34

	Question(s):
	14
	Meeting, date:
	Ottawa, Canada; 7-11 October 2002

	Study Group:
	15
	Working Party:
	3
	Intended type of document (R-C-D-TD): WD
	05r1

	Source:
	Editor

	Title:
	ITU-T Draft Recommendation G.7713.2, version 0.6

	Contact:
	Dimitrios Pendarakis

Tellium

USA
	Tel: +1 732-923-4254

Fax: +1 732-923-9804

Email: dpendarakis@tellium.com

G.7713.2
DCM Signalling Mechanism Using GMPLS RSVP-TE
(DCM GMPLS RSVP-TE)
Summary

This Recommendation covers the areas associated with the signalling aspects of automatic switched transport network (ASTN). Specifically it provides the signalling protocol based on the GMPLS RSVP-TE. This Recommendation focuses on the UNI and E-NNI interface specification. While these protocol specifications are generally applicable to the I-NNI as well, the I-NNI interface specification is for further study. This Recommendation encompasses support for Soft Permanent Connection (SPC) services. This version also includes support for Switched Connection (SC) services for intra-carrier application. As such, name translation/directory services and call capability sets are not included. This signalling protocol is used for the communications of call controller, connection controller and link resource manager. Areas covered include:

· Message specifications,

· Attribute specifications,

· Signal flows,

This Recommendation does not cover any aspects related to routing, or automatic discovery.

Source and history

This Recommendation forms part of a suite of Recommendations covering the full functionality of the automatic switched transport network (ASTN).

	DOCUMENT HISTORY

	Issue
	Notes

	0.1
	· Version 0.1 of G.7713.2

	0.2
	· Modifications based on WD40 of 2/02 Q.14/15 meeting

	0.3
	· Editorial modifications to provide clarifications in some sections of the document

	0.4
	· Included new text on SPC, Call, Recovery

	0.5
	· Modifications to text for call processing

	0.6
	· Modification based on comments received at 10/02 Q.14/15 meeting

Keywords

Distributed Call and Connection Management, Automatic Switched Transport Network, Automatic Switched Optical Network, User Network Interface, Exterior Network-Node Interface, GMPLS RSVP-TE

CONTENTS

41
Scope

42
References

43
Terms and Definitions

54
Abbreviations

65
Conventions

66
Assumptions

67
Overview and Application of GMPLS RSVP-TE to Distributed Connection Management

67.1
Overview of GMPLS RSVP-TE

77.1.1
Support for Basic Call Identifier

97.1.2
Support for Soft Permanent Connection

97.2
Defect Handling of GMPLS RSVP-TE

107.2.1
Signalling Channel Failure

107.2.2
Single Control Plane Node Failure

117.3
Example Signalling Flows

117.3.1
Example SPC Signal Flow

127.3.2
Basic SC Signal Flow

147.3.3
Setup Rejection Signal Flow

158
GMPLS RSVP-TE Messages

168.1
Path

178.2
Resv

178.3
ResvConf

188.4
PathTear

188.5
PathErr

198.6
Notify

198.7
Hello

208.8
Ack

208.9
Srefresh

209
GMPLS RSVP-TE Attributes

209.1
GMPLS RSVP-TE Objects

239.2
GMPLS RSVP-TE Error/Status Codes

1 Scope

This Recommendation covers the areas associated with the signalling aspects of automatic switched transport network (ASTN). Specifically it provides the signalling protocol based on the GMPLS RSVP-TE. This Recommendation focuses on the UNI and E-NNI interface specification. While these protocol specifications are generally applicable to the I-NNI as well, the I-NNI interface specification is for further study. This Recommendation encompasses support for Soft Permanent Connection (SPC) services. This version also includes support for Switched Connection (SC) services for intra-carrier application. As such, name translation/directory services and call capability sets are not included. This signalling protocol is used for the communications of call controller, connection controller and link resource manager. Areas covered include:

· Message specifications

· Attribute specifications

· Signal flows

This Recommendation provides the attribute and message specification, and signalling exchange that allow support for hierarchical, source and step-by-step routing. Other areas of ASTN such as routing mechanism, parameters associated with routing mechanisms, discovery, and naming and addressing are not in the scope of this Recommendation.

This Recommendation uses the control plane architectural requirements in G.8080 and the protocol neutral requirements as outlined in G.7713/Y.1704 as the basis for the specification.

2 References

· ITU-T Rec. G.7713/Y.1704 (2001), Distributed Connection Management (DCM)
· ITU-T Rec. G.803 (2000), Architecture of Transport Networks based on the Synchronous Digital Hierarchy
· ITU-T Rec. G.805 (2000), Generic Functional Architecture of Transport Networks
· ITU-T Rec. G.807/Y.1301 (2001), Requirements for the Automatic Switched Transport Network (ASTN)
· ITU-T Rec. G.8080/Y.1304, Architecture of the Automatic Switched Optical Network (ASON)
· ITU-T Rec. G.872 (2001), Architecture of Optical Transport Networks
· IETF RFC 2205 (1997), Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification
· IETF RFC 2747 (2000), RSVP Cryptographic Authentication
· IETF RFC 2750 (2000), RSVP Extensions for Policy Control
· IETF RFC 2961 (2001), RSVP Refresh Overhead Reduction Extensions
· IETF RFC 3097 (2001), RSVP Cryptographic Authentication – Updated Message Type Value
· IETF RFC 3209 (2001), RSVP-TE: Extensions to RSVP for LSP Tunnels
· IETF RFC xxxx (200x), Generalized MPLS - Signaling Functional Description
· IETF RFC xxxx (200x), Generalized MPLS Signaling - RSVP-TE Extensions
· IETF RFC xxxx (200x), Generalized Multiprotocol Label Switching Extensions for SONET and SDH Control
· OIF-UNI-01.0 (2001), User Network Interface (UNI) 1.0 Signaling Specification
3 Terms and Definitions

The following terms are defined in G.805:

· Administrative domain

· Layer network

· Link connection

· Management domain

· Sub-network

· Sub-network connection

The following terms are defined in G.8080/Y.1304:

· Agent

· Component

· Call controller

· Connection controller

· Connection admission control

· Route controller

· Neighbour discovery

· Link resource manager

· Policy

· Protocol controller

· Sub-network point

· Sub-network point pool

The following terms are defined in G.807/Y.1301:

· Soft permanent connection

· Switched connection

4 Abbreviations

	ASON
	Automatic Switched Optical Network

	ASTN
	Automatic Switched Transport Network

	CallC
	Call Controller

	CC
	Connection Controller

	CCC
	Calling/Called Party Call Controller

	DCM
	Distributed Call and Connection Management

	E-NNI
	Exterior NNI

	GMPLS
	Generalized Multi-Protocol Label Switching

	I-NNI
	Interior NNI

	LRM
	Link Resource Manager

	NCC
	Network Call Controller

	NNI
	Network Node Interface

	RSVP-TE
	Resource reSerVation Protocol – Traffic Engineering

	SC
	Switched Connection

	SNP
	Sub-network Point

	SNPP
	Sub-network Point Pool

	SPC
	Soft permanent connection

	UNI
	User Network Interface

5 Conventions

In this Recommendation, the acronym GMPLS is used to denote the signalling protocol portion of GMPLS based on the GMPLS RSVP-TE and should be read as synonymous to GMPLS RSVP-TE.

6 Assumptions

This document assumes the messages and objects defined by RFC 2205, RFC 2961, RFC 3209, [GMPLS-SIG], [GMPLS-RSVPTE], and OIF UNI1.0 as the basis for the protocol specification for the ASON network.

7 Overview and Application of GMPLS RSVP-TE to Distributed Connection Management

[image: image1.wmf]

User Admin

Domain

User Admin

Domain

Provider A

Admin Domain

Provider C

Admin Domain

UNI

UNI

E

-

NNI

E

-

NNI

Provider B

Admin Domain

firewall

firewall

L2/L3

L2/L3

Loa

d

Balance

r

Loa

d

Balance

r

firewall

firewall

L2/L3

L2/L3

Loa

d

Balance

r

Loa

d

Balance

r

Domain A1

Domain A2

E

-

NNI

I

-

NNI

I

-

NNI

I

-

NNI

Provider A has divided

their network into multiple

control domains (e.g., vendor,

geographic, technology,

 political, etc.)

Provider B’s

network is a

single control

domain

Figure 1/G.7713.2. Overall View of Control Plane Partition

7.1 Overview of GMPLS RSVP-TE

The Resource reSerVation Protocol (RSVP) is an IETF-defined protocol [RFC 2205] for establishing network resources for IP datagram sessions (or “flows”). The definition of RSVP consists of basic procedures, message and object formats for signalling in an IP network. RSVP with Traffic Engineering extensions (RSVP-TE) [RFC 3209] has been defined for establishing connections subject to routing constraints in an MPLS network. The RSVP-TE definition includes additional procedures, message and object formats over the base RSVP definition. Generalized MPLS (GMPLS) signalling extends basic MPLS signalling procedures and abstract messages to cover different types of switching applications such as time-division-multiplexing (TDM) switching, port switching, wavelength switching, etc. The following figure shows the message flow for the relevant messages defined for GMPLS RSVP-TE. See below for a detailed description of these messages.

[image: image2.wmf]

Path

Resv

PathTear

PathErr

ResvConf

Path

PathTear

ResvConf

Resv

PathErr

Downstream

Direction

Upstream

Direction

Hello

Ack

Srefresh

Hello

Ack

Srefresh

Hello

Ack

Srefresh

Hello

Ack

Srefresh

CallC/CC

Figure 2/G.7713.2. GMPLS RSVP-TE Message Flow Directions

The GMPLS RSVP-TE is extended to support the requirements as specified in G.7713. The GENERALIZED_UNI object is defined to encapsulate the A-end and Z-end names, as well as the CoS and GoS specifications to support the service requests at the UNI interface. See OIF-UNI-01.0 for a definition of the GENERALIZED_UNI object. This information is also summarized as part of Annex A. In addition to this object, extensions are also made to support the basic call concept and to support the soft permanent connection service.

7.1.1 Support for Basic Call Identifier

GMPLS RSVP-TE may be extended to support the basic call model as specified in G.7713. This call model assumes that a request message handles both a call and its associated connections within the same message between the calling party call controller and the network call controller, as well as between the network call controller and the called party call controller. Addition or release of connections from an existing call is considered a call modify procedure, i.e., modification of specific connection attributes. As such, a call session remains constant across call modification operations. An established call may be identified via a call identifier object, CALL_ID. The format and structure of the CALL_D information is:

· CALL_ID Class = 227 [TBA], C-Type = 1

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Length
	Class-Num
	C-type

	…

Call identifier

…

Where the following C-types are defined:

· C-Type = 1 (operator specific): The call identifier contains operator specific identifier

· C-Type = 2 (globally unique): The call identifier contains globally unique part plus an operator specific identifier

The following structures are defined for the call identifier:

· Call identifier: generic [Length*8-32] bit identifier. The number of bits for call identifier must be multiples of 32 bits, with minimum size of 32 bits.

The structure for the globally unique call identifier (to guarantee global uniqueness) is to concatenate a globally unique fixed ID (composed of country code, carrier code, unique access point code) with an operator specific ID (where the operator specific ID is composed of a source transport network element address – and a local identifier).

Therefore, a generic CALL_ID with global uniqueness includes <global ID> (composed of <country code> plus <carrier code> plus <unique access point code>) and <operator specific ID> (composed of <source transport network element address> plus <local identifier>). For a CALL_ID that only requires operator specific uniqueness only the <operator specific ID> is needed, while for a CALL_ID that requires to be globally unique both <global ID> and <operator specific ID> are needed.

The <global ID> shall consist of a three-character International Segment (the <country code>) and a twelve-character National Segment (the <carrier code> plus <unique access point code>). These characters shall be coded according to ITU-T Recommendation T.50. The International Segment (IS) field provides a 3 character ISO 3166 Geographic/Political Country Code. The country code shall be based on the three-character uppercase alphabetic ISO 3166 Country Code (e.g., USA, FRA).

The National Segment (NS) field consists of two sub-fields: the ITU Carrier Code followed by a Unique Access Point Code. The ITU Carrier Code is a code assigned to a network operator/service provider, maintained by the ITU-T Telecommunication Service Bureau in association with Recommendation M.1400. This code shall consist of 1-6 left-justified characters, alphabetic, or leading alphabetic with trailing numeric. The unique access point code shall be a matter for the organization to which the country code and ITU carrier code have been assigned, provided that uniqueness is guaranteed. This code shall consist of 6-11 characters, with trailing NULL, completing the 12-character National Segment.

The format of the Call identifier field for C-Type = 1:

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Length
	Class-Num
	C-type

	Type
	Reserved

	Source transport network element address

…

	Local Identifier

The format of the Call identifier field for C-Type = 2:

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Length
	Class-Num
	C-type

	Type
	IS (3 bytes)

	NS (12 bytes)

	Source transport network element address

…

	Local Identifier

In both cases, a “Type” field is defined to indicate the type of format used for the source LSR address. The Type field has the following meaning:

For Type=0x01, the source transport network element address is 4 bytes

For Type=0x02, the source transport network element address is 16 bytes

For Type=0x03, the source transport network element address is 20 bytes

For type=0x04, the source transport network element address is 6 bytes

For type=0x7f, the source transport network element address has the length defined by the vendor

Source transport network element address:

An address of the transport network element (SSN) controlled by the source network.

Local identifier:

A 64-bit identifier that remains constant over the life of the call.

Note that if the source transport network element address is assigned from an address space that is globally unique, then the operator-specific CALL_ID may also be used to represent a globally unique CALL_ID. However, this is not guaranteed since this address may be assigned from an operator-specific address space.

The following processing rules are applicable to the CALL_ID object:

· For initial calls, the calling/originating party call controller must set the CALL_ID’s C-Type and call identifier value to all-zeros.

· For a new call request, the source network call controller (SNCC) sets the appropriate C-type and value for the CALL_ID.

· For an existing call (in case CALL_ID is non-zero) the SNCC verifies existence of the call.

· The CALL_ID object on all messages MUST be sent from ingress call controller to egress call controller by all other (intermediate) controllers without altering.

· The destination user/client receiving the request uses the CALL_ID value as reference to the requested call between the source user and itself. Subsequent actions related to the call uses the CALL_ID as the reference identifier.

7.1.2 Support for Soft Permanent Connection

GMPLS RSVP-TE may be extended to support SPC services. An SPC service assumes that both source and destination user-to-network connection segments are provisioned while the network connection segment is set up via the control plane. For example, when an initial request is received from an external source (e.g., from management system), there is an implicit assumption that the control plane has adequate information to determine the specific destination (network-to-user) link connection to use. Support for SPC is provided via the SPC_LABEL object.

The SPC_LABEL is a sub-object of the GENERALIZED_UNI object, and has the same format and structure as the EGRESS_LABEL sub-object of the GENERALIZED_UNI object. The SPC_LABEL information is:

· SPC_LABEL (Type=4, Sub-type=2 [TBA])

Note that to support the case of SPC, the GENERALIZED_UNI object is used. This object is used to support the SPC label information as well as service level and diversity specifications that are relevant to the SPC connection request. For a SPC request, the source and destination TNA addresses contain the addresses of the transport network elements controlled by the source the destination network call controllers, respectively. Thus the source TNA contains the address of the transport network element controlled by the source network call controller and the destination TNA contains the address of the transport network element controlled by the destination network call controller.

7.2 Defect Handling of GMPLS RSVP-TE

There are different types of defects that may affect the control plane. These defects may range from a simple signalling channel failure to multiple control plane node failures. The control plane needs to support appropriate behaviours to recover from these defects, initially attempting to recover from failures based on local control plane mechanisms, local interaction with the transport plane, and subsequently attempting to recover based on control plane interactions with external components. General guidelines for defect handling include:

· Control plane failures are notified to the management plane. The management plane may direct the control plane to take certain actions due to the failure. These actions may include entering into a self-refresh state, cleaning up of partial connections, release of certain connections, or other protocol-specific actions for state maintenance and recovery.
· A control plane node may provide a persistent storage of relevant information, such as call and connection state information, configuration information, and control plane neighbour information.

· After repair if connection/call states cannot be recovered, the control plane node may communicate with an external component to attempt state information recovery. External components may include neighbour control plane nodes or a persistent storage provided by a centralised (e.g., management plane) component. Note that although the restart mechanism allows neighbour control plane nodes to automatically recover (and thus infer) the states of calls/connections, this mechanism can also be used for verification of neighbour states while the persistent storage provides the local recovery of lost state. In this case, if during the Hello synchronization the restarting node determines that a neighbour does not support state recovery (i.e., local state recovery only), and the restarting node maintains its state on a per neighbour basis, the restarting node should immediately consider the Recovery as completed

· A control plane node notifies the management plane of the inability to recover (subset of) relevant information (e.g., inability to synchronize state of connections). The management plane may respond with the following actions (the default control plane action should be to retain the connections):

· Release the impacted connections

· Retain the impacted connections. In this case, a connection may remain non-synchronized from the control plane perspective; however, the connection may remain valid

· A control plane node (after recovering from node failure) may not be able to recover neighbour connection state from its local persistent storage and thus may lose information on connections. In this case the control plane node should request an external controller (e.g., the management system) for information to recover the connections. Similarly call state may be un-recovered and require management intervention to resolve. Specifics of the interactions between the control plane and management plane are beyond the scope of this Recommendation.

Thus, as a general rule:

· A control plane failure must not result in the release of established connections. Setup requests in the process of been completed may be removed (either during the failure or after recovery from failure). Established connections associated with a pending release request must be released (either during the failure or after recovery from failure).

However, a transport plane node failure may result in the release of established connections. This depends on the type of connection and the service level associated with each connection. For example, a “best-effort unprotected” connection may be released during a transport plane node failure while a “protected” connection must be restored (or maintained) based on the service level specification associated with that connection. Note that even in the case of a protected connection, the original connection may be released while a new connection is set up (this also depends on the type of protection used for the particular connection).

7.2.1 Signalling Channel Failure

In the case of signalling channel failure between control plane nodes A and B, connection #1, #4 and #6 will be affected. As the RSVP-TE state refresh are point-to-point, there will be three Path refresh messages (or a single Srefresh message) between nodes A and B that are disrupted. According to the behaviours described above, both nodes A and B will notify the management plane of the communications failure between nodes A and B. Management plane determines that the failure is a communications channel failure (since it is still receiving notifications from both control plane nodes) and thus instructs both nodes to continue with self-refresh. Figure 3 illustrates the failure scenario.

[image: image3.wmf]

CP

Node A

CP

Node B

CP

Node C

CP

Node D

{

1

2

3

4

5

6

Connections

Figure 3/G.7713.2. Signalling Channel Failure Between Control Plane Nodes A and B

Upon repair of the signalling channel, nodes A and B initiate mechanism (as per GMPLS RSVP-TE restart mechanism – send Srefresh for state verification) for synchronizing the states of the affected connections and calls (e.g., states of connections #1, #4, and #6). If during the synchronization procedure connection states are found out of synchronization, a notification is sent to the management plane according to the behaviour described above.

7.2.2 Single Control Plane Node Failure

In the case of a control plane node failure, for example failure of node B in Figure 4, both neighbouring nodes A and C will notify the management plane of loss of communication with node B. The management plane then determines whether any connections (and calls) are affected by the control plane node failure. For connections (and calls) that are not affected, it instructs nodes A and C to enter self-refresh procedures; for connections affected, it may instruct nodes A and C to initiate connection release, e.g., if there is also an associated transport plane failure.

Note that in addition to management plane notification, connections that are disrupted due to the control plane node failure will be detected by nodes A and C (e.g., LOS) and as such the control plane may also initiate release of the connection based on this status for certain types of connections, e.g., “best effort” connections. Figure 4 illustrates this scenario.

[image: image4.wmf]

CP

Node A

CP

Node B

CP

Node C

CP

Node D

{

1

2

3

4

5

6

Connections

Figure 4/G.7713.2. Control Plane Node B Failure

In the case of self-refresh, upon node B’s recovery, node B restores the connection states based on its “last-known” connection state status via a local persistent storage. Two possible scenarios exist:

· Node B’s connections are lost due also to transport plane failure (note that for this case the connections (#1, #2, #4, #5, #6) have already been released by the non-failed control plane node since there would be indications of service interruption from the transport plane to the control plane– via transport plane’s OAM mechanism); in this case node B may be instructed by the management system (if it didn’t already performed this via examining its fabric status) to remove the states of the affected connections

· Node B’s connections are retained (i.e., connections #1, #2, #4, #5, #6 remain active); in this case, node B initiates recovery procedure with node A and node C (NOTE: this may be done simultaneously or per-neighbour). Thus node B’s neighbour may not distinguish the node failure from a signalling channel failure. If status of any active connections is out-of-sync, then the management plane needs to provide information to correct the synchronization as per above behaviours.

7.3 Example Signalling Flows

This section illustrates basic signal flows for the GMPLS RSVP-TE for Soft Permanent Connections and Switched Connections. The basic signal flows considered within the document are operations associated with supporting Soft Permanent Connections and Switched Connections. A general description of the signalling flow for the setup procedure:

· A Path message is sent from the source to the destination to request a connection.

· Upon reception of the Path message by the destination node, an RSVP session is set up between the source and destination.

· The destination node responds to the Path message via one of two messages sent in the upstream direction:

· Resv (for normal setup response) or

· PathErr (for error in the setup procedure); in this case the connection is not set up. If the Path state is not removed, then an explicit PathTear is needed to remove any extraneous states

· Upon reception of the Resv message by the source node, an optional ResvConf message may be sent. This is dependent on the RESV_CONFIRM object within the Resv message.

7.3.1 Example SPC Signal Flow

Figure 5 and Figure 6 shows an example signal flow for SPC request. For a SPC connection, it is assumed that the user-to-network link connection is provisioned and information is provided to the control plane regarding the identity of the link connection. Setting up the switched portion of the SPC connection remains the same as that for setting up a switched connection. This is true of the SPC request signal flow as well.

[image: image5.wmf]

Request

from MP

E

-

NNI

User

User

A Interface/ Label

identified by MP

Z Interface/ Label

identified by MP

I

-

NNI

Path

Resv

ResvConf

Ack

Figure 5/G.7713.2. Basic Soft Permanent Connection Setup

[image: image6.wmf]

MP

E

-

NNI

User

User

Teardown

“connectX”

I

-

NNI

Path

PathErr*

Ack

*: with Path_State_Removed flag

Start to

release

Figure 6/G.7713.2. Basic SPC Release

7.3.2 Basic SC Signal Flow

Figure 7 illustrates the setup of the SC. To set up a SC call, a user initiates the request across the UNI interface. The request is propagated across the network to the destination user. Upon verification/acceptance of the request, a positive indication is sent to the source user. Optionally, the source user may also transmit a final response. This third phase message is introduced to support explicit destination notification of completed connection setup.

[image: image7.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Path

Resv

ResvConf

Ack

Figure 7/G.7713.2. Basic SC Setup

In the case for SC release, a release request may be initiated by different controllers, e.g., either originating party call controller, called party call controller, or any one of network call controllers may initiate the release. Figure 8a illustrates the originating party initiated release request, Figure 8b illustrates the called party initiated release request, and Figure 8c to Figure 8f illustrate a network call controller initiating a release request.

[image: image8.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Path

PathErr*

Ack

*: with Path_State_Removed flag

Start to

release

Figure 8a/G.7713.2. Basic SC Release (OPCC Initiated)

[image: image9.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Resv

(D&R)

PathTear

Start to

release

Figure 8b/G.7713.2. Basic SC Release (CPCC Initiated)

[image: image10.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

PathTear

Resv

(D&R)

Start to

release

Path

(A&R)

Figure 8c/G.7713.2. SC Release: Intermediate Controller Initiated (Towards UNI downstream)

[image: image11.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

PathErr*

Path

(D&R)

Start to

release

* PathErr scenario as above for case of Path_State_Removed flag

Resv

(A&R)

Figure 8d/G.7713.2. SC Release: Intermediate Controller Initiated (Towards UNI upstream)

[image: image12.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Path

(A&R)

PathTear

Resv

(D&R)

Start to

release

Figure 8e/G.7713.2. SC Release: Intermediate Controller Initiated (Towards E-NNI downstream)

[image: image13.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Resv

(A&R)

PathErr*

Path

(D&R)

Start to

release

* PathErr scenario as above for case of Path_State_Removed flag

Figure 8f/G.7713.2. SC Release: Intermediate Controller Initiated (Towards E-NNI upstream)

7.3.3 Setup Rejection Signal Flow

Figure 9 illustrates the case where a request to setup a connection is immediately rejected by an intermediate node. This may occur due to various reasons as described in G.7713, e.g., during the initial request, no resources were available.

[image: image14.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Path

(D&R)

PathErr*

Start to

release

Ack

* PathErr with Path_State_Removed flag set

Figure 9/G.7713.2. Setup: Rejection by Intermediate Node (with Path_State_Removed set)

Figure 10 illustrates the case where a request to setup a connection is rejected by an intermediate node after receiving an indication from the destination. For example, this may occur due to inability to complete assignment of a resource to the requested connection due to transport plane error.

[image: image15.wmf]

UNI

E

-

NNI

UNI

OPCC

CPCC

SNCC

DNCC

I

-

NNI

Path

Resv

PathTear

Start to

release

PathErr*

* PathErr scenario as above for case of Path_State_Removed flag

 set

Ack

Figure 10/G.7713.2. Setup: Rejection by Intermediate Node After Receiving Indication

Figure 11 illustrates the case where a request to setup a connection is rejected by an intermediate node after receiving a confirmation from the source. For example, this may occur due to loss of message (either loss of the ResvConf message, or the Ack message associated with the ResvConf message). In this case the connection has in fact been established, and connection monitoring (if any) may be in place. As such this defect constitutes a control plane defect, and thus should not be service impacting. A possible action should be to notify the management system of the control plane defect.

[image: image16.wmf]

UNI

E

-

NNI

UNI

UNI

-

C

UNI

-

C

UNI

-

N

UNI

-

N

I

-

NNI

Path

Resv

ResvConf

Start to

release

Ack

* PathErr scenario as above for case of Path_State_Removed flag

Notify management

system of defect

Figure 11/G.7713.2. Setup: Rejection by Intermediate Node After Receiving Confirmation

8 GMPLS RSVP-TE Messages

A GMPLS RSVP-TE message format is based on the basic structure as defined by RFC2205. An RSVP message is composed of a common header plus a number of objects specific to each message type. The structure of the common header is shown in Table 1:

Table 1/G.7713.2. Common Header

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Vers
	Flags
	Msg Type
	RSVP Checksum

	Send_TTL
	(Reserved)
	RSVP Length

Definitions of the fields may be found in RFC 2205, with specific message type extensions provided by RFC 2961 and RFC 3209. For clarity, the message type field is re-produced below:

Msg Type:

1: Path

2: Resv

3: PathErr

5: PathTear

7: ResvConf

13: Ack

15: Srefresh

20: Hello

21 (tba): Notify

[ED: tba: to be assigned by IANA]

8.1 Path

This message is modified from definitions in RFC 2205, RFC 2961, and RFC 3209 with further extensions to support distributed connection management.

This message is used to

· Initiate a connection setup request

· Initiate a source-initiated release request (using ADMIN_STATUS w/ D & R bit set)

· Initiate an intermediate-initiated downstream release request (using ADMIN_STATUS w/ A & R bit set)

· Respond to a received Resv (w/ A & R bit set) connection release request (using ADMIN_STATUS w/ D & R bit set)

<Path Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<RSVP_HOP>

<TIME_VALUES>

[<EXPLICIT_ROUTE>]

<LABEL_REQUEST>

<CALL_ID>

[<PROTECTION>]

[<LABEL_SET> ...]

 [<SESSION_ATTRIBUTE>]

 [<NOTIFY_REQUEST>]

 [<ADMIN_STATUS>]

 <GENERALIZED_UNI>

 [<POLICY_DATA> ...]

<sender descriptor>

The format of the sender description for unidirectional LSPs is:

<sender descriptor> ::=

<SENDER_TEMPLATE>

<SENDER_TSPEC>

[<ADSPEC>]

[<RECORD_ROUTE>]

[<SUGGESTED_LABEL>]

[<RECOVERY_LABEL>]

The format of the sender description for bi-directional LSPs is:

<sender descriptor> ::=

<SENDER_TEMPLATE>

<SENDER_TSPEC>

[<ADSPEC>]

[<RECORD_ROUTE>]

[<SUGGESTED_LABEL>]

[<RECOVERY_LABEL>]

<UPSTREAM_LABEL>

The <common header> must come first before any objects. When present, the <INTEGRITY> object must precede all other objects.

8.2 Resv

This message is modified from definitions in RFC 2205, RFC 2961, and RFC 3209 with further extensions to support distributed connection management.

This message is used to

· Respond to a connection setup request indicated by a Path message

· Initiate a destination-initiated release request (using ADMIN_STATUS w/ D & R bit set)

· Initiate an intermediate-initiated upstream release request (using ADMIN_STATUS w/ A & R bit set)

· Respond to a received Path (w/ A & R bit set) connection release request (using ADMIN_STATUS w/ D & R bit set)

<Resv Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<RSVP_HOP>

<TIME_VALUES>

<CALL_ID>

[<RESV_CONFIRM>]

[<SCOPE>]

[<NOTIFY_REQUEST>]

[<ADMIN_STATUS>]

[<POLICY_DATA> ...]

<STYLE>

<flow descriptor list>

<flow descriptor list> ::=

<FF flow descriptor list> | <SE flow descriptor>

<FF flow descriptor list> ::=

<FLOWSPEC>

<FILTER_SPEC>

<LABEL>

[<RECORD_ROUTE>] | <FF flow descriptor list>

<FF flow descriptor>

<FF flow descriptor> ::=

[<FLOWSPEC>]

<FILTER_SPEC>

<LABEL>

[<RECORD_ROUTE>]

<SE flow descriptor> ::=

<FLOWSPEC>

<SE filter spec list>

<SE filter spec list> ::=

<SE filter spec> | <SE filter spec list>

<SE filter spec>

<SE filter spec> ::=

<FILTER_SPEC>

<LABEL>

[<RECORD_ROUTE>]

The <common header> must come first before any objects. When present, the <INTEGRITY> object must precede all other objects. The <STYLE> and <flow descriptor list> must come last after all other objects.

8.3 ResvConf

This message is modified from definitions in RFC 2205 by RFC 2961. No additional modifications are necessary to support distributed connection management. For clarity, the format of this message is re-produced below:

This message is used to

· Respond to a Resv connection setup request.

<ResvConf message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<ERROR_SPEC>

<RESV_CONFIRM>

<STYLE>

<flow descriptor list>

<flow descriptor list> ::= (see earlier definition)

The <RESV_CONFIRM> object is copied from the same object in the Resv message. For <ERROR_SPEC>, the error code and error value are “0/0” to indicate confirmation.

8.4 PathTear

This message is modified from definitions in RFC 2205 by RFC 2961. No additional modifications are necessary to support distributed connection management. For clarity, the format of this message is re-produced below:

This message is used to

· Respond to a Resv (w/ D & R bit set) connection release request

· Respond to a PathErr (without Path_State_Removed flag set) during setup and release operations

· Sent as a result of unsuccessful setup operation (when no response is received to sending Path message)

· Sent as a result of unsuccessful release request (when no response is received to sending Path or Resv message with (A or D) & R bits set)

<PathTear Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<RSVP_HOP>

<CALL_ID>

[<sender descriptor>]

<sender descriptor> ::= (see earlier definition)

The <SENDER_TSPEC> and <ADSPEC> must be ignored.

8.5 PathErr

This message is modified from definitions in RFC 2205 and RFC 2961, with further extensions to support distributed connection management.

This message is used to

· Respond to a Path connection setup request when the connection cannot be set up successfully (using ERROR_SPEC with Path_State_Removed flag set)

· Respond to a Path (D & R bit set) connection release request (using ERROR_SPEC with Path_State_Removed flag set)

· Sent as a result of unsuccessful setup operation (when no response is received to sending Resv message)

· Sent as a result of unsuccessful release request (when no response is received to sending Path or Resv message with (A or D) & R bits set)

<PathErr Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<CALL_ID>

<ERROR_SPEC>

[<ACCEPTABLE_LABEL_SET> ...]

[<POLICY_DATA> ...]

<sender descriptor>

The <sender descriptor> is copied from the message in error.

8.6 Notify

This message is defined to support distributed connection management.

This message is used to

· Asynchronously notify the connection controller (specified in NOTIFY_REQUEST object) of errors associated with a connection

For connections set up that are monitored, the transport plane will provide associated monitoring based on existing transport plane OAM mechanisms. For example, if an ODU1 link connection is set up, a tandem connection monitoring may be set up to support exchange of connection status instead of the Notify message.

<Notify message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<ERROR_SPEC>

<notify session list>

<notify session list> ::=

[<notify session list>]

<upstream notify session> | <downstream notify session>

<upstream notify session> ::=

<SESSION>

<CALL_ID>

[<ADMIN_STATUS>]

[<POLICY_DATA>...]

<sender descriptor>

<downstream notify session> ::=

<SESSION>

<CALL_ID>

[<POLICY_DATA>...]

<flow descriptor list descriptor>

8.7 Hello

This message is modified from definitions in RFC 3209, with further extensions to support distributed connection management.

This message is used to

· Ensure RSVP session is up (using request and acknowledge objects)

· Initiate restart procedures by exchanging recovery and restart timers

<Hello Message> ::=

<Common Header>

[<INTEGRITY>]

<HELLO>

[<RESTART_CAP>]

8.8 Ack

This message is modified from definitions in RFC 2961, with further extensions to support distributed connection management.

This message is used to

· Provide acknowledgement of sent messages. The acknowledgement function can be provided either directly, using the Ack message, or indirectly, when the sent message has a corresponding reply message on a specific link (e.g., Resv is Path’s corresponding reply message). In the latter case, the ACK function is provided by including a MESSAGE_ID_ACK object within the reply message

<ACK Message> ::=

<Common Header>

[<INTEGRITY>]

<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

8.9 Srefresh

This message is defined in RFC 2961. No modifications are necessary to support distributed connection management. For clarity, the format of this message is re-produced below:

This message is used to

· Refresh RSVP-TE state without the transmission of Path or Resv messages. This results in a reduction of the amount of information that must be transmitted and processed in order to maintain call and connection state synchronisation. An Srefresh message carries a list of Message_Identifier fields corresponding to Path and Resv trigger messages that established the state.

<Srefresh Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<srefresh list> | <source srefresh list>

<srefresh list> ::=

<MESSAGE_ID LIST> | <MESSAGE_ID MCAST_LIST>

[<srefresh list>]

<source srefresh list> ::=

<MESSAGE_ID SRC_LIST>

[<source srefresh list>]

9 GMPLS RSVP-TE Attributes

9.1 GMPLS RSVP-TE Objects

GMPLS RSVP-TE re-uses attributes defined by RFC 2205, RFC 2961 and RFC 3209. RFC 2961 and RFC 3209 modifies certain attributes originally defined by RFC 2205, and takes precedence over attributes defined in RFC 2205.

In addition to modifications made by RFC 3209, the following attributes are further modified to support distributed connection management. Table 2 provides the list of attributes modified to support distributed connection management (modifications are in italics):

Table 2/G.7713.2. List of Attributes Defined by RFC 2205, RFC2961 and RFC 3209, Modified for Distributed Connection Management

	CN
	Object
	Object Format (C-Type)

	1
	SESSION
	7
LSP Tunnel IPv4

8
LSP Tunnel IPv6

11
UNI_IPv4

12
UNI_IPv6

15
ENNI_IPv4

16
ENNI_IPv6

	3
	RSVP_HOP
	3
IPv4 IF_ID [tba]

4
IPv6 IF_ID [tba]

For C-type 3,4, the following sub-TLVs are defined:

1
IPv4

2
IPv6

3
IF_INDEX

4
COMPONENT_IF_DOWNSTREAM

5
COMPONENT_IF_UPSTREAM

	4
	INTEGRITY
	1
Type 1 Integrity Value

	5
	TIME_VALUES
	1
Type 1 Time Value

	6
	ERROR_SPEC
	3
IPv4 IF_ID [tba]

4
IPv6 IF_ID [tba]

same sub-TLV as RSVP_HOP

	7
	SCOPE
	1
IPv4

2
IPv6

	8
	STYLE
	1
Type 1 Style

	9
	FLOWSPEC
	2
Int-serv Flowspec

4
SONET/SDH [tba]

	10
	FILTER_SPEC
	7
LSP Tunnel IPv4

8
LSP Tunnel IPv6

	11
	SENDER_TEMPLATE
	7
LSP Tunnel IPv4

8
LSP Tunnel IPv6

	12
	SENDER_TSPEC
	2
Int-serv

4
SONET/SDH [tba]

	14
	POLICY_DATA
	1
Type 1 policy data

	15
	RESV_CONFIRM
	1
IPv4

2
IPv6

	16
	RSVP_LABEL
	1
Type 1 label

2
GENERALIZED_LABEL (port, wavelength or SONET/SDH) [tba]

3
Waveband label

	19
	LABEL_REQUEST
	1
Without Label Range

2
With ATM Label Range

3
With Frame Relay Label Range

4
GENERALIZED_LABEL_REQUEST (SONET/SDH) [tba]

	20
	EXPLICIT_ROUTE
	1
Type 1 explicit route

also sub-type:

1
IPv4 prefix

2
IPv6 prefix

3
Label [tba]

4
Unnumbered Interface ID

32
Autonomous System

	21
	RECORD_ROUTE
	1
Type 1 record route

also sub-type:

1
IPv4 address

2
IPv6 address

3
Label [tba]

4
Unnumbered Interface ID

	22
	HELLO
	1
Request

2
Acknowledgment

	23
	MESSAGE_ID
	1
Type 1 message id

	24
	MESSAGE_ID_ACK
	1
MESSAGE_ID_ACK

2
MESSAGE_ID_NACK

	25
	MESSAGE_ID_LIST
	1
Message ID list

2
IPv4 Message ID Source list

3
IPv6 Message ID Source list

4
IPv4 Message ID Multicast list

5
IPv6 Message ID Multicast list

	34 tba
	RECOVERY_LABEL
	same as RSVP_LABEL

	35 tba
	UPSTREAM_LABEL
	same as RSVP_LABEL

	36 tba
	LABEL_SET
	1
Type 1

	37 tba
	PROTECTION
	1
Type 1

	129 tba
	SUGGESTED_LABEL
	same as RSVP_LABEL

	130 tba
	ACCEPTABLE_LABEL_SET
	same as LABEL_SET

	131 tba
	RESTART_CAP
	1
Type 1

	195 tba
	NOTIFY_REQUEST
	1
IPv4

2
IPv6

	196 tba
	ADMIN_STATUS
	1
Type 1

	207
	SESSION_ATTRIBUTE
	1
LSP_TUNNEL_RA

7
LSP Tunnel

	227 tba
	CALL_ID
	1
Operator specific

2
Globally unique

	229 tba
	GENERALIZED_UNI
	Under C-Type = 1, the following Type, Sub-type are defined:

Type
Description (Sub-Type, if multiple))

1
Source TNA address

2
Destination TNA address

3
Diversity

4
Egress label (sub-type=1)

SPC_LABEL (sub-type=2)

5
Service level

Note that an object’s Class-number determines how a control plane node reacts to these objects when the object is not recognized:

· Class-Num = 0bbbbbbb

The entire message should be rejected and an "Unknown Object Class" error returned.

· Class-Num = 10bbbbbb

The node should ignore the object, neither forwarding it nor sending an error message.

· Class-Num = 11bbbbbb

The node should ignore the object but forward it, unexamined and unmodified, in all messages resulting from this message.
Note: The format of the SONET/SDH FLOWSPEC and SENDER_TSPEC objects are defined in [IETF RFC xxxx GMPLS SONET/SDH]. With respect to this format, the “Transparency”, “Profile” and “Number of Virtual Components (NVC)” fields are for further study.
9.2 GMPLS RSVP-TE Error/Status Codes

Table 3/G.7713.2. Error Codes and Values for Status/Error Reporting

	Connection setup – success
	Resv (or ResvConf) message

	Connection setup – failed: message error
	ERROR_SPEC (general)

	Connection setup – failed: called party busy
	ERROR_SPEC 24/5

	Connection setup – failed: calling party busy
	ERROR_SPEC 24/103

	Connection setup – failed: timeout
	ERROR_SPEC 24/5 or 24/1031

	Connection setup – failed: identity error: invalid A-end user name
	ERROR_SPEC 2/100

	Connection setup – failed: identity error: invalid Z-end user name
	ERROR_SPEC 2/101

	Connection setup – failed: identity error: invalid connection name
	ERROR_SPEC 24/102

	Connection setup – failed: identity error: invalid call name
	ERROR_SPEC 24/105

	Connection setup – failed: service error: invalid SNP ID
	ERROR_SPEC 24/6 or 24/11 or 24/12 or 24/14

	Connection setup – failed: service error: unavailable SNP ID
	ERROR_SPEC 24/6 or 24/11 or 24/12 or 24/14

	Connection setup – failed: service error: invalid SNPP ID
	ERROR_SPEC 24/104

	Connection setup – failed: service error: unavailable SNPP ID
	ERROR_SPEC 24/104

	Connection setup – failed: identity error: invalid SPC Label
	ERROR_SPEC 24/106

	Connection setup – failed: policy error: invalid CoS
	ERROR_SPEC 24/101

also

additional values from 2/any

	Connection setup – failed: policy error: unavailable CoS
	ERROR_SPEC 24/101

also

additional values from 2/any

	Connection setup – failed: policy error: invalid GoS
	ERROR_SPEC 24/101

also

additional values from 2/any

	Connection setup – failed: policy error: unavailable GoS
	ERROR_SPEC 24/101

also

additional values from 2/any

	Connection setup – failed: policy error: failed security check
	ERROR_SPEC 2/100 or 2/1012

	Connection setup – failed: policy error: invalid explicit resource list
	ERROR_SPEC 24/1, 24/2, 24/3, or 24/7

	Connection setup – failed: policy error: invalid recovery
	ERROR_SPEC 24/15

also

ERROR_SPEC 24/100

	Connection setup – failed: connection error: failed to create SNC
	ERROR_SPEC 1/2

	Connection setup – failed: connection error: failed to establish LC
	ERROR_SPEC 24/9

	Connection release – success
	PathTear or PathErr (w/ Path_State_Removed flag)

	Connection release – failed: message error
	ERROR_SPEC

	Connection release – failed: timeout
	ERROR_SPEC 24/5, 24/103

	Connection release – failed: identity error: invalid call name
	ERROR_SPEC 24/102

	Connection release – failed: policy error: failed security check
	(if security failed, GMPLS drops the request)

	Connection release – failed: connection error: failed to release SNC
	Error value in error code=21 (general)

	Connection release – failed: connection error: failed to free LC
	Error value in error code=21 (general)

	Connection error – non-service affecting
	ERROR_SPEC (general)

	Connection error –service affecting
	ERROR_SPEC (general)

	Connection error – unexpected call release
	Error value in error code=21 (general)

NOTE 1: Timeout is an internal event. As such, the error reported is one of: (1) no route available towards source, or (2) no route available towards destination.

NOTE 2: Security check failure is reported as: (1) unauthorized source, or (2) unauthorized destination.

In addition to the above error codes and values used for distributed connection management, Table 4 below provides the set of error codes and values that are used for identifying other protocol specific errors.

Table 4/G.7713.2. List of Error Codes and Values Defined by RFC 2205 and RFC 3209, modified for Distributed Connection Management (in Italics)

	Error Code
	Error Value

	0: Confirmation
	

	01: Admission Control Failure
	bits in this format: ssur cccc cccc cccc

ss = 00: Low order 12 bits contain a globally defined sub-code (values listed below).

ss = 10: Low order 12 bits contain a organization-specific sub-code. RSVP is not expected to be able to interpret this except as a numeric value.

ss = 11: Low order 12 bits contain a service-specific sub-code. RSVP is not expected to be able to interpret this except as a numeric value.

Since the traffic control mechanism might substitute a different service, this encoding may include some representation of the service in use.

u = 0: RSVP rejects the message without updating local state.

u = 1: RSVP may use the message to update local state and forward the message. This means that the message is informational.

r: Reserved bit, should be zero.

cccc cccc cccc: 12 bit code.

The following globally-defined sub-codes may appear in the low-order 12 bits when ssur = 0000:

-
Sub-code = 1: Delay bound cannot be met

-
Sub-code = 2: Requested bandwidth unavailable

-
Sub-code = 3: MTU in flowspec larger than interface MTU.

	02: Policy Control failure
	(from RFC 2750):

0 = ERR_INFO : Information reporting

1 = ERR_WARN : Warning

2 = ERR_UNKNOWN : Reason unknown

3 = ERR_REJECT : Generic Policy Rejection

4 = ERR_EXCEED : Quota or Accounting violation

5 = ERR_PREEMPT : Flow was pre-empted

6 = ERR_EXPIRED : Previously installed policy expired (not refreshed)

7 = ERR_REPLACED: Previous policy data was replaced & caused rejection

8 = ERR_MERGE : Policies could not be merged (multicast)

9 = ERR_PDP : PDP down or non functioning

10= ERR_SERVER : Third Party Server (e.g., Kerberos) unavailable

11= ERR_PD_SYNTX: POLICY_DATA object has bad syntax

12= ERR_PD_INTGR: POLICY_DATA object failed Integrity Check

13= ERR_PE_BAD : POLICY_ELEMENT object has bad syntax

14= ERR_PD_MISS : Mandatory PE Missing (Empty PE is in the PD object)

15= ERR_NO_RSC : PEP Out of resources to handle policies.

16= ERR_RSVP : PDP encountered bad RSVP objects or syntax

17= ERR_SERVICE : Service type was rejected

18= ERR_STYLE : Reservation Style was rejected

19= ERR_FL_SPEC : FlowSpec was rejected (too large)

100 = Unauthorized source (tba)

101 = Unauthorized destination (tba)

Values between 2^15 and 2^16-1 can be used for site and/or vendor error values.

	03: No path information for this Resv message
	

	04: No sender information for this Resv message
	

	05: Conflicting reservation style
	The Error Value field contains the low-order 16 bits of the Option Vector of the existing style with which the conflict occurred. This Resv message cannot be forwarded

	06: Unknown reservation style
	

	07: Conflicting dest ports
	

	08: Conflicting sender ports
	

	09: (reserved)
	

	10: (reserved)
	

	11: (reserved)
	

	12: Service preempted
	bits in this format: ssur cccc cccc cccc

Here the high-order bits ssur are as defined under Error Code 01. The globally-defined sub-codes that may appear in the low-order 12 bits when ssur = 0000 are to be defined in the future

	13: Unknown object class
	Error Value contains 16-bit value composed of (Class-Num, C-Type) of unknown object. This error should be sent only if RSVP is going to reject the message, as determined by the high-order bits of the Class-Num.

	14: Unknown object C-Type
	Error Value contains 16-bit value composed of (Class-Num, C-Type) of object.

	15: (reserved)
	

	16: (reserved)
	

	17: (reserved)
	

	18: (reserved)
	

	19: (reserved)
	

	20: Reserved for API
	Error Value field contains an API error code, for an API error that was detected asynchronously and must be reported via an upcall.

	21: Traffic Control Error
	bits in this format: ss00 cccc cccc cccc

Here the high-order bits ss are as defined under Error Code 01. The following globally-defined sub-codes may appear in the low order 12 bits (cccc cccc cccc) when ss = 00:

-
Sub-code = 01: Service conflict

Trying to merge two incompatible service requests.

-
Sub-code = 02: Service unsupported

Traffic control can provide neither the requested service nor an acceptable replacement.

-
Sub-code = 03: Bad Flowspec value

Malformed or unreasonable request.

-
Sub-code = 04: Bad Tspec value

Malformed or unreasonable request.

-
Sub-code = 05: Bad Adspec value

Malformed or unreasonable request.

	22: Traffic Control System error
	The Error Value will contain a system-specific value giving more information about the error. RSVP is not expected to be able to interpret this value.

	23: RSVP System error
	The Error Value field will provide implementation-dependent information on the error. RSVP is not expected to be able to interpret this value.

	24: Routing Problem
	1
Bad EXPLICIT_ROUTE object

2
Bad strict node

3
Bad loose node

4
Bad initial subobject

5
No route available toward destination

6
Unacceptable label value

7
RRO indicated routing loops

8
MPLS being negotiated, but a non-RSVP-capable router stands in the path

9
MPLS label allocation failure

10
Unsupported L3PID

11
Label Set (tba)

12
Switching Type (tba)

13
reserved

14
Unsupported Encoding (tba)

15
Unsupported Link Protection (tba)

100
Diversity not available (tba)

101
Service level not available (tba)

102
Invalid/unknown connection ID (tba)

103
No route available toward source (tba)

104
Unacceptable Interface ID (tba)

105
Invalid/unknown call ID (tba)

106
Invalid SPC_Interface ID/Label [tba]

	25: Notify Error
	1
RRO too large for MTU

2
RRO Notification

3
Tunnel locally repaired

4
Control Channel Active State (tba)

5
Control Channel Degraded State (tba)

Annex A. Summary of GENERALIZED_UNI Object

(Normative)

The GENERALIZED_UNI object has the following format:

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Length
	Class-Num
	C-type

	…

Sub-objects

…

The contents of a GENERALIZED_UNI object are a series of variable-length data items. The common format of the sub-objects is shown below:

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Length
	Type
	Sub-type

	…

Value

…

The following sub-objects are defined. These sub-objects are all defined as sub-objects under the common C-Type = 1. The Type field distinguishes the sub-objects, while the Sub-type field distinguishes different uses of the sub-object. The contents of these sub-objects are described in OIF-UNI-01.0:

· SOURCE_TNA Address sub-object: Type = 1. The following sub-types are defined:

· IPv4 (Sub-type = 1);

· IPv6 (Sub-type = 2);

· NSAP (Sub-type = 3)

· DESTINATION_TNA Address sub-object: Type = 2. The following sub-types are defined:

· IPv4 (Sub-type = 1);

· IPv6 (Sub-type = 2);

· NSAP (Sub-type = 3)

· DIVERSITY sub-object: Type = 3, Sub-type = 1

· EGRESS_LABEL sub-object: Type = 4, Sub-type = 1

· SPC_LABEL sub-object: Type = 4, Sub-type = 2

· SERVICE_LEVEL
 sub-object: Type = 5, Sub-type = 1

Annex B. Label Scope

(Normative)

B.1 Scope of the label

Labels provide information that are useful only to the CC/LRM using them. Labels may have an associated structure imposed on them for local use. Once the labels are transmitted to another CC or LRM, the structure of a label should no longer be important. This issue does not present a problem in a simple point-to-point connection between two control plane-enabled nodes. However, once a sub-network is introduced between these nodes (where the sub-network provides re-arrangement capability for the signals) label scoping becomes an issue. Figure 12 illustrates the case of a connection traversing a non-control-plane re-arrangeable sub-network (e.g., label re-arrangement may be performed via a management system). There is an implicit assumption that the non-control-plane connections already exist prior to any connection request.

[image: image17.wmf]

Node A

Node B

Non

-

control plane network

Figure 12/G.7713.2. Example Link Where Labels are Re-arranged via Non-Control Plane Network

The only characteristic of a label that is important once it is transmitted is the format of the label and the uniqueness of the label values. Characteristics such as the structure of the label are no longer important or useful. In fact, imposing structure of a label outside of the local space may result in restrictions to the architecture of a network.

B.2 Label Association Function

In order to support the capability to map a received label value to a locally significant label value, an additional function is needed as part of the local process: that of label association. This function takes as input a received label value and provides as output a locally significant label value. As such, this function may be considered generally to provide a table lookup function.

The information necessary to allow mapping from received label value to a locally significant label value may be derived in several ways:

· Via manual provisioning of the association

· Via automatic discovery of the association

Either method may be used. In the case of automatic discovery of the association, this implies that the discovery mechanism operates at the SNP level, as per G.7714. Note that in the simple case where two NEs may be direct connected, no association may be necessary. In such instances, the label association function provides a one-to-one mapping of the input to output label values.

Appendix I. Mapping of Messages

(Informative)

Table 5/G.7713.2. Mapping of DCM UNI Messages to GMPLS RSVP-TE Messages

	
	UNI Messages
	GMPLS RSVP-TE

	Call Setup messages
	CallSetupRequest
	Path

	
	CallSetupIndication
	Resv, PathErr

	
	CallSetupConfirm
	ResvConf

	Call Release messages
	CallReleaseRequest
	Path or Resv (w/ D&R bit) or

Path or Resv (w/ A&R bit)

	
	CallReleaseIndication
	PathErr (Path_State_Removed flag) or

PathTear

	Call Query messages
	CallQueryRequest
	Path (implicit in RSVP-TE via periodic refreshes)

	
	CallQueryIndication
	Resv (implicit in RSVP-TE via periodic refreshes)

	Call notification message
	CallNotify
	Notify, also PathErr

Table 6/G.7713.2. E-NNI Messages

	
	E-NNI Messages
	GMPLS RSVP-TE

	Connection Setup messages
	ConnectionSetupRequest
	Path

	
	ConnectionSetupIndication
	Resv, PathErr

	
	ConnectionSetupConfirm
	ResvConf

	Connection Release messages
	ConnectionReleaseRequest
	Path or Resv (w/ D&R bit) or

Path or Resv (w/ A&R bit)

	
	ConnectionReleaseIndication
	PathErr (Path_State_Removed flag) or

PathTear

	Connection Query messages
	ConnectionQueryRequest
	Path (implicit in RSVP-TE via periodic refreshes)

	
	ConnectionQueryIndication
	Resv (implicit in RSVP-TE via periodic refreshes)

	Connection notification message
	ConnectionNotify
	Notify, also PathErr

Appendix II. Mapping of Attributes

(Informative)

Table 7/G.7713.2. Mapping of DCM Attributes to GMPLS RSVP-TE Objects

	
	Attributes
	Scope
	GMPLS RSVP-TE

	Identity Attributes
	A-end user name
	End-to-end
	SOURCE_TNA

	
	Z-end user name
	End-to-end
	DESTINATION_TNA

	
	Initiating CC/CallC name
	Local
	source Node ID (in the IP header), also SENDER_TEMPLATE/FILTER_SPEC

	
	Terminating CC/CallC name
	Local
	destination Node ID (in the IP header), also SESSION

	
	Connection name
	Local
	SESSION + SENDER_TEMPLATE

	
	Call name
	End-to-end
	CALL_ID

	Service attributes
	SNP ID
	Local
	GENERALIZED_LABEL, UPSTREAM_LABEL, EGRESS_LABEL, SUGGESTED_LABEL, SPC_LABEL

	
	SNPP ID
	Local
	source/destination TNA, RSVP_HOP, LABEL_SET

	
	Directionality
	Local
	(implied by UPSTREAM_LABEL)

	Policy attributes
	CoS
	End-to-end
	DIVERSITY, SERVICE_LEVEL, POLICY_DATA (available as part of OIF UNI1.0 extensions), SESSION_ATTRIBUTE

	
	GoS
	End-to-end
	same as CoS above

	
	Explicit resource list
	Local
	EXPLICIT_ROUTE, ROUTE_RECORD

	
	Recovery
	Local
	PROTECTION

	
	Security
	Local
	INTEGRITY (also implicit lower layer security via, e.g., IPsec)

	Additional Attributes of GMPLS
	implied layer info
	
	GENERALIZED_LABEL_REQUEST, SENDER_TSPEC/FLOWSPEC, RSVP_HOP

	
	for disabling monitoring (section 6.1.1.2 of G.7713)
	
	ADMIN_STATUS

	
	for protocol robustness
	
	HELLO_REQUEST, HELLO_ACK

	
	for status/error codes
	
	ERROR_SPEC

	
	for optional confirmation
	
	RESV_CONFIRM

	
	for protocol robustness
	
	MESSAGE_ID, MESSAGE_ID_ACK, MESSAGE_ID_NACK, MESSAGE_ID_LIST

	
	for protocol robustness
	
	RESTART_CAP, RECOVERY_LABEL

	
	protocol specific attribute
	
	STYLE

	
	protocol specific attribute
	
	TIME_VALUES

Appendix III. Protocol Elements Not Used

(Informative)

III.1 Messages Not Used

The following messages are not used in DCM GMPLS RSVP-TE:

· ResvTear

This message is modified from definitions in RFC 2205 by RFC 2961. No additional modifications are necessary to support distributed connection management. For clarity, this message format is re-produced below:

This message is not used as part of connection-oriented release procedures. The PathErr (with Path_State_Removed flag) is used to support destination-initiated release.

<ResvTear Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<RSVP_HOP>

[<SCOPE>]

<STYLE>

<flow descriptor list>

<flow descriptor list> ::= (see earlier definition)

· ResvErr

This message is modified from definitions in RFC 2205 and RFC 2961, with further extensions to support distributed connection management.

This message is used to

· Respond to a Resv connection setup request (when encountering problems with setup); however, note that in the GMPLS implementation where a connection setup error requires releasing the connection, and since ResvErr does not remove Path states, the PathTear is used for GMPLS connection-oriented network to remove Path states, i.e., ResvErr is not used during setup and release.

<ResvErr Message> ::=

<Common Header>

[<INTEGRITY>]

[[<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ...]

[<MESSAGE_ID>]

<SESSION>

<RSVP_HOP>

<ERROR_SPEC>

[<SCOPE>]

[<ACCEPTABLE_LABEL_SET> ...]

[<POLICY_DATA> ...]

<STYLE>

<error flow descriptor>
III.2 Objects Not Used

The following objects and C-types are not used in DCM GMPLS RSVP-TE (shown as strikethrough text):

Table 8/G.7713.2. Objects and C-types Not Used

	Object
	Object Format

	SESSION
	1
IPv4

2
IPv6

	RSVP_HOP
	1
IPv4

2
IPv6

	ERROR_SPEC
	1
IPv4

2
IPv6

	FLOWSPEC
	1
Reserved

	FILTER_SPEC
	1
IPv4

2
IPv6

3
IPv6 Flow Label

	SENDER_TEMPLATE
	1
IPv4

2
IPv6

3
IPv6 Flow Label

	ADSPEC
	2
Int-serv

Appendix IV. Support for Call Capability

(Informative)

IV.1 Call Capability Object

To support call capability an additional object is defined. A call capability is used to specify the capabilities supported for a call. These may include specifying supplementary services. For RSVP-TE a new CALL_OPS object is defined to be carried by the Path, Resv, PathTear, PathErr, and Notify message. The CALL_OPS object also serves to differentiate the messages to indicate a "call-only" call. In the case for logical separation of call and connection, the CALL_OPS object is not needed.

The CALL_OPS object is defined as follows (the Class-num is the suggested value for the new object):

CALL_OPS (Class-num = 228 [TBA], C-type = 1)

	0
	1
	2
	
	
	
	
	7
	8
	
	
	
	
	
	
	15
	16
	
	
	
	
	
	
	23
	24
	
	
	
	
	
	
	31

	Length
	Class-Num
	C-type

	Reserved
	Call ops flag

Two flags are currently defined for the "call ops flag":

0x01: call without connection

0x02: synchronizing a call (for restart mechanism)

Appendix V. Example Multiple Control Plane Node Failures

(Informative)

This section illustrates how the control plane handles multiple control plane node failures. Note that for any multiple failure scenarios, there is no guarantee of full recovery as information may not be recoverable. This section describes a mechanism that attempts a “best effort” recovery due to multiple control plane node failures. Figure 13 shows the scenario of multiple control plane node failures. There are two sub-cases:

· Nodes B and C do not recover simultaneously, i.e., either node B recovers first or node C recovers first; as such this case may be treated as two instances of the above case. For example, if node B recovers first, it synchronizes with node A for connections #1, #4 and #6, while entering self-refresh for communications with node C. Once node C recovers, it synchronizes with node B for connections #2, #4, #5 and #6, and synchronizes with node D for connections #3, #5 and #6. Any out-of-sync connections are resolved by communications with the management plane as per the above behaviours.

· Nodes B and C recover simultaneously; in this case node B’s initial recovery should be with node A and not node C, while node C’s initial recovery should be with node D and not node B (this reduces problem of synchronizing against incorrect information). Once these states are synchronized (according to above), then nodes B and C may synchronize with each other (again according to above). Note that in this case connection #2 which starts and ends at the two failed nodes, may require that management system restore this connection state (depending on how much state was restored from backup information). Note that to support this behaviour a recovered node does not immediately send Hello messages. The following behaviour is needed:

· When a recovery node receives a Hello message from its neighbour, it may respond by sending a Hello message, i.e., it should not initiate any Hello messages, but only respond to received Hello messages. This initiates synchronization of connection states with the neighbour

· Once the recovery node has recovered all possible states from these neighbours, it may initiate sending Hello messages to all known neighbours (information about known neighbours may be recovered from local persistent storage or from an external component)

· These procedures together ensure meeting the multiple control plane node failure scenario, by allowing recovery nodes to synchronize with non-failed-nodes prior to synchronizing with each other (i.e., there is an implicit assumption that there exists at least one node that has not failed – this non-failed node will thus serve as the trigger for recovered nodes to synchronize states with neighbours)

Note that if local persistent storage and external component does not provide connection state information, then connection #2’s state may not be recoverable. In this case, the above behaviour may result that the management plane instructs the control plane to retain the connection even with non-synchronized information (or it may instruct the control plane to release the connection).

[image: image18.wmf]

CP

Node A

CP

Node B

CP

Node C

CP

Node D

{

1

2

3

4

5

6

Connections

Figure 13/G.7713.2. Multiple Control Plane Node Failures

� The service level sub-object can be used to identify specific levels of Class of Service to be provided to the call/connection requested. The value and interpretation of specific classes of service is defined by carriers, in agreement with clients in the case of switched connections.

_1081842044.doc

Path

Resv

PathTear

PathErr

ResvConf

Hello

Upstream Direction

Downstream Direction

Path

PathTear

ResvConf

PathErr

Resv

Ack

Srefresh

Srefresh

Ack

Hello

Srefresh

Ack

Hello

Srefresh

Ack

Hello

CallC/CC

_1092125640.doc

MP

I-NNI

E-NNI

Ack

User

User

Teardown “connectX”

Start to release

*: with Path_State_Removed flag

PathErr*

Path

_1092126003.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Start to release

Resv (D&R)

Path (A&R)

PathTear

_1092126577.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Ack

Start to release

PathErr*

Path (D&R)

* PathErr with Path_State_Removed flag set

_1092126681.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Start to release

PathTear

Resv

Path

PathErr*

* PathErr scenario as above for case of Path_State_Removed flag set

Ack

_1094031047.doc

UNI

I-NNI

E-NNI

UNI

UNI-C

UNI-C

UNI-N

UNI-N

Start to release

ResvConf

Resv

Path

Notify management system of defect

Ack

* PathErr scenario as above for case of Path_State_Removed flag

_1092126080.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Start to release

Path (D&R)

Resv (A&R)

PathErr*

* PathErr scenario as above for case of Path_State_Removed flag

_1092125910.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

* PathErr scenario as above for case of Path_State_Removed flag

Path (D&R)

Start to release

PathErr*

Resv (A&R)

_1092125939.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Path (A&R)

Resv (D&R)

Start to release

PathTear

_1092125843.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Start to release

PathTear

Resv (D&R)

_1092125524.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Ack

ResvConf

Resv

Path

_1092125623.doc

UNI

I-NNI

E-NNI

UNI

OPCC

CPCC

SNCC

DNCC

Ack

*: with Path_State_Removed flag

PathErr*

Path

Start to release

_1092125479.doc

Request from MP

I-NNI

E-NNI

Ack

User

User

A Interface/ Label identified by MP

ResvConf

Resv

Path

Z Interface/ Label identified by MP

_1074826323.doc

CP

Node A

CP

Node B

CP

Node C

CP

Node D

{

1

2

3

4

5

6

Connections

_1074826378.doc

CP

Node A

CP

Node B

CP

Node C

CP

Node D

{

1

2

3

4

5

6

Connections

_1074826410.doc

CP

Node A

CP

Node B

CP

Node C

CP

Node D

{

1

2

3

4

5

6

Connections

_1071898304.doc

Provider B’s network is a single control domain

Provider A has divided

their network into multiple

control domains (e.g., vendor,

geographic, technology,

 political, etc.)

I-NNI

I-NNI

I-NNI

E-NNI

Domain A2

Domain A1

Balancer

Load

Balancer

Load

L2/L3

L2/L3

firewall

firewall

Balancer

Load

Balancer

Load

L2/L3

L2/L3

firewall

firewall

Provider B

Admin Domain

E-NNI

E-NNI

UNI

UNI

Provider C

Admin Domain

Provider A

Admin Domain

User Admin

Domain

User Admin

Domain

_1073124724.doc

Node A

Node B

Non-control plane network

