RSVP-TE Summary Fast Reroute Extensions for Label Switched Path (LSP) Tunnels
RFC 8796

Document Type RFC - Proposed Standard (July 2020; No errata)
Updates RFC 4090
Authors Mike Taillon  , Tarek Saad  , Rakesh Gandhi  , Abhishek Deshmukh  , Markus Jork  , Vishnu Beeram 
Last updated 2020-07-14
Replaces draft-mtaillon-mpls-summary-frr-rsvpte
Stream IETF
Formats plain text html xml pdf htmlized bibtex
Stream WG state Submitted to IESG for Publication
Document shepherd Nicolai Leymann
Shepherd write-up Show (last changed 2019-10-23)
IESG IESG state RFC 8796 (Proposed Standard)
Action Holders
Consensus Boilerplate Yes
Telechat date
Responsible AD Deborah Brungard
Send notices to Nicolai Leymann <>
IANA IANA review state IANA OK - Actions Needed
IANA action state RFC-Ed-Ack

Internet Engineering Task Force (IETF)                        M. Taillon
Request for Comments: 8796                           Cisco Systems, Inc.
Updates: 4090                                               T. Saad, Ed.
Category: Standards Track                               Juniper Networks
ISSN: 2070-1721                                                R. Gandhi
                                                     Cisco Systems, Inc.
                                                             A. Deshmukh
                                                        Juniper Networks
                                                                 M. Jork
                                                          128 Technology
                                                               V. Beeram
                                                        Juniper Networks
                                                               July 2020

 RSVP-TE Summary Fast Reroute Extensions for Label Switched Path (LSP)


   This document updates RFC 4090 for the Resource Reservation Protocol
   (RSVP) Traffic Engineering (TE) procedures defined for facility
   backup protection.  The updates include extensions that reduce the
   amount of signaling and processing that occurs during Fast Reroute
   (FRR); as a result, scalability when undergoing FRR convergence after
   a link or node failure is improved.  These extensions allow the RSVP
   message exchange between the Point of Local Repair (PLR) and the
   Merge Point (MP) nodes to be independent of the number of protected
   Label Switched Paths (LSPs) traversing between them when facility
   bypass FRR protection is used.  The signaling extensions are fully
   backwards compatible with nodes that do not support them.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   ( in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction
   2.  Conventions Used in This Document
     2.1.  Terminology
     2.2.  Acronyms and Abbreviations
   3.  Extensions for Summary FRR Signaling
     3.1.  B-SFRR-Ready Extended ASSOCIATION Object
       3.1.1.  IPv4 B-SFRR-Ready Extended Association ID
       3.1.2.  IPv6 B-SFRR-Ready Extended Association ID
       3.1.3.  Processing Rules for B-SFRR-Ready Extended ASSOCIATION
     3.2.  B-SFRR-Active Extended ASSOCIATION Object
       3.2.1.  IPv4 B-SFRR-Active Extended Association ID
       3.2.2.  IPv6 B-SFRR-Active Extended Association ID
     3.3.  Signaling Procedures prior to Failure
       3.3.1.  PLR Signaling Procedure
       3.3.2.  MP Signaling Procedure
     3.4.  Signaling Procedures Post-Failure
       3.4.1.  PLR Signaling Procedure
       3.4.2.  MP Signaling Procedure
     3.5.  Refreshing Summary FRR Active LSPs
   4.  Backwards Compatibility
   5.  Security Considerations
   6.  IANA Considerations
   7.  References
     7.1.  Normative References
     7.2.  Informative References
   Authors' Addresses

1.  Introduction

   The Fast Reroute (FRR) procedures defined in [RFC4090] describe the
   mechanisms for the Point of Local Repair (PLR) to reroute traffic and
   signaling of a protected RSVP-TE Label Switched Path (LSP) onto the
   bypass tunnel in the event of a TE link or node failure.  Such
   signaling procedures are performed individually for each affected
   protected LSP.  This may eventually lead to control-plane scalability
   and latency issues on the PLR and/or the Merge Point (MP) nodes due
   to limited memory and CPU processing resources.  This condition is
   exacerbated when the failure affects a large number of protected LSPs
   that traverse the same PLR and MP nodes.

   For example, in a large-scale deployment of RSVP-TE LSPs, a single
Show full document text