Evaluating Congestion Control for Interactive Real-Time Media
RFC 8868
Document | Type | RFC - Informational (January 2021; No errata) | |
---|---|---|---|
Authors | Varun Singh , Joerg Ott , Stefan Holmer | ||
Last updated | 2021-01-19 | ||
Replaces | draft-singh-rmcat-cc-eval | ||
Stream | Internent Engineering Task Force (IETF) | ||
Formats | plain text html xml pdf htmlized (tools) htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Colin Perkins | ||
Shepherd write-up | Show (last changed 2019-11-10) | ||
IESG | IESG state | RFC 8868 (Informational) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Mirja Kühlewind | ||
Send notices to | Martin Stiemerling <mls.ietf@gmail.com>, Colin Perkins <csp@csperkins.org>, varun.singh@iki.fi | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | No IANA Actions |
Internet Engineering Task Force (IETF) V. Singh Request for Comments: 8868 callstats.io Category: Informational J. Ott ISSN: 2070-1721 Technical University of Munich S. Holmer Google January 2021 Evaluating Congestion Control for Interactive Real-Time Media Abstract The Real-Time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8868. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction 2. Terminology 3. Metrics 3.1. RTP Log Format 4. List of Network Parameters 4.1. One-Way Propagation Delay 4.2. End-to-End Loss 4.3. Drop-Tail Router Queue Length 4.4. Loss Generation Model 4.5. Jitter Models 4.5.1. Random Bounded PDV (RBPDV) 4.5.2. Approximately Random Subject to No-Reordering Bounded PDV (NR-BPDV) 4.5.3. Recommended Distribution 5. Traffic Models 5.1. TCP Traffic Model 5.2. RTP Video Model 5.3. Background UDP 6. Security Considerations 7. IANA Considerations 8. References 8.1. Normative References 8.2. Informative References Contributors Acknowledgments Authors' Addresses 1. Introduction This memo describes the guidelines to help with evaluating new congestion control algorithms for interactive point-to-point real- time media. The requirements for the congestion control algorithm are outlined in [RFC8836]. This document builds upon previous work at the IETF: Specifying New Congestion Control Algorithms [RFC5033] and Metrics for the Evaluation of Congestion Control Algorithms [RFC5166]. The guidelines proposed in the document are intended to help prevent a congestion collapse, to promote fair capacity usage, and to optimize the media flow's throughput. Furthermore, the proposed congestion control algorithms are expected to operate within the envelope of the circuit breakers defined in RFC 8083 [RFC8083]. This document only provides the broad set of network parameters and traffic models for evaluating a new congestion control algorithm. The minimal requirement for congestion control proposals is to produce or present results for the test scenarios described in [RFC8867] (Basic Test Cases), which also defines the specifics for the test cases. Additionally, proponents may produce evaluation results for the wireless test scenarios [RFC8869]. This document does not cover application-specific implications of congestion control algorithms and how those could be evaluated. Therefore, no quality metrics are defined for performance evaluation; quality metrics and the algorithms to infer those vary between media types. Metrics and algorithms to assess, e.g., the quality of experience, evolve continuously so that determining suitable choices is left for future work. However, there is consensus that each congestion control algorithm should be able to show that it is useful for interactive video by performing analysis using real codecs and video sequences and state-of-the-art quality metrics. Beyond optimizing individual metrics, real-time applications may haveShow full document text