Multiple Access Management Services Multi-Access Management Services (MAMS)
RFC 8743

Document Type RFC - Informational (March 2020; No errata)
Last updated 2020-03-25
Replaces draft-agarwal-intarea-mams-protocol-json, draft-kanugovi-intarea-mams-protocol, draft-zhu-intarea-mams-control-protocol
Stream ISE
Formats plain text html xml pdf htmlized bibtex
IETF conflict review conflict-review-kanugovi-intarea-mams-framework
Stream ISE state Published RFC
Consensus Boilerplate Unknown
Document shepherd Adrian Farrel
Shepherd write-up Show (last changed 2019-04-22)
IESG IESG state RFC 8743 (Informational)
Telechat date
Responsible AD (None)
Send notices to Adrian Farrel <rfc-ise@rfc-editor.org>
IANA IANA review state Version Changed - Review Needed
IANA action state No IANA Actions


Independent Submission                                       S. Kanugovi
Request for Comments: 8743                               Nokia Bell Labs
Category: Informational                                      F. Baboescu
ISSN: 2070-1721                                                 Broadcom
                                                                  J. Zhu
                                                                   Intel
                                                                  S. Seo
                                                           Korea Telecom
                                                              March 2020

                Multi-Access Management Services (MAMS)

Abstract

   In multiconnectivity scenarios, the clients can simultaneously
   connect to multiple networks based on different access technologies
   and network architectures like Wi-Fi, LTE, and DSL.  Both the quality
   of experience of the users and the overall network utilization and
   efficiency may be improved through the smart selection and
   combination of access and core network paths that can dynamically
   adapt to changing network conditions.

   This document presents a unified problem statement and introduces a
   solution for managing multiconnectivity.  The solution has been
   developed by the authors based on their experiences in multiple
   standards bodies, including the IETF and the 3GPP.  However, this
   document is not an Internet Standards Track specification, and it
   does not represent the consensus opinion of the IETF.

   This document describes requirements, solution principles, and the
   architecture of the Multi-Access Management Services (MAMS)
   framework.  The MAMS framework aims to provide best performance while
   being easy to implement in a wide variety of multiconnectivity
   deployments.  It specifies the protocol for (1) flexibly selecting
   the best combination of access and core network paths for the uplink
   and downlink, and (2) determining the user-plane treatment (e.g.,
   tunneling, encryption) and traffic distribution over the selected
   links, to ensure network efficiency and the best possible application
   performance.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not candidates for any level of Internet Standard;
   see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8743.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction
   2.  Terminology
   3.  Problem Statement
   4.  Requirements
     4.1.  Access-Technology-Agnostic Interworking
     4.2.  Support for Common Transport Deployments
     4.3.  Independent Access Path Selection for Uplink and Downlink
     4.4.  Core Selection Independent of Uplink and Downlink Access
     4.5.  Adaptive Access Network Path Selection
     4.6.  Multipath Support and Aggregation of Access Link Capacities
     4.7.  Scalable Mechanism Based on User-Plane Interworking
     4.8.  Separate Control-Plane and User-Plane Functions
     4.9.  Lossless Path (Connection) Switching
     4.10. Concatenation and Fragmentation for Adaptation to MTU
            Differences
     4.11. Configuring Network Middleboxes Based on Negotiated
            Protocols
     4.12. Policy-Based Optimal Path Selection
     4.13. Access-Technology-Agnostic Control Signaling
     4.14. Service Discovery and Reachability
   5.  Solution Principles
   6.  MAMS Reference Architecture
   7.  MAMS Protocol Architecture
     7.1.  MAMS Control-Plane Protocol
     7.2.  MAMS User-Plane Protocol
   8.  MAMS Control-Plane Procedures
     8.1.  Overview
     8.2.  Common Fields in MAMS Control Messages
     8.3.  Common Procedures for MAMS Control Messages
       8.3.1.  Message Timeout
       8.3.2.  Keep-Alive Procedure
     8.4.  Discovery and Capability Exchange
     8.5.  User-Plane Configuration
     8.6.  MAMS Path Quality Estimation
       8.6.1.  MX Control PDU Definition
       8.6.2.  Keep-Alive Message
       8.6.3.  Probe-REQ/ACK Message
     8.7.  MAMS Traffic Steering
     8.8.  MAMS Application MADP Association
Show full document text