Initial Performance Metrics Registry Entries
RFC 8912

Document Type RFC - Proposed Standard (November 2021; Errata)
Authors Al Morton  , Marcelo Bagnulo  , Philip Eardley  , Kevin D'Souza 
Last updated 2021-11-30
Replaces draft-morton-ippm-initial-registry
Stream Internet Engineering Task Force (IETF)
Formats plain text html xml pdf htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Brian Trammell
Shepherd write-up Show (last changed 2019-12-10)
IESG IESG state RFC 8912 (Proposed Standard)
Action Holders
(None)
Consensus Boilerplate Yes
Telechat date
Responsible AD Mirja K├╝hlewind
Send notices to "Brian Trammell" <ietf@trammell.ch>
IANA IANA review state Version Changed - Review Needed
IANA action state RFC-Ed-Ack
´╗┐

Internet Engineering Task Force (IETF)                         A. Morton
Request for Comments: 8912                                     AT&T Labs
Category: Standards Track                                     M. Bagnulo
ISSN: 2070-1721                                                     UC3M
                                                              P. Eardley
                                                                      BT
                                                              K. D'Souza
                                                               AT&T Labs
                                                           November 2021

              Initial Performance Metrics Registry Entries

Abstract

   This memo defines the set of initial entries for the IANA Registry of
   Performance Metrics.  The set includes UDP Round-Trip Latency and
   Loss, Packet Delay Variation, DNS Response Latency and Loss, UDP
   Poisson One-Way Delay and Loss, UDP Periodic One-Way Delay and Loss,
   ICMP Round-Trip Latency and Loss, and TCP Round-Trip Delay and Loss.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8912.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Revised BSD License text as described in Section 4.e of the
   Trust Legal Provisions and are provided without warranty as described
   in the Revised BSD License.

Table of Contents

   1.  Introduction
     1.1.  Requirements Language
   2.  Scope
   3.  Registry Categories and Columns
   4.  UDP Round-Trip Latency and Loss Registry Entries
     4.1.  Summary
       4.1.1.  ID (Identifier)
       4.1.2.  Name
       4.1.3.  URI
       4.1.4.  Description
       4.1.5.  Change Controller
       4.1.6.  Version (of Registry Format)
     4.2.  Metric Definition
       4.2.1.  Reference Definition
       4.2.2.  Fixed Parameters
     4.3.  Method of Measurement
       4.3.1.  Reference Methods
       4.3.2.  Packet Stream Generation
       4.3.3.  Traffic Filtering (Observation) Details
       4.3.4.  Sampling Distribution
       4.3.5.  Runtime Parameters and Data Format
       4.3.6.  Roles
     4.4.  Output
       4.4.1.  Type
       4.4.2.  Reference Definition
       4.4.3.  Metric Units
       4.4.4.  Calibration
     4.5.  Administrative Items
       4.5.1.  Status
       4.5.2.  Requester
       4.5.3.  Revision
       4.5.4.  Revision Date
     4.6.  Comments and Remarks
   5.  Packet Delay Variation Registry Entry
     5.1.  Summary
       5.1.1.  ID (Identifier)
       5.1.2.  Name
       5.1.3.  URI
       5.1.4.  Description
       5.1.5.  Change Controller
       5.1.6.  Version (of Registry Format)
     5.2.  Metric Definition
       5.2.1.  Reference Definition
       5.2.2.  Fixed Parameters
     5.3.  Method of Measurement
       5.3.1.  Reference Methods
       5.3.2.  Packet Stream Generation
       5.3.3.  Traffic Filtering (Observation) Details
       5.3.4.  Sampling Distribution
       5.3.5.  Runtime Parameters and Data Format
       5.3.6.  Roles
     5.4.  Output
       5.4.1.  Type
       5.4.2.  Reference Definition
       5.4.3.  Metric Units
       5.4.4.  Calibration
     5.5.  Administrative Items
       5.5.1.  Status
       5.5.2.  Requester
       5.5.3.  Revision
       5.5.4.  Revision Date
     5.6.  Comments and Remarks
   6.  DNS Response Latency and Loss Registry Entries
     6.1.  Summary
       6.1.1.  ID (Identifier)
       6.1.2.  Name
       6.1.3.  URI
       6.1.4.  Description
       6.1.5.  Change Controller
       6.1.6.  Version (of Registry Format)
     6.2.  Metric Definition
       6.2.1.  Reference Definition
       6.2.2.  Fixed Parameters
     6.3.  Method of Measurement
       6.3.1.  Reference Methods
       6.3.2.  Packet Stream Generation
       6.3.3.  Traffic Filtering (Observation) Details
       6.3.4.  Sampling Distribution
       6.3.5.  Runtime Parameters and Data Format
       6.3.6.  Roles
     6.4.  Output
       6.4.1.  Type
       6.4.2.  Reference Definition
       6.4.3.  Metric Units
       6.4.4.  Calibration
     6.5.  Administrative Items
       6.5.1.  Status
       6.5.2.  Requester
       6.5.3.  Revision
       6.5.4.  Revision Date
     6.6.  Comments and Remarks
   7.  UDP Poisson One-Way Delay and Loss Registry Entries
     7.1.  Summary
       7.1.1.  ID (Identifier)
       7.1.2.  Name
       7.1.3.  URI
       7.1.4.  Description
       7.1.5.  Change Controller
       7.1.6.  Version (of Registry Format)
     7.2.  Metric Definition
       7.2.1.  Reference Definition
       7.2.2.  Fixed Parameters
     7.3.  Method of Measurement
       7.3.1.  Reference Methods
       7.3.2.  Packet Stream Generation
       7.3.3.  Traffic Filtering (Observation) Details
       7.3.4.  Sampling Distribution
       7.3.5.  Runtime Parameters and Data Format
       7.3.6.  Roles
     7.4.  Output
       7.4.1.  Type
       7.4.2.  Reference Definition
       7.4.3.  Metric Units
       7.4.4.  Calibration
     7.5.  Administrative Items
       7.5.1.  Status
       7.5.2.  Requester
       7.5.3.  Revision
       7.5.4.  Revision Date
     7.6.  Comments and Remarks
   8.  UDP Periodic One-Way Delay and Loss Registry Entries
     8.1.  Summary
       8.1.1.  ID (Identifier)
       8.1.2.  Name
       8.1.3.  URI
       8.1.4.  Description
       8.1.5.  Change Controller
       8.1.6.  Version (of Registry Format)
     8.2.  Metric Definition
       8.2.1.  Reference Definition
       8.2.2.  Fixed Parameters
     8.3.  Method of Measurement
       8.3.1.  Reference Methods
       8.3.2.  Packet Stream Generation
       8.3.3.  Traffic Filtering (Observation) Details
       8.3.4.  Sampling Distribution
       8.3.5.  Runtime Parameters and Data Format
       8.3.6.  Roles
     8.4.  Output
       8.4.1.  Type
       8.4.2.  Reference Definition
       8.4.3.  Metric Units
       8.4.4.  Calibration
     8.5.  Administrative Items
       8.5.1.  Status
       8.5.2.  Requester
       8.5.3.  Revision
       8.5.4.  Revision Date
     8.6.  Comments and Remarks
   9.  ICMP Round-Trip Latency and Loss Registry Entries
     9.1.  Summary
       9.1.1.  ID (Identifier)
       9.1.2.  Name
       9.1.3.  URI
       9.1.4.  Description
       9.1.5.  Change Controller
       9.1.6.  Version (of Registry Format)
     9.2.  Metric Definition
       9.2.1.  Reference Definition
       9.2.2.  Fixed Parameters
     9.3.  Method of Measurement
       9.3.1.  Reference Methods
       9.3.2.  Packet Stream Generation
       9.3.3.  Traffic Filtering (Observation) Details
       9.3.4.  Sampling Distribution
       9.3.5.  Runtime Parameters and Data Format
       9.3.6.  Roles
     9.4.  Output
       9.4.1.  Type
       9.4.2.  Reference Definition
       9.4.3.  Metric Units
       9.4.4.  Calibration
     9.5.  Administrative Items
       9.5.1.  Status
       9.5.2.  Requester
       9.5.3.  Revision
       9.5.4.  Revision Date
     9.6.  Comments and Remarks
   10. TCP Round-Trip Delay and Loss Registry Entries
     10.1.  Summary
       10.1.1.  ID (Identifier)
       10.1.2.  Name
       10.1.3.  URI
       10.1.4.  Description
       10.1.5.  Change Controller
       10.1.6.  Version (of Registry Format)
     10.2.  Metric Definition
       10.2.1.  Reference Definition
       10.2.2.  Fixed Parameters
     10.3.  Method of Measurement
       10.3.1.  Reference Methods
       10.3.2.  Packet Stream Generation
       10.3.3.  Traffic Filtering (Observation) Details
       10.3.4.  Sampling Distribution
       10.3.5.  Runtime Parameters and Data Format
       10.3.6.  Roles
     10.4.  Output
       10.4.1.  Type
       10.4.2.  Reference Definition
       10.4.3.  Metric Units
       10.4.4.  Calibration
     10.5.  Administrative Items
       10.5.1.  Status
       10.5.2.  Requester
       10.5.3.  Revision
       10.5.4.  Revision Date
     10.6.  Comments and Remarks
   11. Security Considerations
   12. IANA Considerations
   13. References
     13.1.  Normative References
     13.2.  Informative References
   Acknowledgments
   Authors' Addresses

1.  Introduction

   This memo defines an initial set of entries for the Performance
   Metrics Registry.  It uses terms and definitions from the IP
   Performance Metrics (IPPM) literature, primarily [RFC2330].

   Although there are several standard templates for organizing
   specifications of Performance Metrics (see [RFC7679] for an example
   of the traditional IPPM template, based to a large extent on the
   Benchmarking Methodology Working Group's traditional template in
   [RFC1242], and see [RFC6390] for a similar template), none of these
   templates were intended to become the basis for the columns of an
   IETF-wide Registry of metrics.  While examining aspects of metric
   specifications that need to be registered, it became clear that none
   of the existing metric templates fully satisfy the particular needs
   of a Registry.

   Therefore, [RFC8911] defines the overall format for a Performance
   Metrics Registry.  Section 5 of [RFC8911] also gives guidelines for
   those requesting registration of a Metric -- that is, the creation of
   one or more entries in the Performance Metrics Registry:

   |  In essence, there needs to be evidence that (1) a candidate
   |  Registered Performance Metric has significant industry interest or
   |  has seen deployment and (2) there is agreement that the candidate
   |  Registered Performance Metric serves its intended purpose.

   The process defined in [RFC8911] also requires that new entries be
   administered by IANA through the Specification Required policy
   [RFC8126], which will ensure that the metrics are tightly defined.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Scope

   This document defines a set of initial Performance Metrics Registry
   Entries.  Most are Active Performance Metrics, which are based on
   RFCs prepared in the IPPM Working Group of the IETF, according to
   their framework [RFC2330] and its updates.

3.  Registry Categories and Columns

   This memo uses the terminology defined in [RFC8911].

   This section provides the categories and columns of the Registry, for
   easy reference.  An entry (row) therefore gives a complete
   description of a Registered Metric.

   Registry Categories and Columns are shown below in this format:

       Category
       ------------------...
       Column |  Column |...

   Summary
   ---------------------------------------------------------------
   Identifier | Name | URI | Desc. | Reference | Change     | Ver |
              |      |     |       |           | Controller |

   Metric Definition
   -----------------------------------------
   Reference Definition | Fixed Parameters |

   Method of Measurement
   ---------------------------------------------------------------------
   Reference | Packet     | Traffic | Sampling     | Runtime    | Role |
   Method    | Stream     | Filter  | Distribution | Parameters |      |
             | Generation |
   Output
   -----------------------------------------
   Type | Reference  | Units | Calibration |
        | Definition |       |             |

   Administrative Information
   -------------------------------------
   Status |Requester | Rev | Rev. Date |

   Comments and Remarks
   --------------------

4.  UDP Round-Trip Latency and Loss Registry Entries

   This section specifies an initial Registry Entry for UDP Round-Trip
   Latency and another entry for the UDP Round-Trip Loss Ratio.

      Note: Each Registry Entry only produces a "raw" output or a
      statistical summary.  To describe both "raw" and one or more
      statistics efficiently, the Identifier, Name, and Output
      categories can be split, and a single section can specify two or
      more closely related metrics.  For example, this section specifies
      two Registry Entries with many common columns.  See Section 7 for
      an example specifying multiple Registry Entries with many common
      columns.

   All column entries besides the ID, Name, Description, and Output
   Reference Method categories are the same; thus, this section defines
   two closely related Registry Entries.  As a result, IANA has also
   assigned a corresponding URL to each of the two Named Metrics.

4.1.  Summary

   This category includes multiple indexes to the Registry Entries: the
   element ID and Metric Name.

4.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifiers 1 and 2 for the two Named
   Metric Entries in Section 4.  See Section 4.1.2 for mapping to Names.

4.1.2.  Name

   1:  RTDelay_Active_IP-UDP-Periodic_RFC8912sec4_Seconds_95Percentile

   2:  RTLoss_Active_IP-UDP-Periodic_RFC8912sec4_Percent_LossRatio

4.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Active_IP-UDP-Periodic_RFC8912sec4_Seconds_95Percentile

   URL: https://www.iana.org/assignments/performance-metrics/
   RTLoss_Active_IP-UDP-Periodic_RFC8912sec4_Percent_LossRatio

4.1.4.  Description

   RTDelay:  This metric assesses the delay of a stream of packets
      exchanged between two hosts (which are the two measurement
      points).  The output is the round-trip delay for all successfully
      exchanged packets expressed as the 95th percentile of their
      conditional delay distribution.

   RTLoss:  This metric assesses the loss ratio of a stream of packets
      exchanged between two hosts (which are the two measurement
      points).  The output is the round-trip loss ratio for all
      transmitted packets expressed as a percentage.

4.1.5.  Change Controller

   IETF

4.1.6.  Version (of Registry Format)

   1.0

4.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

4.2.1.  Reference Definition

   For delay:

      Almes, G., Kalidindi, S., and M.  Zekauskas, "A Round-trip Delay
      Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681, September 1999,
      <https://www.rfc-editor.org/info/rfc2681>.  [RFC2681]

      Section 2.4 of [RFC2681] provides the reference definition of the
      singleton (single value) round-trip delay metric.  Section 3.4 of
      [RFC2681] provides the reference definition expanded to cover a
      multi-singleton sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

      Note that although the definition of round-trip delay between the
      Source (Src) and the Destination (Dst) as provided in Section 2.4
      of [RFC2681] is directionally ambiguous in the text, this metric
      tightens the definition further to recognize that the host in the
      Src Role will send the first packet to the host in the Dst Role
      and will ultimately receive the corresponding return packet from
      the Dst (when neither is lost).

      Finally, note that the variable "dT" is used in [RFC2681] to refer
      to the value of round-trip delay in metric definitions and
      methods.  The variable "dT" has been reused in other IPPM
      literature to refer to different quantities and cannot be used as
      a global variable name.

   For loss:

      Morton, A., "Round-Trip Packet Loss Metrics", RFC 6673, DOI
      10.17487/RFC6673, August 2012, <https://www.rfc-editor.org/info/
      rfc6673>.  [RFC6673]

   Both Delay and Loss metrics employ a maximum waiting time for
   received packets, so the count of lost packets to total packets sent
   is the basis for the loss ratio calculation as per Section 6.1 of
   [RFC6673].

4.2.2.  Fixed Parameters

   Type-P as defined in Section 13 of [RFC2330]:
      IPv4 header values:
         DSCP:  Set to 0
         TTL:  Set to 255
         Protocol:  Set to 17 (UDP)

      IPv6 header values:
         DSCP:  Set to 0
         Hop Count:  Set to 255
         Next Header:  Set to 17 (UDP)
         Flow Label:  Set to 0
         Extension Headers:  None

      UDP header values:
         Checksum:  The checksum MUST be calculated and the non-zero
            checksum included in the header

      UDP Payload:
         Total of 100 bytes

   Other measurement Parameters:
      Tmax:  A loss threshold waiting time with value 3.0, expressed in
         units of seconds, as a positive value of type decimal64 with
         fraction digits = 4 (see Section 9.3 of [RFC6020]) and with a
         resolution of 0.0001 seconds (0.1 ms), with lossless conversion
         to/from the 32-bit NTP timestamp as per Section 6 of [RFC5905].

4.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

4.3.1.  Reference Methods

   The methodology for this metric (equivalent to Type-P-Round-trip-
   Delay and Type-P-Round-trip-Delay-Poisson-Stream) is defined as in
   Section 2.6 of [RFC2681] (for singletons) and Section 3.6 of
   [RFC2681] (for samples) using the Type-P and Tmax defined in the
   Fixed Parameters column.  However, the Periodic stream will be
   generated according to [RFC3432].

   The reference method distinguishes between long-delayed packets and
   lost packets by implementing a maximum waiting time for packet
   arrival.  Tmax is the waiting time used as the threshold to declare a
   packet lost.  Lost packets SHALL be designated as having undefined
   delay and counted for the RTLoss metric [RFC6673].

   The calculations on the delay (RTT) SHALL be performed on the
   conditional distribution, conditioned on successful packet arrival
   within Tmax.  Also, when all packet delays are stored, the process
   that calculates the RTT value MUST enforce the Tmax threshold on
   stored values before calculations.  See Section 4.1 of [RFC3393] for
   details on the conditional distribution to exclude undefined values
   of delay, and see Section 5 of [RFC6703] for background on this
   analysis choice.

   The reference method requires some way to distinguish between
   different packets in a stream to establish correspondence between
   sending times and receiving times for each successfully arriving
   packet.  Sequence numbers or other send-order identification MUST be
   retained at the Src or included with each packet to disambiguate
   packet reordering if it occurs.

   If a standard measurement protocol is employed, then the measurement
   process will determine the sequence numbers or timestamps applied to
   test packets after the Fixed and Runtime Parameters are passed to
   that process.  The chosen measurement protocol will dictate the
   format of sequence numbers and timestamps, if they are conveyed in
   the packet payload.

   Refer to Section 4.4 of [RFC6673] for an expanded discussion of the
   instruction to "send a Type-P packet back to the Src as quickly as
   possible" in Section 2.6 of [RFC2681].  Section 8 of [RFC6673]
   presents additional requirements that MUST be included in the Method
   of Measurement for this metric.

4.3.2.  Packet Stream Generation

   This section provides details regarding packet traffic, which is used
   as the basis for measurement.  In IPPM Metrics, this is called the
   "stream"; this stream can easily be described by providing the list
   of stream Parameters.

   Section 3 of [RFC3432] prescribes the method for generating Periodic
   streams using associated Parameters.

   incT:  The nominal duration of the inter-packet interval, first bit
      to first bit, with value 0.0200, expressed in units of seconds, as
      a positive value of type decimal64 with fraction digits = 4 (see
      Section 9.3 of [RFC6020]) and with a resolution of 0.0001 seconds
      (0.1 ms).

   dT:  The duration of the interval for allowed sample start times,
      with value 1.0, expressed in units of seconds, as a positive value
      of type decimal64 with fraction digits = 4 (see Section 9.3 of
      [RFC6020]) and with a resolution of 0.0001 seconds (0.1 ms).

      Note: An initiation process with a number of control exchanges
      resulting in unpredictable start times (within a time interval)
      may be sufficient to avoid synchronization of periodic streams and
      is a valid replacement for selecting a start time at random from a
      fixed interval.

   The T0 Parameter will be reported as a measured Parameter.
   Parameters incT and dT are Fixed Parameters.

4.3.3.  Traffic Filtering (Observation) Details

   N/A

4.3.4.  Sampling Distribution

   N/A

4.3.5.  Runtime Parameters and Data Format

   Runtime Parameters are input factors that must be determined,
   configured into the measurement system, and reported with the results
   for the context to be complete.

   Src:  The IP address of the host in the Src Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the Dst Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Tf:  A time, the end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", an ending time
      and date is ignored and Tf is interpreted as the duration of the
      measurement interval.

4.3.6.  Roles

   Src:  Launches each packet and waits for return transmissions from
      the Dst.

   Dst:  Waits for each packet from the Src and sends a return packet to
      the Src.

4.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

4.4.1.  Type

   Percentile: For the conditional distribution of all packets with a
   valid value of round-trip delay (undefined delays are excluded), this
   is a single value corresponding to the 95th percentile, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   The percentile = 95, meaning that the reported delay, "95Percentile",
   is the smallest value of round-trip delay for which the Empirical
   Distribution Function, EDF(95Percentile), is greater than or equal to
   95% of the singleton round-trip delay values in the conditional
   distribution.  See Section 11.3 of [RFC2330] for the definition of
   the percentile statistic using the EDF.

   For LossRatio, the count of lost packets to total packets sent is the
   basis for the loss ratio calculation as per Section 6.1 of [RFC6673].

4.4.2.  Reference Definition

   For all outputs:

   T0:  The start of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   Tf:  The end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   TotalPkts:  The count of packets sent by the Src to the Dst during
      the measurement interval.

   95Percentile:  The time value of the result is expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns).

   Percent_LossRatio:  The numeric value of the result is expressed in
      units of lost packets to total packets times 100%, as a positive
      value of type decimal64 with fraction digits = 9 (see Section 9.3
      of [RFC6020]) with a resolution of 0.0000000001.

4.4.3.  Metric Units

   The 95th percentile of round-trip delay is expressed in seconds.

   The round-trip loss ratio is expressed as a percentage of lost
   packets to total packets sent.

4.4.4.  Calibration

   Section 3.7.3 of [RFC7679] provides a means to quantify the
   systematic and random errors of a time measurement.  Calibration in-
   situ could be enabled with an internal loopback at the Source host
   that includes as much of the measurement system as possible, performs
   address manipulation as needed, and provides some form of isolation
   (e.g., deterministic delay) to avoid send-receive interface
   contention.  Some portion of the random and systematic error can be
   characterized in this way.

   When a measurement controller requests a calibration measurement, the
   loopback is applied and the result is output in the same format as a
   normal measurement, with an additional indication that it is a
   calibration result.

   Both internal loopback calibration and clock synchronization can be
   used to estimate the available accuracy of the Output Metric Units.
   For example, repeated loopback delay measurements will reveal the
   portion of the output result resolution that is the result of system
   noise and is thus inaccurate.

4.5.  Administrative Items

4.5.1.  Status

   Current

4.5.2.  Requester

   RFC 8912

4.5.3.  Revision

   1.0

4.5.4.  Revision Date

   2021-11-17

4.6.  Comments and Remarks

   None

5.  Packet Delay Variation Registry Entry

   This section gives an initial Registry Entry for a Packet Delay
   Variation (PDV) metric.

5.1.  Summary

   This category includes multiple indexes to the Registry Entry: the
   element ID and Metric Name.

5.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifier 3 for the Named Metric
   Entry in Section 5.  See Section 5.1.2 for mapping to Name.

5.1.2.  Name

   3:  OWPDV_Active_IP-UDP-Periodic_RFC8912sec5_Seconds_95Percentile

5.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   OWPDV_Active_IP-UDP-Periodic_RFC8912sec5_Seconds_95Percentile

5.1.4.  Description

   This metric assesses packet delay variation with respect to the
   minimum delay observed on the periodic stream.  The output is
   expressed as the 95th percentile of the one-way packet delay
   variation distribution.

5.1.5.  Change Controller

   IETF

5.1.6.  Version (of Registry Format)

   1.0

5.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

5.2.1.  Reference Definition

   Paxson, V., Almes, G., Mahdavi, J., and M.  Mathis, "Framework for IP
   Performance Metrics", RFC 2330, DOI 10.17487/RFC2330, May 1998,
   <https://www.rfc-editor.org/info/rfc2330>.  [RFC2330]

   Demichelis, C. and P.  Chimento, "IP Packet Delay Variation Metric
   for IP Performance Metrics (IPPM)", RFC 3393, DOI 10.17487/RFC3393,
   November 2002, <https://www.rfc-editor.org/info/rfc3393>.  [RFC3393]

   Morton, A. and B.  Claise, "Packet Delay Variation Applicability
   Statement", RFC 5481, DOI 10.17487/RFC5481, March 2009,
   <https://www.rfc-editor.org/info/rfc5481>.  [RFC5481]

   Mills, D., Martin, J., Ed., Burbank, J., and W.  Kasch, "Network Time
   Protocol Version 4: Protocol and Algorithms Specification", RFC 5905,
   DOI 10.17487/RFC5905, June 2010, <https://www.rfc-editor.org/info/
   rfc5905>.  [RFC5905]

   See Sections 2.4 and 3.4 of [RFC3393].  The measured singleton delay
   differences are referred to by the variable name "ddT" (applicable to
   all forms of delay variation).  However, this Metric Entry specifies
   the PDV form defined in Section 4.2 of [RFC5481], where the singleton
   PDV for packet i is referred to by the variable name "PDV(i)".

5.2.2.  Fixed Parameters

   IPv4 header values:
      DSCP:  Set to 0
      TTL:  Set to 255
      Protocol:  Set to 17 (UDP)

   IPv6 header values:
      DSCP:  Set to 0
      Hop Count:  Set to 255
      Next Header:  Set to 17 (UDP)
      Flow Label:  Set to 0
      Extension Headers:  None

   UDP header values:
      Checksum:  The checksum MUST be calculated and the non-zero
         checksum included in the header

   UDP Payload:
      Total of 200 bytes

   Other measurement Parameters:
      Tmax:  A loss threshold waiting time with value 3.0, expressed in
         units of seconds, as a positive value of type decimal64 with
         fraction digits = 4 (see Section 9.3 of [RFC6020]) and with a
         resolution of 0.0001 seconds (0.1 ms), with lossless conversion
         to/from the 32-bit NTP timestamp as per Section 6 of [RFC5905].

      F:  A selection function unambiguously defining the packets from
         the stream selected for the metric.  See Section 4.2 of
         [RFC5481] for the PDV form.

   See the Packet Stream Generation section for two additional Fixed
   Parameters.

5.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

5.3.1.  Reference Methods

   See Sections 2.6 and 3.6 of [RFC3393] for general singleton element
   calculations.  This Metric Entry requires implementation of the PDV
   form defined in Section 4.2 of [RFC5481].  Also see measurement
   considerations in Section 8 of [RFC5481].

   The reference method distinguishes between long-delayed packets and
   lost packets by implementing a maximum waiting time for packet
   arrival.  Tmax is the waiting time used as the threshold to declare a
   packet lost.  Lost packets SHALL be designated as having undefined
   delay.

   The calculations on the one-way delay SHALL be performed on the
   conditional distribution, conditioned on successful packet arrival
   within Tmax.  Also, when all packet delays are stored, the process
   that calculates the one-way delay value MUST enforce the Tmax
   threshold on stored values before calculations.  See Section 4.1 of
   [RFC3393] for details on the conditional distribution to exclude
   undefined values of delay, and see Section 5 of [RFC6703] for
   background on this analysis choice.

   The reference method requires some way to distinguish between
   different packets in a stream to establish correspondence between
   sending times and receiving times for each successfully arriving
   packet.  Sequence numbers or other send-order identification MUST be
   retained at the Src or included with each packet to disambiguate
   packet reordering if it occurs.

   If a standard measurement protocol is employed, then the measurement
   process will determine the sequence numbers or timestamps applied to
   test packets after the Fixed and Runtime Parameters are passed to
   that process.  The chosen measurement protocol will dictate the
   format of sequence numbers and timestamps, if they are conveyed in
   the packet payload.

5.3.2.  Packet Stream Generation

   This section provides details regarding packet traffic, which is used
   as the basis for measurement.  In IPPM Metrics, this is called the
   "stream"; this stream can easily be described by providing the list
   of stream Parameters.

   Section 3 of [RFC3432] prescribes the method for generating Periodic
   streams using associated Parameters.

   incT:  The nominal duration of the inter-packet interval, first bit
      to first bit, with value 0.0200, expressed in units of seconds, as
      a positive value of type decimal64 with fraction digits = 4 (see
      Section 9.3 of [RFC6020]) and with a resolution of 0.0001 seconds
      (0.1 ms).

   dT:  The duration of the interval for allowed sample start times,
      with value 1.0, expressed in units of seconds, as a positive value
      of type decimal64 with fraction digits = 4 (see Section 9.3 of
      [RFC6020]) and with a resolution of 0.0001 seconds (0.1 ms).

      Note: An initiation process with a number of control exchanges
      resulting in unpredictable start times (within a time interval)
      may be sufficient to avoid synchronization of periodic streams and
      is a valid replacement for selecting a start time at random from a
      fixed interval.

   The T0 Parameter will be reported as a measured Parameter.
   Parameters incT and dT are Fixed Parameters.

5.3.3.  Traffic Filtering (Observation) Details

   N/A

5.3.4.  Sampling Distribution

   N/A

5.3.5.  Runtime Parameters and Data Format

   Src:  The IP address of the host in the Src Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the Dst Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Tf:  A time, the end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", an ending time
      and date is ignored and Tf is interpreted as the duration of the
      measurement interval.

5.3.6.  Roles

   Src:  Launches each packet and waits for return transmissions from
      the Dst.

   Dst:  Waits for each packet from the Src and sends a return packet to
      the Src (when required by the test protocol).

5.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

5.4.1.  Type

   Percentile: For the conditional distribution of all packets with a
   valid value of one-way delay (undefined delays are excluded), this is
   a single value corresponding to the 95th percentile, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   The percentile = 95, meaning that the reported delay, "95Percentile",
   is the smallest value of one-way PDV for which the Empirical
   Distribution Function, EDF(95Percentile), is greater than or equal to
   95% of the singleton one-way PDV values in the conditional
   distribution.  See Section 11.3 of [RFC2330] for the definition of
   the percentile statistic using the EDF.

5.4.2.  Reference Definition

   T0:  The start of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   Tf:  The end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   95Percentile:  The time value of the result is expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

5.4.3.  Metric Units

   The 95th percentile of one-way PDV is expressed in seconds.

5.4.4.  Calibration

   Section 3.7.3 of [RFC7679] provides a means to quantify the
   systematic and random errors of a time measurement.  Calibration in-
   situ could be enabled with an internal loopback that includes as much
   of the measurement system as possible, performs address manipulation
   as needed, and provides some form of isolation (e.g., deterministic
   delay) to avoid send-receive interface contention.  Some portion of
   the random and systematic error can be characterized in this way.

   For one-way delay measurements, the error calibration must include an
   assessment of the internal clock synchronization with its external
   reference (this internal clock is supplying timestamps for
   measurement).  In practice, the time offsets [RFC5905] of clocks at
   both the Source and Destination are needed to estimate the systematic
   error due to imperfect clock synchronization (the time offsets are
   smoothed; thus, the random variation is not usually represented in
   the results).

   time_offset:  The time value of the result is expressed in units of
      seconds, as a signed value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

   When a measurement controller requests a calibration measurement, the
   loopback is applied and the result is output in the same format as a
   normal measurement, with an additional indication that it is a
   calibration result.  In any measurement, the measurement function
   SHOULD report its current estimate of the time offset [RFC5905] as an
   indicator of the degree of synchronization.

   Both internal loopback calibration and clock synchronization can be
   used to estimate the available accuracy of the Output Metric Units.
   For example, repeated loopback delay measurements will reveal the
   portion of the output result resolution that is the result of system
   noise and is thus inaccurate.

5.5.  Administrative Items

5.5.1.  Status

   Current

5.5.2.  Requester

   RFC 8912

5.5.3.  Revision

   1.0

5.5.4.  Revision Date

   2021-11-17

5.6.  Comments and Remarks

   Lost packets represent a challenge for delay variation metrics.  See
   Section 4.1 of [RFC3393] and the delay variation applicability
   statement [RFC5481] for extensive analysis and comparison of PDV and
   an alternate metric, IPDV (Inter-Packet Delay Variation).

6.  DNS Response Latency and Loss Registry Entries

   This section gives initial Registry Entries for DNS Response Latency
   and Loss from a network user's perspective, for a specific named
   resource.  The metric can be measured repeatedly for different named
   resources.  [RFC2681] defines a round-trip delay metric.  We build on
   that metric by specifying several of the input Parameters to
   precisely define two metrics for measuring DNS latency and loss.

   All column entries besides the ID, Name, Description, and Output
   Reference Method categories are the same; thus, this section defines
   two closely related Registry Entries.  As a result, IANA has assigned
   corresponding URLs to each of the two Named Metrics.

6.1.  Summary

   This category includes multiple indexes to the Registry Entries: the
   element ID and Metric Name.

6.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifiers 4 and 5 for the two Named
   Metric Entries in Section 6.  See Section 6.1.2 for mapping to Names.

6.1.2.  Name

   4:  RTDNS_Active_IP-UDP-Poisson_RFC8912sec6_Seconds_Raw

   5:  RLDNS_Active_IP-UDP-Poisson_RFC8912sec6_Logical_Raw

6.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDNS_Active_IP-UDP-Poisson_RFC8912sec6_Seconds_Raw

   URL: https://www.iana.org/assignments/performance-metrics/
   RLDNS_Active_IP-UDP-Poisson_RFC8912sec6_Logical_Raw

6.1.4.  Description

   This is a metric for DNS Response performance from a network user's
   perspective, for a specific named resource.  The metric can be
   measured repeatedly using different resource names.

   RTDNS:  This metric assesses the response time, the interval from the
      query transmission to the response.

   RLDNS:  This metric indicates that the response was deemed lost.  In
      other words, the response time exceeded the maximum waiting time.

6.1.5.  Change Controller

   IETF

6.1.6.  Version (of Registry Format)

   1.0

6.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

6.2.1.  Reference Definition

   For Delay:

      Mockapetris, P., "Domain names - implementation and
      specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, November
      1987, <https://www.rfc-editor.org/info/rfc1035> (and updates).
      [RFC1035]

      Almes, G., Kalidindi, S., and M.  Zekauskas, "A Round-trip Delay
      Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681, September 1999,
      <https://www.rfc-editor.org/info/rfc2681>.  [RFC2681]

      Section 2.4 of [RFC2681] provides the reference definition of the
      singleton (single value) round-trip delay metric.  Section 3.4 of
      [RFC2681] provides the reference definition expanded to cover a
      multi-singleton sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

      For DNS Response Latency, the entities in [RFC1035] must be mapped
      to [RFC2681].  The Local Host with its User Program and Resolver
      take the Role of "Src", and the Foreign Name Server takes the Role
      of "Dst".

      Note that although the definition of round-trip delay between the
      Source (Src) and the Destination (Dst) at T as provided in
      Section 2.4 of [RFC2681] is directionally ambiguous in the text,
      this metric tightens the definition further to recognize that the
      host in the Src Role will send the first packet to the host in the
      Dst Role and will ultimately receive the corresponding return
      packet from the Dst (when neither is lost).

   For Loss:

      Morton, A., "Round-Trip Packet Loss Metrics", RFC 6673, DOI
      10.17487/RFC6673, August 2012, <https://www.rfc-editor.org/info/
      rfc6673>.  [RFC6673]

      For DNS Response Loss, the entities in [RFC1035] must be mapped to
      [RFC6673].  The Local Host with its User Program and Resolver take
      the Role of "Src", and the Foreign Name Server takes the Role of
      "Dst".

      Both response time and Loss metrics employ a maximum waiting time
      for received responses, so the count of lost packets to total
      packets sent is the basis for the loss determination as per
      Section 4.3 of [RFC6673].

6.2.2.  Fixed Parameters

   Type-P as defined in Section 13 of [RFC2330]:
      IPv4 header values:
         DSCP:  Set to 0
         TTL:  Set to 255
         Protocol:  Set to 17 (UDP)

      IPv6 header values:
         DSCP:  Set to 0
         Hop Count:  Set to 255
         Next Header:  Set to 17 (UDP)
         Flow Label:  Set to 0
         Extension Headers:  None

      UDP header values:
         Source port:  53
         Destination port:  53
         Checksum:  The checksum MUST be calculated and the non-zero
            checksum included in the header

      Payload:
         The payload contains a DNS message as defined in [RFC1035] with
         the following values:

         The DNS header section contains:
            Identification (see the Runtime column)
            QR:  Set to 0 (Query)
            OPCODE:  Set to 0 (standard query)
            AA:  Not set
            TC:  Not set
            RD:  Set to 1 (recursion desired)
            RA:  Not set
            RCODE:  Not set
            QDCOUNT:  Set to 1 (only one entry)
            ANCOUNT:  Not set
            NSCOUNT:  Not set
            ARCOUNT:  Not set

         The Question section contains:
            QNAME:  The Fully Qualified Domain Name (FQDN) provided as
               input for the test; see the Runtime column

            QTYPE:  The query type provided as input for the test; see
               the Runtime column

            QCLASS:  Set to 1 for IN

         The other sections do not contain any Resource Records
         (RRs).

   Other measurement Parameters:
      Tmax:  A loss threshold waiting time (and to help disambiguate
         queries).  The value is 5.0, expressed in units of seconds, as
         a positive value of type decimal64 with fraction digits = 4
         (see Section 9.3 of [RFC6020]) and with a resolution of 0.0001
         seconds (0.1 ms), with lossless conversion to/from the 32-bit
         NTP timestamp as per Section 6 of [RFC5905].

   Observation:  Reply packets will contain a DNS Response and may
      contain RRs.

6.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

6.3.1.  Reference Methods

   The methodology for this metric (equivalent to Type-P-Round-trip-
   Delay-Poisson-Stream) is defined as in Section 2.6 of [RFC2681] (for
   singletons) and Section 3.6 of [RFC2681] (for samples) using the
   Type-P and Timeout defined in the Fixed Parameters column.

   The reference method distinguishes between long-delayed packets and
   lost packets by implementing a maximum waiting time for packet
   arrival.  Tmax is the waiting time used as the threshold to declare a
   response packet lost.  Lost packets SHALL be designated as having
   undefined delay and counted for the RLDNS metric.

   The calculations on the delay (RTT) SHALL be performed on the
   conditional distribution, conditioned on successful packet arrival
   within Tmax.  Also, when all packet delays are stored, the process
   that calculates the RTT value MUST enforce the Tmax threshold on
   stored values before calculations.  See Section 4.1 of [RFC3393] for
   details on the conditional distribution to exclude undefined values
   of delay, and see Section 5 of [RFC6703] for background on this
   analysis choice.

   The reference method requires some way to distinguish between
   different packets in a stream to establish correspondence between
   sending times and receiving times for each successfully arriving
   reply.

   DNS messages bearing queries provide for random ID Numbers in the
   Identification header field, so more than one query may be launched
   while a previous request is outstanding when the ID Number is used.
   Therefore, the ID Number MUST be retained at the Src and included
   with each response packet to disambiguate packet reordering if it
   occurs.

   If a DNS Response does not arrive within Tmax, the response time
   RTDNS is undefined, and RLDNS = 1.  The Message ID SHALL be used to
   disambiguate the successive queries that are otherwise identical.

   Since the ID Number field is only 16 bits in length, it places a
   limit on the number of simultaneous outstanding DNS queries during a
   stress test from a single Src address.

   Refer to Section 4.4 of [RFC6673] for an expanded discussion of the
   instruction to "send a Type-P packet back to the Src as quickly as
   possible" in Section 2.6 of [RFC2681].  However, the DNS server is
   expected to perform all required functions to prepare and send a
   response, so the response time will include processing time and
   network delay.  Section 8 of [RFC6673] presents additional
   requirements that SHALL be included in the Method of Measurement for
   this metric.

   In addition to operations described in [RFC2681], the Src MUST parse
   the DNS headers of the reply and prepare the query response
   information for subsequent reporting as a measured result, along with
   the round-trip delay.

6.3.2.  Packet Stream Generation

   This section provides details regarding packet traffic, which is used
   as the basis for measurement.  In IPPM Metrics, this is called the
   "stream"; this stream can easily be described by providing the list
   of stream Parameters.

   Section 11.1.3 of [RFC2330] provides three methods to generate
   Poisson sampling intervals.  The reciprocal of lambda is the average
   packet spacing; thus, the Runtime Parameter is
   Reciprocal_lambda = 1/lambda, in seconds.

   Method 3 SHALL be used.  Where given a start time (Runtime
   Parameter), the subsequent send times are all computed prior to
   measurement by computing the pseudorandom distribution of inter-
   packet send times (truncating the distribution as specified in the
   Parameter Trunc), and the Src sends each packet at the computed
   times.

   Note that Trunc is the upper limit on inter-packet times in the
   Poisson distribution.  A random value greater than Trunc is set equal
   to Trunc instead.

6.3.3.  Traffic Filtering (Observation) Details

   N/A

6.3.4.  Sampling Distribution

   N/A

6.3.5.  Runtime Parameters and Data Format

   Runtime Parameters are input factors that must be determined,
   configured into the measurement system, and reported with the results
   for the context to be complete.

   Src:  The IP address of the host in the Src Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the Dst Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Tf:  A time, the end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", an ending time
      and date is ignored and Tf is interpreted as the duration of the
      measurement interval.

   Reciprocal_lambda:  Average packet interval for Poisson streams,
      expressed in units of seconds, as a positive value of type
      decimal64 with fraction digits = 4 (see Section 9.3 of [RFC6020])
      with a resolution of 0.0001 seconds (0.1 ms), and with lossless
      conversion to/from the 32-bit NTP timestamp as per Section 6 of
      [RFC5905].

   Trunc:  Upper limit on Poisson distribution, expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 4 (see Section 9.3 of [RFC6020]) with a resolution of
      0.0001 seconds (0.1 ms), and with lossless conversion to/from the
      32-bit NTP timestamp as per Section 6 of [RFC5905] (values above
      this limit will be clipped and set to the limit value).

   ID:  The 16-bit Identifier assigned by the program that generates the
      query.  The ID value must vary in successive queries (a list of
      IDs is needed); see Section 4.1.1 of [RFC1035].  This Identifier
      is copied into the corresponding reply and can be used by the
      requester (Src) to match replies with any outstanding queries.

   QNAME:  The domain name of the query, formatted as specified in
      Section 4 of [RFC6991].

   QTYPE:  The query type, which will correspond to the IP address
      family of the query (decimal 1 for IPv4 or 28 for IPv6), formatted
      as a uint16, as per Section 9.2 of [RFC6020].

6.3.6.  Roles

   Src:  Launches each packet and waits for return transmissions from
      the Dst.

   Dst:  Waits for each packet from the Src and sends a return packet to
      the Src.

6.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

6.4.1.  Type

   Raw: For each DNS query packet sent, sets of values as defined in the
   next column, including the status of the response, only assigning
   delay values to successful query-response pairs.

6.4.2.  Reference Definition

   For all outputs:

   T:  The time the DNS query was sent during the measurement interval
      (format "date-time" as specified in Section 5.6 of [RFC3339]; see
      also "date-and-time" in Section 3 of [RFC6991]).  The UTC Time
      Zone is required by Section 6.1 of [RFC2330].

   dT:  The time value of the round-trip delay to receive the DNS
      Response, expressed in units of seconds, as a positive value of
      type decimal64 with fraction digits = 9 (see Section 9.3 of
      [RFC6020]) with a resolution of 0.000000001 seconds (1.0 ns), and
      with lossless conversion to/from the 64-bit NTP timestamp as per
      Section 6 of [RFC5905].  This value is undefined when the response
      packet is not received at the Src within a waiting time of
      Tmax seconds.

   RCODE:  The value of the RCODE field in the DNS Response header,
      expressed as a uint64 as specified in Section 9.2 of [RFC6020].
      Non-zero values convey errors in the response, and such replies
      must be analyzed separately from successful requests.

   Logical:  The numeric value of the result is expressed as a Logical
      value, where 1 = Lost and 0 = Received, as a positive value of
      type uint8 (represents integer values between 0 and 255,
      inclusively (see Section 9.2 of [RFC6020]).  Note that for queries
      with outcome 1 = Lost, dT and RCODE will be set to the maximum for
      decimal64 and uint64, respectively.

6.4.3.  Metric Units

   RTDNS:  Round-trip delay, dT, is expressed in seconds.

   RLDNS:  The Logical value, where 1 = Lost and 0 = Received.

6.4.4.  Calibration

   Section 3.7.3 of [RFC7679] provides a means to quantify the
   systematic and random errors of a time measurement.  Calibration in-
   situ could be enabled with an internal loopback at the Source host
   that includes as much of the measurement system as possible, performs
   address and payload manipulation as needed, and provides some form of
   isolation (e.g., deterministic delay) to avoid send-receive interface
   contention.  Some portion of the random and systematic error can be
   characterized in this way.

   When a measurement controller requests a calibration measurement, the
   loopback is applied and the result is output in the same format as a
   normal measurement, with an additional indication that it is a
   calibration result.

   Both internal loopback calibration and clock synchronization can be
   used to estimate the available accuracy of the Output Metric Units.
   For example, repeated loopback delay measurements will reveal the
   portion of the output result resolution that is the result of system
   noise and is thus inaccurate.

6.5.  Administrative Items

6.5.1.  Status

   Current

6.5.2.  Requester

   RFC 8912

6.5.3.  Revision

   1.0

6.5.4.  Revision Date

   2021-11-17

6.6.  Comments and Remarks

   None

7.  UDP Poisson One-Way Delay and Loss Registry Entries

   This section specifies five initial Registry Entries for UDP Poisson
   One-Way Delay and one entry for UDP Poisson One-Way Loss.

   All column entries besides the ID, Name, Description, and Output
   Reference Method categories are the same; thus, this section defines
   six closely related Registry Entries.  As a result, IANA has assigned
   corresponding URLs to each of the Named Metrics.

7.1.  Summary

   This category includes multiple indexes to the Registry Entries: the
   element ID and Metric Name.

7.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifiers 6-11 for the six Named
   Metric Entries in Section 7.  See Section 7.1.2 for mapping to Names.

7.1.2.  Name

   6: 
        OWDelay_Active_IP-UDP-Poisson-
        Payload250B_RFC8912sec7_Seconds_95Percentile

   7:   OWDelay_Active_IP-UDP-Poisson-
        Payload250B_RFC8912sec7_Seconds_Mean

   8:   OWDelay_Active_IP-UDP-Poisson-
        Payload250B_RFC8912sec7_Seconds_Min

   9:   OWDelay_Active_IP-UDP-Poisson-
        Payload250B_RFC8912sec7_Seconds_Max

   10:
        OWDelay_Active_IP-UDP-Poisson-
        Payload250B_RFC8912sec7_Seconds_StdDev

   11:
        OWLoss_Active_IP-UDP-Poisson-
        Payload250B_RFC8912sec7_Percent_LossRatio

7.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Poisson-
   Payload250B_RFC8912sec7_Seconds_95Percentile

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Poisson-Payload250B_RFC8912sec7_Seconds_Mean

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Poisson-Payload250B_RFC8912sec7_Seconds_Min

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Poisson-Payload250B_RFC8912sec7_Seconds_Max

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Poisson-Payload250B_RFC8912sec7_Seconds_StdDev

   URL: https://www.iana.org/assignments/performance-metrics/
   OWLoss_Active_IP-UDP-Poisson-
   Payload250B_RFC8912sec7_Percent_LossRatio

7.1.4.  Description

   OWDelay:  This metric assesses the delay of a stream of packets
      exchanged between two hosts (or measurement points) and reports
      the <statistic> of one-way delay for all successfully exchanged
      packets based on their conditional delay distribution.

      where <statistic> is one of:

      *  95Percentile

      *  Mean

      *  Min

      *  Max

      *  StdDev

   OWLoss:  This metric assesses the loss ratio of a stream of packets
      exchanged between two hosts (which are the two measurement
      points).  The output is the one-way loss ratio for all transmitted
      packets expressed as a percentage.

7.1.5.  Change Controller

   IETF

7.1.6.  Version (of Registry Format)

   1.0

7.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

7.2.1.  Reference Definition

   For delay:

      Almes, G., Kalidindi, S., Zekauskas, M., and A.  Morton, Ed., "A
      One-Way Delay Metric for IP Performance Metrics (IPPM)", STD 81,
      RFC 7679, DOI 10.17487/RFC7679, January 2016, <https://www.rfc-
      editor.org/info/rfc7679>.  [RFC7679]

      Morton, A. and E.  Stephan, "Spatial Composition of Metrics", RFC
      6049, DOI 10.17487/RFC6049, January 2011, <https://www.rfc-
      editor.org/info/rfc6049>.  [RFC6049]

      Section 3.4 of [RFC7679] provides the reference definition of the
      singleton (single value) one-way delay metric.  Section 4.4 of
      [RFC7679] provides the reference definition expanded to cover a
      multi-value sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

      Only successful packet transfers with finite delay are included in
      the sample, as prescribed in Section 4.1.2 of [RFC6049].

   For loss:

      Almes, G., Kalidindi, S., Zekauskas, M., and A.  Morton, Ed., "A
      One-Way Loss Metric for IP Performance Metrics (IPPM)", STD 82,
      RFC 7680, DOI 10.17487/RFC7680, January 2016, <https://www.rfc-
      editor.org/info/rfc7680>.  [RFC7680]

      Section 2.4 of [RFC7680] provides the reference definition of the
      singleton (single value) one-way Loss metric.  Section 3.4 of
      [RFC7680] provides the reference definition expanded to cover a
      multi-singleton sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

7.2.2.  Fixed Parameters

   Type-P:
      IPv4 header values:
         DSCP:  Set to 0
         TTL:  Set to 255
         Protocol:  Set to 17 (UDP)

      IPv6 header values:
         DSCP:  Set to 0
         Hop Count:  Set to 255
         Next Header:  Set to 17 (UDP)
         Flow Label:  Set to 0
         Extension Headers:  None

      UDP header values:
         Checksum:  The checksum MUST be calculated and the non-zero
            checksum included in the header

      UDP Payload:  TWAMP-Test packet formats (Section 4.1.2 of
         [RFC5357])

            Security features in use influence the number of Padding
            octets

            250 octets total, including the TWAMP format type, which
            MUST be reported

   Other measurement Parameters:
      Tmax:  A loss threshold waiting time with value 3.0, expressed in
         units of seconds, as a positive value of type decimal64 with
         fraction digits = 4 (see Section 9.3 of [RFC6020]) and with a
         resolution of 0.0001 seconds (0.1 ms), with lossless conversion
         to/from the 32-bit NTP timestamp as per Section 6 of [RFC5905].

   See the Packet Stream Generation section for two additional Fixed
   Parameters.

7.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

7.3.1.  Reference Methods

   The methodology for this metric (equivalent to Type-P-One-way-Delay-
   Poisson-Stream) is defined as in Section 3.6 of [RFC7679] (for
   singletons) and Section 4.6 of [RFC7679] (for samples) using the
   Type-P and Tmax defined in the Fixed Parameters column.

   The reference method distinguishes between long-delayed packets and
   lost packets by implementing a maximum waiting time for packet
   arrival.  Tmax is the waiting time used as the threshold to declare a
   packet lost.  Lost packets SHALL be designated as having undefined
   delay and counted for the OWLoss metric.

   The calculations on the one-way delay SHALL be performed on the
   conditional distribution, conditioned on successful packet arrival
   within Tmax.  Also, when all packet delays are stored, the process
   that calculates the one-way delay value MUST enforce the Tmax
   threshold on stored values before calculations.  See Section 4.1 of
   [RFC3393] for details on the conditional distribution to exclude
   undefined values of delay, and see Section 5 of [RFC6703] for
   background on this analysis choice.

   The reference method requires some way to distinguish between
   different packets in a stream to establish correspondence between
   sending times and receiving times for each successfully arriving
   packet.

   Since a standard measurement protocol is employed [RFC5357], the
   measurement process will determine the sequence numbers or timestamps
   applied to test packets after the Fixed and Runtime Parameters are
   passed to that process.  The measurement protocol dictates the format
   of sequence numbers and timestamps conveyed in the TWAMP-Test packet
   payload.

7.3.2.  Packet Stream Generation

   This section provides details regarding packet traffic, which is used
   as the basis for measurement.  In IPPM Metrics, this is called the
   "stream"; this stream can easily be described by providing the list
   of stream Parameters.

   Section 11.1.3 of [RFC2330] provides three methods to generate
   Poisson sampling intervals.  The reciprocal of lambda is the average
   packet spacing; thus, the Runtime Parameter is
   Reciprocal_lambda = 1/lambda, in seconds.

   Method 3 SHALL be used.  Where given a start time (Runtime
   Parameter), the subsequent send times are all computed prior to
   measurement by computing the pseudorandom distribution of inter-
   packet send times (truncating the distribution as specified in the
   Parameter Trunc), and the Src sends each packet at the computed
   times.

   Note that Trunc is the upper limit on inter-packet times in the
   Poisson distribution.  A random value greater than Trunc is set equal
   to Trunc instead.

   Reciprocal_lambda:  Average packet interval for Poisson streams,
      expressed in units of seconds, as a positive value of type
      decimal64 with fraction digits = 4 (see Section 9.3 of [RFC6020])
      with a resolution of 0.0001 seconds (0.1 ms), and with lossless
      conversion to/from the 32-bit NTP timestamp as per Section 6 of
      [RFC5905].  Reciprocal_lambda = 1 second.

   Trunc:  Upper limit on Poisson distribution, expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 4 (see Section 9.3 of [RFC6020]) with a resolution of
      0.0001 seconds (0.1 ms), and with lossless conversion to/from the
      32-bit NTP timestamp as per Section 6 of [RFC5905] (values above
      this limit will be clipped and set to the limit value).
      Trunc = 30.0000 seconds.

7.3.3.  Traffic Filtering (Observation) Details

   N/A

7.3.4.  Sampling Distribution

   N/A

7.3.5.  Runtime Parameters and Data Format

   Runtime Parameters are input factors that must be determined,
   configured into the measurement system, and reported with the results
   for the context to be complete.

   Src:  The IP address of the host in the Src Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the Dst Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Tf:  A time, the end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", an ending time
      and date is ignored and Tf is interpreted as the duration of the
      measurement interval.

7.3.6.  Roles

   Src:  Launches each packet and waits for return transmissions from
      the Dst.  An example is the TWAMP Session-Sender.

   Dst:  Waits for each packet from the Src and sends a return packet to
      the Src.  An example is the TWAMP Session-Reflector.

7.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

7.4.1.  Type

   Types are discussed in the subsections below.

7.4.2.  Reference Definition

   For all output types:

   T0:  The start of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   Tf:  The end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   For LossRatio, the count of lost packets to total packets sent is the
   basis for the loss ratio calculation as per Section 4.1 of [RFC7680].

   For each <statistic> or Percent_LossRatio, one of the following
   subsections applies.

7.4.2.1.  Percentile95

   The 95th percentile SHALL be calculated using the conditional
   distribution of all packets with a finite value of one-way delay
   (undefined delays are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3 of [RFC3393] for details on the percentile statistic
   (where round-trip delay should be substituted for "ipdv").

   The percentile = 95, meaning that the reported delay, "95Percentile",
   is the smallest value of one-way delay for which the Empirical
   Distribution Function, EDF(95Percentile), is greater than or equal to
   95% of the singleton one-way delay values in the conditional
   distribution.  See Section 11.3 of [RFC2330] for the definition of
   the percentile statistic using the EDF.

   95Percentile:  The time value of the result is expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

7.4.2.2.  Mean

   The mean SHALL be calculated using the conditional distribution of
   all packets with a finite value of one-way delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.2.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.2.3 of [RFC6049].

   Mean:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

7.4.2.3.  Min

   The minimum SHALL be calculated using the conditional distribution of
   all packets with a finite value of one-way delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.3.3 of [RFC6049].

   Min:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

7.4.2.4.  Max

   The maximum SHALL be calculated using the conditional distribution of
   all packets with a finite value of one-way delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for a closely related method for
   calculating this statistic; see also Section 4.3.3 of [RFC6049].  The
   formula is as follows:

      Max = (FiniteDelay[j])

      such that for some index, j, where 1 <= j <= N
      FiniteDelay[j] >= FiniteDelay[n] for all n

   Max:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

7.4.2.5.  Std_Dev

   The standard deviation (Std_Dev) SHALL be calculated using the
   conditional distribution of all packets with a finite value of
   one-way delay (undefined delays are excluded) -- a single value, as
   follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 6.1.4 of [RFC6049] for a closely related method for
   calculating this statistic.  The formula is the classic calculation
   for the standard deviation of a population.

   Define Population Std_Dev_Delay as follows:

                        _                                       _
                       |            N                            |
                       |           ---                           |
                       |     1     \                          2  |
       Std_Dev = SQRT  |  -------   >   (Delay[n] - MeanDelay)   |
                       |    (N)    /                             |
                       |           ---                           |
                       |          n = 1                          |
                       |_                                       _|

   where all packets n = 1 through N have a value for Delay[n],
   MeanDelay is calculated per Section 7.4.2.2, and SQRT[] is the Square
   Root function:

   Std_Dev:  The time value of the result is expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

7.4.2.6.  Percent_LossRatio

   Percent_LossRatio:  The numeric value of the result is expressed in
      units of lost packets to total packets times 100%, as a positive
      value of type decimal64 with fraction digits = 9 (see Section 9.3
      of [RFC6020]) with a resolution of 0.0000000001.

7.4.3.  Metric Units

   The <statistic> of one-way delay is expressed in seconds, where
   <statistic> is one of:

   *  95Percentile

   *  Mean

   *  Min

   *  Max

   *  StdDev

   The one-way loss ratio is expressed as a percentage of lost packets
   to total packets sent.

7.4.4.  Calibration

   Section 3.7.3 of [RFC7679] provides a means to quantify the
   systematic and random errors of a time measurement.  Calibration in-
   situ could be enabled with an internal loopback that includes as much
   of the measurement system as possible, performs address manipulation
   as needed, and provides some form of isolation (e.g., deterministic
   delay) to avoid send-receive interface contention.  Some portion of
   the random and systematic error can be characterized in this way.

   For one-way delay measurements, the error calibration must include an
   assessment of the internal clock synchronization with its external
   reference (this internal clock is supplying timestamps for
   measurement).  In practice, the time offsets [RFC5905] of clocks at
   both the Source and Destination are needed to estimate the systematic
   error due to imperfect clock synchronization (the time offsets
   [RFC5905] are smoothed; thus, the random variation is not usually
   represented in the results).

   time_offset:  The time value of the result is expressed in units of
      seconds, as a signed value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

   When a measurement controller requests a calibration measurement, the
   loopback is applied and the result is output in the same format as a
   normal measurement, with an additional indication that it is a
   calibration result.  In any measurement, the measurement function
   SHOULD report its current estimate of the time offset [RFC5905] as an
   indicator of the degree of synchronization.

   Both internal loopback calibration and clock synchronization can be
   used to estimate the available accuracy of the Output Metric Units.
   For example, repeated loopback delay measurements will reveal the
   portion of the output result resolution that is the result of system
   noise and is thus inaccurate.

7.5.  Administrative Items

7.5.1.  Status

   Current

7.5.2.  Requester

   RFC 8912

7.5.3.  Revision

   1.0

7.5.4.  Revision Date

   2021-11-17

7.6.  Comments and Remarks

   None

8.  UDP Periodic One-Way Delay and Loss Registry Entries

   This section specifies five initial Registry Entries for UDP Periodic
   One-Way Delay and one entry for UDP Periodic One-Way Loss.

   All column entries besides the ID, Name, Description, and Output
   Reference Method categories are the same; thus, this section defines
   six closely related Registry Entries.  As a result, IANA has assigned
   corresponding URLs to each of the six Named Metrics.

8.1.  Summary

   This category includes multiple indexes to the Registry Entries: the
   element ID and Metric Name.

8.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifiers 12-17 for the six Named
   Metric Entries in Section 8.  See Section 8.1.2 for mapping to Names.

8.1.2.  Name

   12:
        OWDelay_Active_IP-UDP-Periodic20m-
        Payload142B_RFC8912sec8_Seconds_95Percentile

   13:
        OWDelay_Active_IP-UDP-Periodic20m-
        Payload142B_RFC8912sec8_Seconds_Mean

   14:
        OWDelay_Active_IP-UDP-Periodic20m-
        Payload142B_RFC8912sec8_Seconds_Min

   15:
        OWDelay_Active_IP-UDP-Periodic20m-
        Payload142B_RFC8912sec8_Seconds_Max

   16:
        OWDelay_Active_IP-UDP-Periodic20m-
        Payload142B_RFC8912sec8_Seconds_StdDev

   17:
        OWLoss_Active_IP-UDP-Periodic20m-
        Payload142B_RFC8912sec8_Percent_LossRatio

8.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Periodic20m-
   Payload142B_RFC8912sec8_Seconds_95Percentile

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Periodic20m-
   Payload142B_RFC8912sec8_Seconds_Mean

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Periodic20m-Payload142B_RFC8912sec8_Seconds_Min

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Periodic20m-Payload142B_RFC8912sec8_Seconds_Max

   URL: https://www.iana.org/assignments/performance-metrics/
   OWDelay_Active_IP-UDP-Periodic20m-
   Payload142B_RFC8912sec8_Seconds_StdDev

   URL: https://www.iana.org/assignments/performance-metrics/
   OWLoss_Active_IP-UDP-Periodic20m-
   Payload142B_RFC8912sec8_Percent_LossRatio

8.1.4.  Description

   OWDelay:  This metric assesses the delay of a stream of packets
      exchanged between two hosts (or measurement points) and reports
      the <statistic> of one-way delay for all successfully exchanged
      packets based on their conditional delay distribution.

      where <statistic> is one of:

      *  95Percentile

      *  Mean

      *  Min

      *  Max

      *  StdDev

   OWLoss:  This metric assesses the loss ratio of a stream of packets
      exchanged between two hosts (which are the two measurement
      points).  The output is the one-way loss ratio for all transmitted
      packets expressed as a percentage.

8.1.5.  Change Controller

   IETF

8.1.6.  Version (of Registry Format)

   1.0

8.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

8.2.1.  Reference Definition

   For delay:

      Almes, G., Kalidindi, S., Zekauskas, M., and A.  Morton, Ed., "A
      One-Way Delay Metric for IP Performance Metrics (IPPM)", STD 81,
      RFC 7679, DOI 10.17487/RFC7679, January 2016, <https://www.rfc-
      editor.org/info/rfc7679>.  [RFC7679]

      Morton, A. and E.  Stephan, "Spatial Composition of Metrics", RFC
      6049, DOI 10.17487/RFC6049, January 2011, <https://www.rfc-
      editor.org/info/rfc6049>.  [RFC6049]

      Section 3.4 of [RFC7679] provides the reference definition of the
      singleton (single value) one-way delay metric.  Section 4.4 of
      [RFC7679] provides the reference definition expanded to cover a
      multi-value sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

      Only successful packet transfers with finite delay are included in
      the sample, as prescribed in Section 4.1.2 of [RFC6049].

   For loss:

      Almes, G., Kalidindi, S., Zekauskas, M., and A.  Morton, Ed., "A
      One-Way Loss Metric for IP Performance Metrics (IPPM)", STD 82,
      RFC 7680, DOI 10.17487/RFC7680, January 2016, <https://www.rfc-
      editor.org/info/rfc7680>.  [RFC7680]

      Section 2.4 of [RFC7680] provides the reference definition of the
      singleton (single value) one-way Loss metric.  Section 3.4 of
      [RFC7680] provides the reference definition expanded to cover a
      multi-singleton sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

8.2.2.  Fixed Parameters

   Type-P:
      IPv4 header values:
         DSCP:  Set to 0
         TTL:  Set to 255
         Protocol:  Set to 17 (UDP)

      IPv6 header values:
         DSCP:  Set to 0
         Hop Count:  Set to 255
         Next Header:  Set to 17 (UDP)
         Flow Label:  Set to 0
         Extension Headers:  None

      UDP header values:
         Checksum:  The checksum MUST be calculated and the non-zero
            checksum included in the header

      UDP Payload:  TWAMP-Test packet formats (Section 4.1.2 of
         [RFC5357])

            Security features in use influence the number of Padding
            octets

            142 octets total, including the TWAMP format (and format
            type MUST be reported, if used)

   Other measurement Parameters:
      Tmax:  A loss threshold waiting time with value 3.0, expressed in
         units of seconds, as a positive value of type decimal64 with
         fraction digits = 4 (see Section 9.3 of [RFC6020]) and with a
         resolution of 0.0001 seconds (0.1 ms), with lossless conversion
         to/from the 32-bit NTP timestamp as per Section 6 of [RFC5905].

   See the Packet Stream Generation section for three additional Fixed
   Parameters.

8.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

8.3.1.  Reference Methods

   The methodology for this metric (equivalent to Type-P-One-way-Delay-
   Poisson-Stream) is defined as in Section 3.6 of [RFC7679] (for
   singletons) and Section 4.6 of [RFC7679] (for samples) using the
   Type-P and Tmax defined in the Fixed Parameters column.  However, a
   Periodic stream is used, as defined in [RFC3432].

   The reference method distinguishes between long-delayed packets and
   lost packets by implementing a maximum waiting time for packet
   arrival.  Tmax is the waiting time used as the threshold to declare a
   packet lost.  Lost packets SHALL be designated as having undefined
   delay and counted for the OWLoss metric.

   The calculations on the one-way delay SHALL be performed on the
   conditional distribution, conditioned on successful packet arrival
   within Tmax.  Also, when all packet delays are stored, the process
   that calculates the one-way delay value MUST enforce the Tmax
   threshold on stored values before calculations.  See Section 4.1 of
   [RFC3393] for details on the conditional distribution to exclude
   undefined values of delay, and see Section 5 of [RFC6703] for
   background on this analysis choice.

   The reference method requires some way to distinguish between
   different packets in a stream to establish correspondence between
   sending times and receiving times for each successfully arriving
   packet.

   Since a standard measurement protocol is employed [RFC5357], the
   measurement process will determine the sequence numbers or timestamps
   applied to test packets after the Fixed and Runtime Parameters are
   passed to that process.  The measurement protocol dictates the format
   of sequence numbers and timestamps conveyed in the TWAMP-Test packet
   payload.

8.3.2.  Packet Stream Generation

   This section provides details regarding packet traffic, which is used
   as the basis for measurement.  In IPPM Metrics, this is called the
   "stream"; this stream can easily be described by providing the list
   of stream Parameters.

   Section 3 of [RFC3432] prescribes the method for generating Periodic
   streams using associated Parameters.

   incT:  The nominal duration of the inter-packet interval, first bit
      to first bit, with value 0.0200, expressed in units of seconds, as
      a positive value of type decimal64 with fraction digits = 4 (see
      Section 9.3 of [RFC6020]) and with a resolution of 0.0001 seconds
      (0.1 ms), with lossless conversion to/from the 32-bit NTP
      timestamp as per Section 6 of [RFC5905].

   dT:  The duration of the interval for allowed sample start times,
      with value 1.0000, expressed in units of seconds, as a positive
      value of type decimal64 with fraction digits = 4 (see Section 9.3
      of [RFC6020]) and with a resolution of 0.0001 seconds (0.1 ms),
      with lossless conversion to/from the 32-bit NTP timestamp as per
      Section 6 of [RFC5905].

   T0:  The actual start time of the periodic stream, determined from T0
      and dT.

      Note: An initiation process with a number of control exchanges
      resulting in unpredictable start times (within a time interval)
      may be sufficient to avoid synchronization of periodic streams and
      is a valid replacement for selecting a start time at random from a
      fixed interval.

   These stream Parameters will be specified as Runtime Parameters.

8.3.3.  Traffic Filtering (Observation) Details

   N/A

8.3.4.  Sampling Distribution

   N/A

8.3.5.  Runtime Parameters and Data Format

   Runtime Parameters are input factors that must be determined,
   configured into the measurement system, and reported with the results
   for the context to be complete.

   Src:  The IP address of the host in the Src Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the Dst Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Tf:  A time, the end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", an ending time
      and date is ignored and Tf is interpreted as the duration of the
      measurement interval.

8.3.6.  Roles

   Src:  Launches each packet and waits for return transmissions from
      the Dst.  An example is the TWAMP Session-Sender.

   Dst:  Waits for each packet from the Src and sends a return packet to
      the Src.  An example is the TWAMP Session-Reflector.

8.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

8.4.1.  Type

   Latency and Loss Types are discussed in the subsections below.

8.4.2.  Reference Definition

   For all output types:

   T0:  The start of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   Tf:  The end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   For LossRatio, the count of lost packets to total packets sent is the
   basis for the loss ratio calculation as per Section 4.1 of [RFC7680].

   For each <statistic> or Percent_LossRatio, one of the following
   subsections applies.

8.4.2.1.  Percentile95

   The 95th percentile SHALL be calculated using the conditional
   distribution of all packets with a finite value of one-way delay
   (undefined delays are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3 of [RFC3393] for details on the percentile statistic
   (where round-trip delay should be substituted for "ipdv").

   The percentile = 95, meaning that the reported delay, "95Percentile",
   is the smallest value of one-way delay for which the Empirical
   Distribution Function, EDF(95Percentile), is greater than or equal to
   95% of the singleton one-way delay values in the conditional
   distribution.  See Section 11.3 of [RFC2330] for the definition of
   the percentile statistic using the EDF.

   95Percentile:  The time value of the result is expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

8.4.2.2.  Mean

   The mean SHALL be calculated using the conditional distribution of
   all packets with a finite value of one-way delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.2.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.2.3 of [RFC6049].

   Mean:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

8.4.2.3.  Min

   The minimum SHALL be calculated using the conditional distribution of
   all packets with a finite value of one-way delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.3.3 of [RFC6049].

   Min:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

8.4.2.4.  Max

   The maximum SHALL be calculated using the conditional distribution of
   all packets with a finite value of one-way delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for a closely related method for
   calculating this statistic; see also Section 4.3.3 of [RFC6049].  The
   formula is as follows:

      Max = (FiniteDelay[j])

      such that for some index, j, where 1 <= j <= N
      FiniteDelay[j] >= FiniteDelay[n] for all n

   Max:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

8.4.2.5.  Std_Dev

   Std_Dev SHALL be calculated using the conditional distribution of all
   packets with a finite value of one-way delay (undefined delays are
   excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 6.1.4 of [RFC6049] for a closely related method for
   calculating this statistic.  The formula is the classic calculation
   for the standard deviation of a population.

   Define Population Std_Dev_Delay as follows:

                        _                                       _
                       |            N                            |
                       |           ---                           |
                       |     1     \                          2  |
       Std_Dev = SQRT  |  -------   >   (Delay[n] - MeanDelay)   |
                       |    (N)    /                             |
                       |           ---                           |
                       |          n = 1                          |
                       |_                                       _|

   where all packets n = 1 through N have a value for Delay[n],
   MeanDelay is calculated per Section 8.4.2.2, and SQRT[] is the Square
   Root function:

   Std_Dev:  The time value of the result is expressed in units of
      seconds, as a positive value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

8.4.2.6.  Percent_LossRatio

   Percent_LossRatio:  The numeric value of the result is expressed in
      units of lost packets to total packets times 100%, as a positive
      value of type decimal64 with fraction digits = 9 (see Section 9.3
      of [RFC6020] with a resolution of 0.0000000001.

8.4.3.  Metric Units

   The <statistic> of one-way delay is expressed in seconds, where
   <statistic> is one of:

   *  95Percentile

   *  Mean

   *  Min

   *  Max

   *  StdDev

   The one-way loss ratio is expressed as a percentage of lost packets
   to total packets sent.

8.4.4.  Calibration

   Section 3.7.3 of [RFC7679] provides a means to quantify the
   systematic and random errors of a time measurement.  Calibration in-
   situ could be enabled with an internal loopback that includes as much
   of the measurement system as possible, performs address manipulation
   as needed, and provides some form of isolation (e.g., deterministic
   delay) to avoid send-receive interface contention.  Some portion of
   the random and systematic error can be characterized in this way.

   For one-way delay measurements, the error calibration must include an
   assessment of the internal clock synchronization with its external
   reference (this internal clock is supplying timestamps for
   measurement).  In practice, the time offsets [RFC5905] of clocks at
   both the Source and Destination are needed to estimate the systematic
   error due to imperfect clock synchronization (the time offsets
   [RFC5905] are smoothed; thus, the random variation is not usually
   represented in the results).

   time_offset:  The time value of the result is expressed in units of
      seconds, as a signed value of type decimal64 with fraction
      digits = 9 (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

   When a measurement controller requests a calibration measurement, the
   loopback is applied and the result is output in the same format as a
   normal measurement, with an additional indication that it is a
   calibration result.  In any measurement, the measurement function
   SHOULD report its current estimate of the time offset [RFC5905] as an
   indicator of the degree of synchronization.

   Both internal loopback calibration and clock synchronization can be
   used to estimate the available accuracy of the Output Metric Units.
   For example, repeated loopback delay measurements will reveal the
   portion of the output result resolution that is the result of system
   noise and is thus inaccurate.

8.5.  Administrative Items

8.5.1.  Status

   Current

8.5.2.  Requester

   RFC 8912

8.5.3.  Revision

   1.0

8.5.4.  Revision Date

   2021-11-17

8.6.  Comments and Remarks

   None

9.  ICMP Round-Trip Latency and Loss Registry Entries

   This section specifies three initial Registry Entries for ICMP
   Round-Trip Latency and another entry for the ICMP Round-Trip Loss
   Ratio.

   All column entries besides the ID, Name, Description, and Output
   Reference Method categories are the same; thus, this section defines
   four closely related Registry Entries.  As a result, IANA has
   assigned corresponding URLs to each of the four Named Metrics.

9.1.  Summary

   This category includes multiple indexes to the Registry Entries: the
   element ID and Metric Name.

9.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifiers 18-21 for the four Named
   Metric Entries in Section 9.  See Section 9.1.2 for mapping to Names.

9.1.2.  Name

   18:  RTDelay_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Seconds_Mean

   19:  RTDelay_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Seconds_Min

   20:  RTDelay_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Seconds_Max

   21:  RTLoss_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Percent_LossRatio

9.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Seconds_Mean

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Seconds_Min

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Seconds_Max

   URL: https://www.iana.org/assignments/performance-metrics/
   RTLoss_Active_IP-ICMP-SendOnRcv_RFC8912sec9_Percent_LossRatio

9.1.4.  Description

   RTDelay:  This metric assesses the delay of a stream of ICMP packets
      exchanged between two hosts (which are the two measurement
      points).  The output is the round-trip delay for all successfully
      exchanged packets expressed as the <statistic> of their
      conditional delay distribution, where <statistic> is one of:

      *  Mean

      *  Min

      *  Max

   RTLoss:  This metric assesses the loss ratio of a stream of ICMP
      packets exchanged between two hosts (which are the two measurement
      points).  The output is the round-trip loss ratio for all
      transmitted packets expressed as a percentage.

9.1.5.  Change Controller

   IETF

9.1.6.  Version (of Registry Format)

   1.0

9.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

9.2.1.  Reference Definition

   For delay:

      Almes, G., Kalidindi, S., and M.  Zekauskas, "A Round-trip Delay
      Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681, September 1999,
      <https://www.rfc-editor.org/info/rfc2681>.  [RFC2681]

      Section 2.4 of [RFC2681] provides the reference definition of the
      singleton (single value) round-trip delay metric.  Section 3.4 of
      [RFC2681] provides the reference definition expanded to cover a
      multi-singleton sample.  Note that terms such as "singleton" and
      "sample" are defined in Section 11 of [RFC2330].

      Note that although the definition of round-trip delay between the
      Source (Src) and the Destination (Dst) as provided in Section 2.4
      of [RFC2681] is directionally ambiguous in the text, this metric
      tightens the definition further to recognize that the host in the
      Src Role will send the first packet to the host in the Dst Role
      and will ultimately receive the corresponding return packet from
      the Dst (when neither is lost).

      Finally, note that the variable "dT" is used in [RFC2681] to refer
      to the value of round-trip delay in metric definitions and
      methods.  The variable "dT" has been reused in other IPPM
      literature to refer to different quantities and cannot be used as
      a global variable name.

   For loss:

      Morton, A., "Round-Trip Packet Loss Metrics", RFC 6673, DOI
      10.17487/RFC6673, August 2012, <https://www.rfc-editor.org/info/
      rfc6673>.  [RFC6673]

   Both Delay and Loss metrics employ a maximum waiting time for
   received packets, so the count of lost packets to total packets sent
   is the basis for the loss ratio calculation as per Section 6.1 of
   [RFC6673].

9.2.2.  Fixed Parameters

   Type-P as defined in Section 13 of [RFC2330]:
      IPv4 header values:
         DSCP:  Set to 0
         TTL:  Set to 255
         Protocol:  Set to 01 (ICMP)

      IPv6 header values:
         DSCP:  Set to 0
         Hop Count:  Set to 255
         Next Header:  Set to 128 decimal (ICMP)
         Flow Label:  Set to 0
         Extension Headers:  None

      ICMP header values:
         Type:  8 (Echo Request)
         Code:  0
         Checksum:  The checksum MUST be calculated and the non-zero
            checksum included in the header
         (Identifier and sequence number set at runtime)

      ICMP Payload:
         Total of 32 bytes of random information, constant per test

   Other measurement Parameters:
      Tmax:  A loss threshold waiting time with value 3.0, expressed in
         units of seconds, as a positive value of type decimal64 with
         fraction digits = 4 (see Section 9.3 of [RFC6020]) and with a
         resolution of 0.0001 seconds (0.1 ms), with lossless conversion
         to/from the 32-bit NTP timestamp as per Section 6 of [RFC5905].

9.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

9.3.1.  Reference Methods

   The methodology for this metric (equivalent to Type-P-Round-trip-
   Delay-Poisson-Stream) is defined as in Section 2.6 of [RFC2681] (for
   singletons) and Section 3.6 of [RFC2681] (for samples) using the
   Type-P and Tmax defined in the Fixed Parameters column.

   The reference method distinguishes between long-delayed packets and
   lost packets by implementing a maximum waiting time for packet
   arrival.  Tmax is the waiting time used as the threshold to declare a
   packet lost.  Lost packets SHALL be designated as having undefined
   delay and counted for the RTLoss metric.

   The calculations on the delay (RTD) SHALL be performed on the
   conditional distribution, conditioned on successful packet arrival
   within Tmax.  Also, when all packet delays are stored, the process
   that calculates the RTD value MUST enforce the Tmax threshold on
   stored values before calculations.  See Section 4.1 of [RFC3393] for
   details on the conditional distribution to exclude undefined values
   of delay, and see Section 5 of [RFC6703] for background on this
   analysis choice.

   The reference method requires some way to distinguish between
   different packets in a stream to establish correspondence between
   sending times and receiving times for each successfully arriving
   packet.  Sequence numbers or other send-order identification MUST be
   retained at the Src or included with each packet to disambiguate
   packet reordering if it occurs.

   The measurement process will determine the sequence numbers applied
   to test packets after the Fixed and Runtime Parameters are passed to
   that process.  The ICMP measurement process and protocol will dictate
   the format of sequence numbers and other Identifiers.

   Refer to Section 4.4 of [RFC6673] for an expanded discussion of the
   instruction to "send a Type-P packet back to the Src as quickly as
   possible" in Section 2.6 of [RFC2681].  Section 8 of [RFC6673]
   presents additional requirements that MUST be included in the Method
   of Measurement for this metric.

9.3.2.  Packet Stream Generation

   This section provides details regarding packet traffic, which is used
   as the basis for measurement.  In IPPM Metrics, this is called the
   "stream"; this stream can easily be described by providing the list
   of stream Parameters.

   The ICMP metrics use a sending discipline called "SendOnRcv" or Send
   On Receive.  This is a modification of Section 3 of [RFC3432], which
   prescribes the method for generating Periodic streams using
   associated Parameters as defined below for this description:

   incT:  The nominal duration of the inter-packet interval, first bit
      to first bit.

   dT:  The duration of the interval for allowed sample start times.

   The incT stream Parameter will be specified as a Runtime Parameter,
   and dT is not used in SendOnRcv.

   A SendOnRcv sender behaves exactly like a Periodic stream generator
   while all reply packets arrive with RTD < incT, and the inter-packet
   interval will be constant.

   If a reply packet arrives with RTD >= incT, then the inter-packet
   interval for the next sending time is nominally RTD.

   If a reply packet fails to arrive within Tmax, then the inter-packet
   interval for the next sending time is nominally Tmax.

   If an immediate Send On Reply arrival is desired, then set incT = 0.

9.3.3.  Traffic Filtering (Observation) Details

   N/A

9.3.4.  Sampling Distribution

   N/A

9.3.5.  Runtime Parameters and Data Format

   Runtime Parameters are input factors that must be determined,
   configured into the measurement system, and reported with the results
   for the context to be complete.

   Src:  The IP address of the host in the Src Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the Dst Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   incT:  The nominal duration of the inter-packet interval, first bit
      to first bit, expressed in units of seconds, as a positive value
      of type decimal64 with fraction digits = 4 (see Section 9.3 of
      [RFC6020]) and with a resolution of 0.0001 seconds (0.1 ms).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Count:  The total count of ICMP Echo Requests to send, formatted as a
      uint16, as per Section 9.2 of [RFC6020].

   See the Packet Stream Generation section for additional Runtime
   Parameters.

9.3.6.  Roles

   Src:  Launches each packet and waits for return transmissions from
      the Dst.

   Dst:  Waits for each packet from the Src and sends a return packet to
      the Src (ICMP Echo Reply, Type 0).

9.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

9.4.1.  Type

   Latency and Loss Types are discussed in the subsections below.

9.4.2.  Reference Definition

   For all output types:

   T0:  The start of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   Tf:  The end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   TotalCount:  The count of packets actually sent by the Src to the Dst
      during the measurement interval.

   For each <statistic> or Percent_LossRatio, one of the following
   subsections applies.

9.4.2.1.  Mean

   The mean SHALL be calculated using the conditional distribution of
   all packets with a finite value of round-trip delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.2.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.2.3 of [RFC6049].

   Mean:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

9.4.2.2.  Min

   The minimum SHALL be calculated using the conditional distribution of
   all packets with a finite value of round-trip delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.3.3 of [RFC6049].

   Min:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

9.4.2.3.  Max

   The maximum SHALL be calculated using the conditional distribution of
   all packets with a finite value of round-trip delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for a closely related method for
   calculating this statistic; see also Section 4.3.3 of [RFC6049].  The
   formula is as follows:

      Max = (FiniteDelay[j])

      such that for some index, j, where 1 <= j <= N
      FiniteDelay[j] >= FiniteDelay[n] for all n

   Max:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

9.4.2.4.  Percent_LossRatio

   For LossRatio, the count of lost packets to total packets sent is the
   basis for the loss ratio calculation as per Section 4.1 of [RFC7680].

   Percent_LossRatio:  The numeric value of the result is expressed in
      units of lost packets to total packets times 100%, as a positive
      value of type decimal64 with fraction digits = 9 (see Section 9.3
      of [RFC6020]) with a resolution of 0.0000000001.

9.4.3.  Metric Units

   The <statistic> of round-trip delay is expressed in seconds, where
   <statistic> is one of:

   *  Mean

   *  Min

   *  Max

   The round-trip loss ratio is expressed as a percentage of lost
   packets to total packets sent.

9.4.4.  Calibration

   Section 3.7.3 of [RFC7679] provides a means to quantify the
   systematic and random errors of a time measurement.  Calibration in-
   situ could be enabled with an internal loopback at the Source host
   that includes as much of the measurement system as possible, performs
   address manipulation as needed, and provides some form of isolation
   (e.g., deterministic delay) to avoid send-receive interface
   contention.  Some portion of the random and systematic error can be
   characterized in this way.

   When a measurement controller requests a calibration measurement, the
   loopback is applied and the result is output in the same format as a
   normal measurement, with an additional indication that it is a
   calibration result.

   Both internal loopback calibration and clock synchronization can be
   used to estimate the available accuracy of the Output Metric Units.
   For example, repeated loopback delay measurements will reveal the
   portion of the output result resolution that is the result of system
   noise and is thus inaccurate.

9.5.  Administrative Items

9.5.1.  Status

   Current

9.5.2.  Requester

   RFC 8912

9.5.3.  Revision

   1.0

9.5.4.  Revision Date

   2021-11-17

9.6.  Comments and Remarks

   None

10.  TCP Round-Trip Delay and Loss Registry Entries

   This section specifies four initial Registry Entries for the Passive
   assessment of TCP Round-Trip Delay (RTD) and another entry for the
   TCP Round-Trip Loss Count.

   All column entries besides the ID, Name, Description, and Output
   Reference Method categories are the same; thus, this section defines
   four closely related Registry Entries.  As a result, IANA has
   assigned corresponding URLs to each of the four Named Metrics.

10.1.  Summary

   This category includes multiple indexes to the Registry Entries: the
   element ID and Metric Name.

10.1.1.  ID (Identifier)

   IANA has allocated the numeric Identifiers 22-26 for the five Named
   Metric Entries in Section 10.  See Section 10.1.2 for mapping to
   Names.

10.1.2.  Name

   22:  RTDelay_Passive_IP-TCP_RFC8912sec10_Seconds_Mean

   23:  RTDelay_Passive_IP-TCP_RFC8912sec10_Seconds_Min

   24:  RTDelay_Passive_IP-TCP_RFC8912sec10_Seconds_Max

   25:  RTDelay_Passive_IP-TCP-HS_RFC8912sec10_Seconds_Singleton

   Note that a midpoint observer only has the opportunity to compose a
   single RTDelay on the TCP handshake.

   26:  RTLoss_Passive_IP-TCP_RFC8912sec10_Packet_Count

10.1.3.  URI

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Passive_IP-TCP_RFC8912sec10_Seconds_Mean

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Passive_IP-TCP_RFC8912sec10_Seconds_Min

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Passive_IP-TCP_RFC8912sec10_Seconds_Max

   URL: https://www.iana.org/assignments/performance-metrics/
   RTDelay_Passive_IP-TCP-HS_RFC8912sec10_Seconds_Singleton

   URL: https://www.iana.org/assignments/performance-metrics/
   RTLoss_Passive_IP-TCP_RFC8912sec10_Packet_Count

10.1.4.  Description

   RTDelay:  This metric assesses the round-trip delay of TCP packets
      constituting a single connection, exchanged between two hosts.  We
      consider the measurement of round-trip delay based on a single
      Observation Point (OP) [RFC7011] somewhere in the network.  The
      output is the round-trip delay for all successfully exchanged
      packets expressed as the <statistic> of their conditional delay
      distribution, where <statistic> is one of:

      *  Mean

      *  Min

      *  Max

   RTDelay Singleton:  This metric assesses the round-trip delay of TCP
      packets initiating a single connection (or 3-way handshake),
      exchanged between two hosts.  We consider the measurement of
      round-trip delay based on a single Observation Point (OP)
      [RFC7011] somewhere in the network.  The output is the single
      measurement of Round-trip delay, or Singleton.

   RTLoss:  This metric assesses the estimated loss count for TCP
      packets constituting a single connection, exchanged between two
      hosts.  We consider the measurement of round-trip delay based on a
      single OP [RFC7011] somewhere in the network.  The output is the
      estimated loss count for the measurement interval.

10.1.5.  Change Controller

   IETF

10.1.6.  Version (of Registry Format)

   1.0

10.2.  Metric Definition

   This category includes columns to prompt the entry of all necessary
   details related to the metric definition, including the RFC reference
   and values of input factors, called "Fixed Parameters".

10.2.1.  Reference Definition

   Almes, G., Kalidindi, S., and M.  Zekauskas, "A Round-trip Delay
   Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681, September 1999,
   <https://www.rfc-editor.org/info/rfc2681>.  [RFC2681]

   Although there is no RFC that describes Passive Measurement of round-
   trip delay, the parallel definition for Active Measurement is
   provided in [RFC2681].

   This metric definition uses the term "wire time" as defined in
   Section 10.2 of [RFC2330], and the terms "singleton" and "sample" as
   defined in Section 11 of [RFC2330].  (Section 2.4 of [RFC2681]
   provides the reference definition of the singleton (single value)
   round-trip delay metric.  Section 3.4 of [RFC2681] provides the
   reference definition expanded to cover a multi-singleton sample.)

   With the OP [RFC7011] typically located between the hosts
   participating in the TCP connection, the round-trip delay metric
   requires two individual measurements between the OP and each host,
   such that the Spatial Composition [RFC6049] of the measurements
   yields a round-trip delay singleton (we are extending the composition
   of one-way subpath delays to subpath round-trip delay).

   Using the direction of TCP SYN transmission to anchor the
   nomenclature, host A sends the SYN, and host B replies with SYN-ACK
   during connection establishment.  The direction of SYN transfer is
   considered the Forward direction of transmission, from A through the
   OP to B (the Reverse direction is B through the OP to A).

   Traffic Filters reduce the packet streams at the OP to a Qualified
   bidirectional flow of packets.

   In the definitions below, Corresponding Packets are transferred in
   different directions and convey a common value in a TCP header field
   that establishes correspondence (to the extent possible).  Examples
   may be found in the TCP timestamp fields.

   For a real number, RTD_fwd, >> the round-trip delay in the Forward
   direction from the OP to host B at time T' is RTD_fwd << it is
   REQUIRED that the OP observed a Qualified Packet to host B at wire
   time T', that host B received that packet and sent a Corresponding
   Packet back to host A, and the OP observed the Corresponding Packet
   at wire time T' + RTD_fwd.

   For a real number, RTD_rev, >> the round-trip delay in the Reverse
   direction from the OP to host A at time T'' is RTD_rev << it is
   REQUIRED that the OP observed a Qualified Packet to host A at wire
   time T'', that host A received that packet and sent a Corresponding
   Packet back to host B, and that the OP observed the Corresponding
   Packet at wire time T'' + RTD_rev.

   Ideally, the packet sent from host B to host A in both definitions
   above SHOULD be the same packet (or, when measuring RTD_rev first,
   the packet from host A to host B in both definitions should be the
   same).

   The REQUIRED Composition Function for a singleton of round-trip delay
   at time T (where T is the earliest of T' and T'' above) is:

   RTDelay = RTD_fwd + RTD_rev

   Note that when the OP is located at host A or host B, one of the
   terms composing RTDelay will be zero or negligible.

   Using the abbreviation HS to refer to the TCP handshake: when the
   Qualified and Corresponding Packets are a TCP-SYN and a TCP-SYN-ACK,
   RTD_fwd == RTD_HS_fwd.

   When the Qualified and Corresponding Packets are a TCP-SYN-ACK and a
   TCP-ACK, RTD_rev == RTD_HS_rev.

   The REQUIRED Composition Function for a singleton of round-trip delay
   for the connection handshake is:

   RTDelay_HS = RTD_HS_fwd + RTD_HS_rev

   The definition of round-trip loss count uses the nomenclature
   developed above, based on observation of the TCP header sequence
   numbers and storing the sequence number gaps observed.  Packet losses
   can be inferred from:

   Out-of-order segments:  TCP segments are transmitted with
      monotonically increasing sequence numbers, but these segments may
      be received out of order.  Section 3 of [RFC4737] describes the
      notion of "next expected" sequence numbers, which can be adapted
      to TCP segments (for the purpose of detecting reordered packets).
      Observation of out-of-order segments indicates loss on the path
      prior to the OP and creates a gap.

   Duplicate segments:  Section 2 of [RFC5560] defines identical packets
      and is suitable for evaluation of TCP packets to detect
      duplication.  Observation of a segment duplicates a segment
      previously observed (and thus no corresponding observed segment
      gap) indicates loss on the path following the OP (e.g., the
      segment overlaps part of the octet stream already observed at the
      OP).

   Each observation of an out-of-order or duplicate segment infers a
   singleton of loss, but the composition of round-trip loss counts will
   be conducted over a measurement interval that is synonymous with a
   single TCP connection.

   With the above observations in the Forward direction over a
   measurement interval, the count of out-of-order and duplicate
   segments is defined as RTL_fwd.  Comparable observations in the
   Reverse direction are defined as RTL_rev.

   For a measurement interval (corresponding to a single TCP connection)
   T0 to Tf, the REQUIRED Composition Function for the two single-
   direction counts of inferred loss is:

   RTLoss = RTL_fwd + RTL_rev

10.2.2.  Fixed Parameters

   Traffic Filters:
      IPv4 header values:
         DSCP:  Set to 0
         Protocol:  Set to 06 (TCP)

      IPv6 header values:
         DSCP:  Set to 0
         Hop Count:  Set to 255
         Next Header:  Set to 6 (TCP)
         Flow Label:  Set to 0
         Extension Headers:  None

      TCP header values:
         Flags:  ACK, SYN, FIN, set as required
         Timestamps Option (TSopt):  Set.  See Section 3.2 of [RFC7323]

10.3.  Method of Measurement

   This category includes columns for references to relevant sections of
   the RFC(s) and any supplemental information needed to ensure an
   unambiguous method for implementations.

10.3.1.  Reference Methods

   The foundational methodology for this metric is defined in Section 4
   of [RFC7323] using the Timestamps option with modifications that
   allow application at a mid-path OP [RFC7011].  Further details and
   applicable heuristics were derived from [Strowes] and [Trammell-14].

   The Traffic Filter at the OP is configured to observe a single TCP
   connection.  When the SYN/SYN-ACK/ACK handshake occurs, it offers the
   first opportunity to measure both RTD_fwd (on the SYN to SYN-ACK
   pair) and RTD_rev (on the SYN-ACK to ACK pair).  Label this singleton
   of RTDelay as RTDelay_HS (composed using the Forward and Reverse
   measurement pair).  RTDelay_HS SHALL be treated separately from other
   RTDelays on data-bearing packets and their ACKs.  The RTDelay_HS
   value MAY be used as a consistency check on the composed values of
   RTDelay for payload-bearing packets.

   For payload-bearing packets, the OP measures the time interval
   between observation of a packet with sequence number "s" and the
   corresponding ACK with the same sequence number.  When the payload is
   transferred from host A to host B, the observed interval is RTD_fwd.

   For payload-bearing packets, each observation of an out-of-order or
   duplicate segment infers a loss count, but the composition of round-
   trip loss counts will be conducted over a measurement interval that
   is synonymous with a single TCP connection.

   Because many data transfers are unidirectional (say, in the Forward
   direction from host A to host B), it is necessary to use pure ACK
   packets with Timestamp (TSval) and packets with the Timestamp value
   echo to perform a RTD_rev measurement.  The time interval between
   observation of the ACK from B to A, and the Corresponding Packet with
   a Timestamp Echo Reply (TSecr) field [RFC7323], is the RTD_rev.

   Delay Measurement Filtering Heuristics:

   *  If data payloads were transferred in both Forward and Reverse
      directions, then the Round-Trip Time Measurement rule in
      Section 4.1 of [RFC7323] could be applied.  This rule essentially
      excludes any measurement using a packet unless it makes progress
      in the transfer (advances the left edge of the send window,
      consistent with [Strowes]).

   *  A different heuristic from [Trammell-14] is to exclude any RTD_rev
      that is larger than previously observed values.  This would tend
      to exclude Reverse measurements taken when the application has no
      data ready to send, because considerable time could be added to
      RTD_rev from this source of error.

   *  Note that the above heuristic assumes that host A is sending data.
      Host A expecting a download would mean that this heuristic should
      be applied to RTD_fwd.

   *  The statistic calculations to summarize the delay (RTDelay) SHALL
      be performed on the conditional distribution, conditioned on
      successful Forward and Reverse measurements that follow the
      heuristics.

   Method for Inferring Loss:

   *  The OP tracks sequence numbers and stores gaps for each direction
      of transmission, as well as the next expected sequence number as
      discussed in [Trammell-14] and [RFC4737].  Loss is inferred from
      out-of-order segments and duplicate segments.

   Loss Measurement Filtering Heuristics:

   *  [Trammell-14] adds a window of evaluation based on the RTDelay.

   *  Distinguish reordered packets from out-of-order segments due to
      loss, because the sequence number gap is filled during the same
      RTDelay window.  Segments detected as reordered according to
      [RFC4737] MUST reduce the loss count inferred from out-of-order
      segments.

   *  Spurious (unneeded) retransmissions (observed as duplicates) can
      also be reduced in this way, as described in [Trammell-14].

   Sources of Error:

   *  The principal source of RTDelay error is the host processing time
      to return a packet that defines the termination of a time
      interval.  The heuristics above intend to mitigate these errors by
      excluding measurements where host processing time is a significant
      part of RTD_fwd or RTD_rev.

   *  A key source of RTLoss error is observation loss, as described in
      Section 3 of [Trammell-14].

10.3.2.  Packet Stream Generation

   N/A

10.3.3.  Traffic Filtering (Observation) Details

   The Fixed Parameters above give a portion of the Traffic Filter.
   Other aspects will be supplied as Runtime Parameters (below).

10.3.4.  Sampling Distribution

   This metric requires a complete sample of all packets that qualify
   according to the Traffic Filter criteria.

10.3.5.  Runtime Parameters and Data Format

   Runtime Parameters are input factors that must be determined,
   configured into the measurement system, and reported with the results
   for the context to be complete.

   Src:  The IP address of the host in the host A Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   Dst:  The IP address of the host in the host B Role (format
      ipv4-address-no-zone value for IPv4 or ipv6-address-no-zone value
      for IPv6; see Section 4 of [RFC6991]).

   T0:  A time, the start of a measurement interval (format "date-time"
      as specified in Section 5.6 of [RFC3339]; see also "date-and-time"
      in Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  When T0 is "all-zeros", a start time is
      unspecified and Tf is to be interpreted as the duration of the
      measurement interval.  The start time is controlled through other
      means.

   Tf:  Optionally, the end of a measurement interval (format
      "date-time" as specified in Section 5.6 of [RFC3339]; see also
      "date-and-time" in Section 3 of [RFC6991]), or the duration (see
      T0).  The UTC Time Zone is required by Section 6.1 of [RFC2330].
      Alternatively, the end of the measurement interval MAY be
      controlled by the measured connection, where the second pair of
      FIN and ACK packets exchanged between host A and host B
      effectively ends the interval.

   TTL or Hop Limit:  Set at desired value.

10.3.6.  Roles

   host A:  Launches the SYN packet to open the connection.  The Role of
      "host A" is synonymous with the IP address used at host A.

   host B:  Replies with the SYN-ACK packet to open the connection.  The
      Role of "host B" is synonymous with the IP address used at host B.

10.4.  Output

   This category specifies all details of the output of measurements
   using the metric.

10.4.1.  Type

   RTDelay Types are discussed in the subsections below.

   For RTLoss: The count of lost packets.

10.4.2.  Reference Definition

   For all output types:

   T0:  The start of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].

   Tf:  The end of a measurement interval (format "date-time" as
      specified in Section 5.6 of [RFC3339]; see also "date-and-time" in
      Section 3 of [RFC6991]).  The UTC Time Zone is required by
      Section 6.1 of [RFC2330].  The end of the measurement interval MAY
      be controlled by the measured connection, where the second pair of
      FIN and ACK packets exchanged between host A and host B
      effectively ends the interval.

   RTDelay_Passive_IP-TCP-HS:  The round-trip delay of the handshake is
      a Singleton.

   RTLoss:  The count of lost packets.

   For each <statistic>, Singleton, or Loss Count, one of the following
   subsections applies.

10.4.2.1.  Mean

   The mean SHALL be calculated using the conditional distribution of
   all packets with a finite value of round-trip delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.2.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.2.3 of [RFC6049].

   Mean:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

10.4.2.2.  Min

   The minimum SHALL be calculated using the conditional distribution of
   all packets with a finite value of round-trip delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for details on calculating this
   statistic; see also Section 4.3.3 of [RFC6049].

   Min:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

10.4.2.3.  Max

   The maximum SHALL be calculated using the conditional distribution of
   all packets with a finite value of round-trip delay (undefined delays
   are excluded) -- a single value, as follows:

   See Section 4.1 of [RFC3393] for details on the conditional
   distribution to exclude undefined values of delay, and see Section 5
   of [RFC6703] for background on this analysis choice.

   See Section 4.3.2 of [RFC6049] for a closely related method for
   calculating this statistic; see also Section 4.3.3 of [RFC6049].  The
   formula is as follows:

      Max = (FiniteDelay[j])

      such that for some index, j, where 1 <= j <= N
      FiniteDelay[j] >= FiniteDelay[n] for all n

   Max:  The time value of the result is expressed in units of seconds,
      as a positive value of type decimal64 with fraction digits = 9
      (see Section 9.3 of [RFC6020]) with a resolution of
      0.000000001 seconds (1.0 ns), and with lossless conversion to/from
      the 64-bit NTP timestamp as per Section 6 of [RFC5905].

10.4.2.4.  Singleton

   The singleton SHALL be calculated using the successful RTD_fwd (on
   the SYN to SYN-ACK pair) and RTD_rev (on the SYN-ACK to ACK pair),
   see Section 10.3.1.

   The singleton time value of the result is expressed in units of
   seconds, as a positive value of type decimal64 with fraction digits =
   9 (see Section 9.3 of [RFC6020]) with resolution of 0.000000001
   seconds (1.0 ns), and with lossless conversion to/from the 64-bit NTP
   timestamp as per Section 6 of [RFC5905].

10.4.2.5.  Loss Counts

   RTLoss_Passive_IP-TCP_RFC8912sec10_Packet_Count: The count of lost
   packets.

   Observation of an out-of-order segment or duplicate segment infers a
   loss count, after application of the Definitions of Section 10.2.1
   and the Loss Measurement Filtering Heuristics of Section 10.3.1.  The
   composition of round-trip loss counts will be conducted over a
   measurement interval that is synonymous with a single TCP connection.

   For a measurement interval (corresponding to a single TCP connection)
   T0 to Tf, the REQUIRED Composition Function for the two single-
   direction counts of inferred loss is:

   RTLoss = RTL_fwd + RTL_rev

   Packet count:  The numeric value of the result is expressed in units
      of lost packets, as a positive value of type uint64 (represents
      integer values between 0 and 18446744073709551615, inclusively
      (see Section 9.2 of [RFC6020]).

10.4.3.  Metric Units

   The <statistic> of round-trip delay is expressed in seconds, where
   <statistic> is one of:

   *  Mean

   *  Min

   *  Max

   The round-trip delay of the TCP handshake singleton is expressed in
   seconds.

   The round-trip loss count is expressed as a number of packets.

10.4.4.  Calibration

   Passive Measurements at an OP could be calibrated against an Active
   Measurement (with loss emulation) at host A or host B, where the
   Active Measurement represents the ground truth.

10.5.  Administrative Items

10.5.1.  Status

   Current

10.5.2.  Requester

   RFC 8912

10.5.3.  Revision

   1.0

10.5.4.  Revision Date

   2021-11-17

10.6.  Comments and Remarks

   None

11.  Security Considerations

   These Registry Entries represent no known implications for Internet
   security.  With the exception of [RFC1035], each RFC referenced above
   contains a Security Considerations section.  Further, the Large-scale
   Measurement of Broadband Performance (LMAP) framework [RFC7594]
   provides both security and privacy considerations for measurements.

   There are potential privacy considerations for observed traffic,
   particularly for Passive Metrics as discussed in Section 10.  An
   attacker that knows that its TCP connection is being measured can
   modify its behavior to skew the measurement results.

12.  IANA Considerations

   IANA has populated the Performance Metrics Registry defined in
   [RFC8911] with the values defined in Sections 4 through 10.

   See the IANA Considerations section of [RFC8911] for additional
   considerations.

13.  References

13.1.  Normative References

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <https://www.rfc-editor.org/info/rfc1035>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2330]  Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
              "Framework for IP Performance Metrics", RFC 2330,
              DOI 10.17487/RFC2330, May 1998,
              <https://www.rfc-editor.org/info/rfc2330>.

   [RFC2681]  Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-trip
              Delay Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681,
              September 1999, <https://www.rfc-editor.org/info/rfc2681>.

   [RFC3339]  Klyne, G. and C. Newman, "Date and Time on the Internet:
              Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
              <https://www.rfc-editor.org/info/rfc3339>.

   [RFC3393]  Demichelis, C. and P. Chimento, "IP Packet Delay Variation
              Metric for IP Performance Metrics (IPPM)", RFC 3393,
              DOI 10.17487/RFC3393, November 2002,
              <https://www.rfc-editor.org/info/rfc3393>.

   [RFC3432]  Raisanen, V., Grotefeld, G., and A. Morton, "Network
              performance measurement with periodic streams", RFC 3432,
              DOI 10.17487/RFC3432, November 2002,
              <https://www.rfc-editor.org/info/rfc3432>.

   [RFC4737]  Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
              S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
              DOI 10.17487/RFC4737, November 2006,
              <https://www.rfc-editor.org/info/rfc4737>.

   [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
              Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
              RFC 5357, DOI 10.17487/RFC5357, October 2008,
              <https://www.rfc-editor.org/info/rfc5357>.

   [RFC5481]  Morton, A. and B. Claise, "Packet Delay Variation
              Applicability Statement", RFC 5481, DOI 10.17487/RFC5481,
              March 2009, <https://www.rfc-editor.org/info/rfc5481>.

   [RFC5560]  Uijterwaal, H., "A One-Way Packet Duplication Metric",
              RFC 5560, DOI 10.17487/RFC5560, May 2009,
              <https://www.rfc-editor.org/info/rfc5560>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <https://www.rfc-editor.org/info/rfc5905>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6049]  Morton, A. and E. Stephan, "Spatial Composition of
              Metrics", RFC 6049, DOI 10.17487/RFC6049, January 2011,
              <https://www.rfc-editor.org/info/rfc6049>.

   [RFC6673]  Morton, A., "Round-Trip Packet Loss Metrics", RFC 6673,
              DOI 10.17487/RFC6673, August 2012,
              <https://www.rfc-editor.org/info/rfc6673>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7011]  Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
              "Specification of the IP Flow Information Export (IPFIX)
              Protocol for the Exchange of Flow Information", STD 77,
              RFC 7011, DOI 10.17487/RFC7011, September 2013,
              <https://www.rfc-editor.org/info/rfc7011>.

   [RFC7323]  Borman, D., Braden, B., Jacobson, V., and R.
              Scheffenegger, Ed., "TCP Extensions for High Performance",
              RFC 7323, DOI 10.17487/RFC7323, September 2014,
              <https://www.rfc-editor.org/info/rfc7323>.

   [RFC7679]  Almes, G., Kalidindi, S., Zekauskas, M., and A. Morton,
              Ed., "A One-Way Delay Metric for IP Performance Metrics
              (IPPM)", STD 81, RFC 7679, DOI 10.17487/RFC7679, January
              2016, <https://www.rfc-editor.org/info/rfc7679>.

   [RFC7680]  Almes, G., Kalidindi, S., Zekauskas, M., and A. Morton,
              Ed., "A One-Way Loss Metric for IP Performance Metrics
              (IPPM)", STD 82, RFC 7680, DOI 10.17487/RFC7680, January
              2016, <https://www.rfc-editor.org/info/rfc7680>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8911]  Bagnulo, M., Claise, B., Eardley, P., Morton, A., and A.
              Akhter, "Registry for Performance Metrics", RFC 8911,
              DOI 10.17487/RFC8911, November 2021,
              <https://www.rfc-editor.org/info/rfc8911>.

   [Strowes]  Strowes, S., "Passively Measuring TCP Round-Trip Times",
              Communications of the ACM, Vol. 56 No. 10, Pages 57-64,
              DOI 10.1145/2507771.2507781, October 2013,
              <https://dl.acm.org/doi/10.1145/2507771.2507781>.

   [Trammell-14]
              Trammell, B., Gugelmann, D., and N. Brownlee, "Inline Data
              Integrity Signals for Passive Measurement", In: Dainotti
              A., Mahanti A., Uhlig S. (eds) Traffic Monitoring and
              Analysis.  TMA 2014.  Lecture Notes in Computer Science,
              vol 8406.  Springer, Berlin, Heidelberg,
              DOI 10.1007/978-3-642-54999-1_2, March 2014,
              <https://link.springer.com/
              chapter/10.1007/978-3-642-54999-1_2>.

13.2.  Informative References

   [RFC1242]  Bradner, S., "Benchmarking Terminology for Network
              Interconnection Devices", RFC 1242, DOI 10.17487/RFC1242,
              July 1991, <https://www.rfc-editor.org/info/rfc1242>.

   [RFC6390]  Clark, A. and B. Claise, "Guidelines for Considering New
              Performance Metric Development", BCP 170, RFC 6390,
              DOI 10.17487/RFC6390, October 2011,
              <https://www.rfc-editor.org/info/rfc6390>.

   [RFC6703]  Morton, A., Ramachandran, G., and G. Maguluri, "Reporting
              IP Network Performance Metrics: Different Points of View",
              RFC 6703, DOI 10.17487/RFC6703, August 2012,
              <https://www.rfc-editor.org/info/rfc6703>.

   [RFC7594]  Eardley, P., Morton, A., Bagnulo, M., Burbridge, T.,
              Aitken, P., and A. Akhter, "A Framework for Large-Scale
              Measurement of Broadband Performance (LMAP)", RFC 7594,
              DOI 10.17487/RFC7594, September 2015,
              <https://www.rfc-editor.org/info/rfc7594>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

Acknowledgments

   The authors thank Brian Trammell for suggesting the term "Runtime
   Parameters", which led to the distinction between Runtime and Fixed
   Parameters implemented in this memo, for identifying the IP Flow
   Information Export (IPFIX) metric with Flow Key as an example, for
   suggesting the Passive TCP RTD Metric and supporting references, and
   for many other productive suggestions.  Thanks to Peter Koch, who
   provided several useful suggestions for disambiguating successive DNS
   queries in the DNS Response time metric.

   The authors also acknowledge the constructive reviews and helpful
   suggestions from Barbara Stark, Juergen Schoenwaelder, Tim Carey,
   Yaakov Stein, and participants in the LMAP Working Group.  Thanks to
   Michelle Cotton for her early IANA reviews, and to Amanda Baber for
   answering questions related to the presentation of the Registry and
   accessibility of the complete template via URL.

Authors' Addresses

   Al Morton
   AT&T Labs
   200 Laurel Avenue South
   Middletown, NJ 07748
   United States of America

   Phone: +1 732 420 1571
   Email: acmorton@att.com

   Marcelo Bagnulo
   Universidad Carlos III de Madrid
   Av. Universidad 30
   28911 Leganes Madrid
   Spain

   Phone: 34 91 6249500
   Email: marcelo@it.uc3m.es
   URI:   http://www.it.uc3m.es

   Philip Eardley
   BT
   Adastral Park, Martlesham Heath
   Ipswich
   United Kingdom

   Email: philip.eardley@bt.com

   Kevin D'Souza
   AT&T Labs
   200 Laurel Avenue South
   Middletown, NJ 07748
   United States of America

   Phone: +1 732 420 2514
   Email: kld@att.com