CB?) ..........................6 3.1. Functional Components ......................................6 3.2. Other Network Topologies ...................................9 3.2.1. Use with a Multicast Control/Routing Protocol ......10 3.2.2. Use with Control Protocols Supporting Pre-provisioned Capacity ...........................11 3.2.3. Unidirectional CBs over Controlled Paths ...........11 4. Requirements for a Network Transport CB ........................12 5. Examples of CBs ................................................15 5.1. A Fast-Trip CB ............................................15 5.1.1. A Fast-Trip CB for RTP .............................16 5.2. A Slow-Trip CB ............................................16 5.3. A Managed CB ..............................................17 5.3.1. A Managed CB for SAToP Pseudowires .................17 5.3.2. A Managed CB for Pseudowires (PWs) .................18 6. Examples in Which CBs May Not Be Needed ........................19 6.1. CBs over Pre-provisioned Capacity .........................19 6.2. CBs with Tunnels Carrying Congestion-Controlled Traffic ...19 6.3. CBs with Unidirectional Traffic and No Control Path .......20 7. Security Considerations ........................................20 8. References .....................................................22 8.1. Normative References ......................................22 8.2. Informative References ....................................22 Acknowledgments ...................................................24 Author's Address ..................................................24 1. Introduction The term "Circuit Breaker" originates in electricity supply, and has nothing to do with network circuits or virtual circuits. In electricity supply, a Circuit Breaker (CB) is intended as a protection mechanism of last resort. Under normal circumstances, a CB ought not to be triggered; it is designed to protect the supply network and attached equipment when there is overload. People do not expect an electrical CB (or fuse) in their home to be triggered, except when there is a wiring fault or a problem with an electrical appliance. In networking, the CB principle can be used as a protection mechanism of last resort to avoid persistent excessive congestion impacting other flows that share network capacity. Persistent congestion was aShow full document text