Network Coding for Satellite Systems
RFC 8975

Document Type RFC - Informational (January 2021; No errata)
Authors Nicolas Kuhn  , Emmanuel Lochin 
Last updated 2021-01-22
Replaces draft-kuhn-nwcrg-network-coding-satellites
Stream Internet Research Task Force (IRTF)
Formats plain text html xml pdf htmlized (tools) htmlized bibtex
IETF conflict review conflict-review-irtf-nwcrg-network-coding-satellites
Stream IRTF state Published RFC
Consensus Boilerplate Yes
Document shepherd Vincent Roca
Shepherd write-up Show (last changed 2020-11-03)
IESG IESG state RFC 8975 (Informational)
Telechat date
Responsible AD (None)
Send notices to Vincent Roca <>
IANA IANA review state Version Changed - Review Needed
IANA action state No IANA Actions

Internet Research Task Force (IRTF)                         N. Kuhn, Ed.
Request for Comments: 8975                                          CNES
Category: Informational                                   E. Lochin, Ed.
ISSN: 2070-1721                                                     ENAC
                                                            January 2021

                  Network Coding for Satellite Systems


   This document is a product of the Coding for Efficient Network
   Communications Research Group (NWCRG).  It conforms to the directions
   found in the NWCRG taxonomy (RFC 8406).

   The objective is to contribute to a larger deployment of Network
   Coding techniques in and above the network layer in satellite
   communication systems.  This document also identifies open research
   issues related to the deployment of Network Coding in satellite
   communication systems.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Research Task Force
   (IRTF).  The IRTF publishes the results of Internet-related research
   and development activities.  These results might not be suitable for
   deployment.  This RFC represents the consensus of the Coding for
   Efficient Network Communications Research Group of the Internet
   Research Task Force (IRTF).  Documents approved for publication by
   the IRSG are not a candidate for any level of Internet Standard; see
   Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   ( in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction
   2.  A Note on the Topology of Satellite Networks
   3.  Use Cases for Improving SATCOM System Performance Using Network
     3.1.  Two-Way Relay Channel Mode
     3.2.  Reliable Multicast
     3.3.  Hybrid Access
     3.4.  LAN Packet Losses
     3.5.  Varying Channel Conditions
     3.6.  Improving Gateway Handover
   4.  Research Challenges
     4.1.  Joint Use of Network Coding and Congestion Control in
           SATCOM Systems
     4.2.  Efficient Use of Satellite Resources
     4.3.  Interaction with Virtualized Satellite Gateways and
     4.4.  Delay/Disruption-Tolerant Networking (DTN)
   5.  Conclusion
   6.  Glossary
   7.  IANA Considerations
   8.  Security Considerations
   9.  Informative References
   Authors' Addresses

1.  Introduction

   This document is a product of and represents the collaborative work
   and consensus of the Coding for Efficient Network Communications
   Research Group (NWCRG); while it is not an IETF product and not a
   standard, it is intended to inform the SATellite COMmunication
   (SATCOM) and Internet research communities about recent developments
   in Network Coding.  A glossary is included in Section 6 to clarify
   the terminology used throughout the document.

   As will be shown in this document, the implementation of Network
   Coding techniques above the network layer, at application or
   transport layers (as described in [RFC1122]), offers an opportunity
   for improving the end-to-end performance of SATCOM systems.
   Physical- and link-layer coding error protection is usually enough to
   provide quasi-error-free transmission, thus minimizing packet loss.
   However, when residual errors at those layers cause packet losses,
   retransmissions add significant delays (in particular, in
   geostationary systems with over 0.7 second round-trip delays).
   Hence, the use of Network Coding at the upper layers can improve the
   quality of service in SATCOM subnetworks and eventually favorably
   impact the experience of end users.

   While there is an active research community working on Network Coding
   techniques above the network layer in general and in SATCOM in
   particular, not much of this work has been deployed in commercial
   systems.  In this context, this document identifies opportunities for
   further usage of Network Coding in commercial SATCOM networks.

   The notation used in this document is based on the NWCRG taxonomy

   *  Channel and link error-correcting codes are considered part of the
      error protection for the PHYsical (PHY) layer and are out of the
      scope of this document.

   *  Forward Erasure Correction (FEC) (also called "Application-Level
      FEC") operates above the link layer and targets packet-loss
Show full document text