
6TiSCH T. Chang, Ed.
Internet-Draft Inria
Intended status: Standards Track M. Vucinic
Expires: January 3, 2019 University of Montenegro
 X. Vilajosana
 Universitat Oberta de Catalunya
 S. Duquennoy
 RISE SICS
 D. Dujovne, Ed.
 Universidad Diego Portales
 July 2, 2018

 6TiSCH Minimal Scheduling Function (MSF)
 draft-chang-6tisch-msf-02

Abstract

 This specification defines the 6TiSCH Minimal Scheduling Function
 (MSF). This Scheduling Function describes both the behavior of a
 node when joining the network, and how the communication schedule is
 managed in a distributed fashion. MSF builds upon the 6TiSCH
 Operation Sublayer Protocol (6P) and the Minimal Security Framework
 for 6TiSCH.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Chang, et al. Expires January 3, 2019 [Page 1]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Interface to the Minimal 6TiSCH Configuration 4
 3. Autonomous Unicast Cells 5
 4. Node Behavior at Boot . 6
 4.1. Start State . 6
 4.2. Step 1 - Choosing Frequency 6
 4.3. Step 2 - Receiving EBs 6
 4.4. Step 3 - Setting up Autonomous Unicast Cells 7
 4.5. Step 4 - Join Request/Response 7
 4.6. Step 5 - Acquiring a RPL rank 7
 4.7. Step 6 - Send EBs and DIOs 7
 4.8. Step 7 - Neighbor Polling 7
 4.9. End State . 8
 5. Rules for Adding/Deleting Cells 8
 5.1. Adapting to Traffic 8
 5.2. Switching Parent . 10
 5.3. Handling Schedule Collisions 10
 6. 6P SIGNAL command . 12
 7. Scheduling Function Identifier 12
 8. Rules for CellList . 12
 9. 6P Timeout Value . 12
 10. Rule for Ordering Cells 12
 11. Meaning of the Metadata Field 13
 12. 6P Error Handling . 13
 13. Schedule Inconsistency Handling 13
 14. MSF Constants . 14
 15. MSF Statistics . 14
 16. Security Considerations 14
 17. IANA Considerations . 15
 17.1. MSF Scheduling Function Identifiers 15
 18. References . 15

Chang, et al. Expires January 3, 2019 [Page 2]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 18.1. Normative References 15
 18.2. Informative References 16
 Appendix A. Contributors . 16
 Appendix B. Implementation Status 17
 Appendix C. Performance Evaluation 17
 Appendix D. [TEMPORARY] Changelog 17
 Authors’ Addresses . 18

1. Introduction

 The 6TiSCH Minimal Scheduling Function (MSF), defined in this
 specification, is a 6TiSCH Scheduling Function (SF). The role of an
 SF is entirely defined in [I-D.ietf-6tisch-6top-protocol]: it
 complements [I-D.ietf-6tisch-6top-protocol] by providing the rules of
 when to add/delete cells in the communication schedule. The SF
 defined in this document follows that definition, and satisfies all
 the requirements for an SF listed in Section 4.2 of
 [I-D.ietf-6tisch-6top-protocol].

 MSF builds on top of the following specifications: the Minimal IPv6
 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration
 [RFC8180], the 6TiSCH Operation Sublayer Protocol (6P)
 [I-D.ietf-6tisch-6top-protocol], and the Minimal Security Framework
 for 6TiSCH [I-D.ietf-6tisch-minimal-security].

 MSF defines both the behavior of a node when joining the network, and
 how the communication schedule is managed in a distributed fashion.
 When a node running MSF boots up, it joins the network by following
 the 7 steps described in Section 4. The end state of the join
 process is that the node is synchronized to the network, has mutually
 authenticated to the network, has identified a preferred routing
 parent, has scheduled one default unicast cell to/from each of its
 neighbors. After the join process, the node can continuously
 add/delete/relocate cells, as described in Section 5. It does so for
 3 reasons: to match the link-layer resources to the traffic, to
 handle changing parent, to handle a schedule collision.

 MSF is designed to operate in a wide range of application domains.
 It is optimized for applications with regular upstream traffic (from
 the nodes to the root). Appendix C contains a performance evaluation
 of MSF.

 This specification follows the recommended structure of an SF
 specification in Appendix A of [I-D.ietf-6tisch-6top-protocol], with
 the following adaptations:

Chang, et al. Expires January 3, 2019 [Page 3]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 o We have reordered part of the sections, in particular to have the
 section on the node behavior at boot Section 4 appear early in
 this specification.
 o We added sections on the interface to the minimal 6TiSCH
 configuration Section 2, the use of the SIGNAL command Section 6,
 the MSF constants Section 14, the MSF statistics Section 15, the
 performance of MSF Appendix C.
 o This specification does not include an examples section.

2. Interface to the Minimal 6TiSCH Configuration

 A node implementing MSF MUST implement the Minimal 6TiSCH
 Configuration [RFC8180], which defines the "minimal cell", a single
 shared cell providing minimal connectivity between the nodes in the
 network.

 MSF uses the minimal cell to exchange the following packets:

 1. Enhanced Beacons (EBs), defined by [IEEE802154-2015]. These are
 broadcast frames.
 2. DODAG Information Objects (DIOs), defined by [RFC6550]. These
 are broadcast frames.

 Because the minimal cell is SHARED, the back-off algorithm defined in
 [IEEE802154-2015] is used to resolve collisions. To ensure there is
 enough bandwidth available on the minimal cell, a node implementing
 MSF SHOULD enforce the following rules for broadcast frames:

 1. send EBs on a portion of the minimal cells not exceeding
 1/(3(N+1)), where N is the number of neighbors of the node.
 2. send DIOs on a portion of the minimal cells not exceeding
 1/(3(N+1)), where N is the number of neighbors of the node.

 The RECOMMENDED behavior for sending EBs is to have a node send EBs
 with a probability of 1/(3(N+1)). The RECOMMENDED behavior for
 sending DIOs is to use a Trickle timer with rate-limiting.

 Section 4.3 describes how to evaluate the number of neighbors during
 the joining process. After the joining process, how to evaluate the
 number of neighbors is implementation-specific.

 As detailed in Section 2.2 of [I-D.ietf-6tisch-6top-protocol], MSF
 MUST schedule cells from Slotframe 1, while Slotframe 0 is used for
 traffic defined in the Minimal 6TiSCH Configuration. The length of
 Slotframe 0 and Slotframe 1 SHOULD be the same value. The default of
 SLOTFRAME_LENGTH is RECOMMENDED, although any value can be advertised
 in the EBs.

Chang, et al. Expires January 3, 2019 [Page 4]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

3. Autonomous Unicast Cells

 MSF nodes MUST initialize Slotframe 1 with a set of default cells for
 unicast communication with their neighbors. These cells are referred
 to as ’autonomous cells’, because they are maintained autonomously by
 each node. Each node has:

 1. One cell to receive, at a [slotOffset,channelOffset] computed as
 a hash of the node’s EUI64 (detailed next). The cell options for
 this cell are RX=1.
 2. For each neighbor in the IPv6 neighbor table, one cell to
 transmit, at a [slotOffset,channelOffset] computed as a hash of
 the neighbor’s EUI64 (detailed next). The cell options for this
 cell are TX=1, SHARED=1.

 To compute a [slotOffset,channelOffset] from an EUI64 address, nodes
 MUST use the hash function SAX [SAX-DASFAA]. The coordinates are
 computed to distribute the cells across all 16 channel offsets, and
 all but the first time offsets of Slotframe 1. The first time offset
 is skipped to avoid colliding with the minimal cell in Slotframe 0.
 The slot coordinates derived from a given EUI64 address are computed
 as follows:

 slotOffset(MAC) = 1 + hash(EUI64) % (length(Slotframe_1) - 1)
 channelOffset(MAC) = hash(EUI64) % 16

 Because of hash collisions, there are cases where one node has
 multiple cells scheduled at the same time offset and/or channel
 offset. Note that nodes have only one autonomous RX cell and
 potentially multiple TX cells. Hash collisions among a set of cells
 at a given time offset is resolved at run-time as follows:

 1. The TX cell with the most packets in outgoing queue takes
 precedence.
 2. If all TX cells have empty outgoing queues, the RX cell takes
 precedence.

 Throughout the network lifetime, nodes MUST maintain the autonomous
 cells as follows:

 1. The receive cell MUST always remain scheduled.
 2. Whenever a new neighbor is discovered, add a transmit cell for
 it.
 3. Whenever a new neighbor is removed, remove transmit cell that was
 assigned to it.
 4. 6P CLEAR MUST NOT erase autonomous cells.

Chang, et al. Expires January 3, 2019 [Page 5]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

4. Node Behavior at Boot

 This section details the behavior the node SHOULD follow from the
 moment it is switched on, until it has successfully joined the
 network. Section 4.1 details the start state; Section 4.9 details
 the end state. The other sections detail the 7 steps of the joining
 process. We use the term "pledge" and "joined node", as defined in
 [I-D.ietf-6tisch-minimal-security].

4.1. Start State

 A node implementing MSF MUST implement the Minimal Security Framework
 for 6TiSCH [I-D.ietf-6tisch-minimal-security]. As a corollary, this
 means that a pledge, before being switched on, is pre-configured with
 the Pre-Shared Key (PSK) for joining, as well as any other
 configuration detailed in [I-D.ietf-6tisch-minimal-security].

4.2. Step 1 - Choosing Frequency

 When switched on, the pledge SHOULD randomly choose a frequency among
 the available frequencies, and start listening for EBs on that
 frequency.

4.3. Step 2 - Receiving EBs

 Upon receiving the first EB, the pledge SHOULD continue listening for
 additional EBs to learn:

 1. the number of neighbors N in its vicinity
 2. which neighbor to choose as a Join Proxy (JP) for the joining
 process

 While the exact behavior is implementation-specific, the RECOMMENDED
 behavior is to follow [RFC8180], and listen until EBs sent by
 NUM_NEIGHBOURS_TO_WAIT nodes (defined in [RFC8180]) have been
 received.

 During this step, the pledge MAY synchronize to any EB it receives
 from the network it wishes to join. How to decide whether an EB
 originates from a node from the network it wishes to join is
 implementation-specific, but MAY involve filtering EBs by the PAN ID
 field it contains, the presence and contents of the IE defined in
 [I-D.richardson-6tisch-join-enhanced-beacon], or the key used to
 authenticate it.

 The decision of which neighbor to use as a JP is implementation-
 specific, and discussed in [I-D.ietf-6tisch-minimal-security].

Chang, et al. Expires January 3, 2019 [Page 6]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

4.4. Step 3 - Setting up Autonomous Unicast Cells

 After joining, nodes MUST set up their autonomous unicast cells, as
 described in Section 3. This enables unicast communication in
 Slotframe 1, until more cells are added with 6P as defined in
 Section 5.

4.5. Step 4 - Join Request/Response

 As per [I-D.ietf-6tisch-minimal-security], after having selected a
 JP, the pledge sends a Join Request to its JP. Because no dedicated
 cells are in place at this point, this happens on the autonomous
 unicast cell. The JP then forwards the Join Request to the JRC,
 possibly over multiple hops. When forwarding this Join Request, a
 node MUST use a unicast cell (autonomous or dedicated) it has with
 its preferred parent. How dedicated cells are installed is detailed
 in Section 5.

 As per [I-D.ietf-6tisch-minimal-security], the JRC sends back a Join
 Response to the pledge, through the JP. When forwarding this Join
 Response, a node MUST use a unicast (autonomous or dedicated) cell it
 has with its child (not the minimal cell).

 As per [I-D.ietf-6tisch-minimal-security], after receiving the Join
 Response, the pledge learns the keying material used in the network,
 as well as other configurations, and becomes a "joined node".

4.6. Step 5 - Acquiring a RPL rank

 Because it has learned the link-layer keying material used in the
 network, the joined node can now decrypt the DIO packets sent by its
 neighbors. Per [RFC6550], the joined node receives DIOs, computes
 its own rank, and selects a preferred parent.

4.7. Step 6 - Send EBs and DIOs

 The node SHOULD start sending EBs and DIOs on the minimal cell, while
 following the transmit rules for broadcast frames from Section 2.

4.8. Step 7 - Neighbor Polling

 The node SHOULD send some form of keep-alive messages to all its
 neighbors it has unicast cells with. The Keep-Alive (KA) mechanism
 is detailed in [RFC7554]. It uses the keep-alive messages to its
 preferred parent to stay synchronized. It uses the keep-alive
 messages to its children (with which it has a unicast cell to) to
 ensure the child is still reachable. The RECOMMENDED period for
 sending keep-alive messages is KA_PERIOD.

Chang, et al. Expires January 3, 2019 [Page 7]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 If the keep-alive message to a child fails at the link layer (i.e.
 the maximum number of link-layer retries is reached), the node SHOULD
 declare the child as unreachable. This can happen for example when
 the child node is switched off.

 When a neighbor is declared unreachable, the node MUST remove all
 dedicated cells with that neighbor from its own schedule. In
 addition, it MAY issue a 6P CLEAR to that neighbor (which can fail at
 the link-layer). If the node has autonmous cells to the unreachable
 neighbor those cells will be removed following the procedure
 described in Section 3.

4.9. End State

 For a new node, the end state of the joining process is:

 o it is synchronized to the network
 o it is using the link-layer keying material it learned through the
 secure joining process
 o it has identified its preferred routing parent
 o it has a set of autonomous unicast cells to/from its neighbors
 o it is periodically sending DIOs, potentially serving as a router
 for other nodes’ traffic
 o it is periodically sending EBs, potentially serving as a JP for
 new joining nodes

5. Rules for Adding/Deleting Cells

 Once a node has joined the 6TiSCH network, it adds/deletes/relocates
 cells with its preferred parent for three reasons:

 o to match the link-layer resources to the traffic between the node
 and its preferred parent (Section 5.1)
 o to handle switching preferred parent (Section 5.2)
 o to handle a schedule collision (Section 5.3)

5.1. Adapting to Traffic

 A node implementing MSF MUST implement the behavior described in this
 section.

 In order to handle transient traffic bursts, MSF uses the
 [IEEE802154-2015] frame pending bit (page 152, Section 7.2.1.3). By
 setting the bit, a node can transmit a series of packets to a given
 neighbor in consecutive time offsets. The next paragraphs define how
 to handle longer-term fluctuations in traffic, using 6P.

Chang, et al. Expires January 3, 2019 [Page 8]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 The goal of MSF is to manage the communication schedule in the 6TiSCH
 schedule in a distributed manner. For a node, this translates into
 monitoring the current usage of the cells it has to its preferred
 parent:

 o If the node determines that the number of link-layer frames it is
 attempting to exchange with its preferred parent per unit of time
 is larger than the capacity offered by the TSCH unicast cells
 (dedicated and autonmous cells) it has scheduled with it, the node
 triggers a 6P Transaction with its preferred parent to add
 dedicated cells to the TSCH schedule of both nodes.
 o If the traffic is lower than the capacity, the node triggers a 6P
 Transaction with its preferred parent to delete dedicated cells
 from the TSCH schedule of both nodes.

 From the join process, the node already has a set of autonmous
 unicast cells, as defined in Section 3. The autonomous cells MUST
 NOT be removed by 6P, so that there always exists a unicast cell
 between a node and its preferred parent, even if no frames are being
 exchanged between them. Autonomous cells are used indistinguishably
 together with dedicated cells, for broadcast or unicast traffic with
 the target neighbor. The procedure to remove autonomous cells is
 described in Section 3.

 Adding/removing/relocating cells involves exchanging frames that
 contain 6P commands. All 6P frames MUST be sent on the unicast cells
 (and not the minimal cell).

 The node MUST maintain the following counters for its preferred
 parent:

 NumCellsPassed: Counts the number of unicast cells (dedicated and
 autonmous cells) that have passed since the counter was
 initialized. This counter is initialized at 0. Each time the
 TSCH state machine indicates that the current cell is a unicast
 cell to the preferred parent, NumCellsPassed is incremented by
 exactly 1, regardless of whether the cell is used to transmit/
 receive a frame.
 NumCellsUsed: Counts the number of unicast cells that have been
 used. This counter is initialized at 0. NumCellsUsed is
 incremented by exactly 1 when, during a unicast cell to the
 preferred parent, either of the following happens:

 * The node sends a frame to its preferred parent. The counter
 increments regardless of whether a link-layer acknowledgment
 was received or not.
 * The node receives a frame from its preferred parent.

Chang, et al. Expires January 3, 2019 [Page 9]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 Implementors MAY choose to create the same counters for each
 neighbor, and add them as additional statistics in the neighbor
 table.

 The counters are used as follows:

 1. Both NumCellsPassed and NumCellsUsed are initialized to 0 when
 the node boots.
 2. When the value of NumCellsPassed reaches MAX_NUMCELLS:

 * If NumCellsUsed > LIM_NUMCELLSUSED_HIGH, trigger 6P to add a
 single cell to the preferred parent
 * If NumCellsUsed < LIM_NUMCELLSUSED_LOW, trigger 6P to remove a
 single cell to the preferred parent
 * Reset both NumCellsPassed and NumCellsUsed to 0 and go to step
 2.

5.2. Switching Parent

 A node implementing MSF MUST implement the behavior described in this
 section.

 Part of its normal operation, the RPL routing protocol can have a
 node switch preferred parents. The procedure for switching from the
 old preferred parent to the new preferred parent is:

 1. the node counts the number of dedicated (unicast but not
 autonomous) cells it has per slotframe to the old preferred
 parent
 2. the node triggers one or more 6P ADD commands to schedule the
 same number of dedicated cells to the new preferred parent
 3. when that successfully completes, the node issues a 6P CLEAR
 command to its old preferred parent

5.3. Handling Schedule Collisions

 A node implementing MSF SHOULD implement the behavior described in
 this section. The "MUST" statements in this section hence only apply
 if the node implements schedule collision handling.

 Since scheduling is entirely distributed, there is a non-zero
 probability that two pairs of nearby neighbor nodes schedule a cell
 at the same [slotOffset,channelOffset] location in the TSCH schedule.
 In that case, data exchanged by the two pairs may collide on that
 cell. We call this case a "schedule collision".

 The node MUST maintain the following counters for each cell to its
 preferred parent:

Chang, et al. Expires January 3, 2019 [Page 10]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 NumTx: Counts the number of transmission attempts on that cell.
 Each time the node attempts to transmit a frame on that cell,
 NumTx is incremented by exactly 1.
 NumTxAck: Counts the number of successful transmission attempts on
 that cell. Each time the node receives an acknowledgment for a
 transmission attempt, NumTxAck is incremented by exactly 1.

 Implementors MAY choose to maintain the same counters for each cell
 in the schedule.

 Since both NumTx and NumTxAck are initialized to 0, we necessarily
 have NumTxAck <= NumTx. We call Packet Delivery Ratio (PDR) the
 ratio NumTxAck/NumTx; and represent it as a percentage. A cell with
 PDR=50% means that half of the frames transmitted are not
 acknowledged (and need to be retransmitted).

 Each time the node switches preferred parent (or during the join
 process when the node selects a preferred parent for the first time),
 both NumTx and NumTxAck MUST be reset to 0. They increment over
 time, as the schedule is executed and the node sends frames to its
 preferred parent. When NumTx reaches 256, both NumTx and NumTxAck
 MUST be divided by 2. That is, for example, from NumTx=256 and
 NumTxAck=128, they become NumTx=128 and NumTxAck=64. This operation
 does not change the value of the PDR, but allows the counters to keep
 incrementing.

 The key for detecting a schedule collision is that, if a node has
 several cells to the same preferred parent, all cells should exhibit
 the same PDR. A cell which exhibits a PDR significantly lower than
 the others indicates than there are collisions on that cell.

 Every HOUSEKEEPINGCOLLISION_PERIOD, the node executes the following
 steps:

 1. It computes, for each dedicated cell with its preferred parent
 (not for the autonomous cell), that cell’s PDR.
 2. Any cell that hasn’t yet had NumTx divided by 2 since it was last
 reset is skipped in steps 3 and 4. This avoids triggering cell
 relocation when the values of NumTx and NumTxAck are not
 statistically significant yet.
 3. It identifies the cell with the highest PDR.
 4. For each other cell, it compares its PDR against that of the cell
 with the highest PDR. If it’s less than RELOCATE_PDRTHRES, it
 triggers the relocation of that cell using a 6P RELOCATE command.

Chang, et al. Expires January 3, 2019 [Page 11]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

6. 6P SIGNAL command

 The 6P SIGNAL command is not used by MSF.

7. Scheduling Function Identifier

 The Scheduling Function Identifier (SFID) of MSF is
 IANA_6TISCH_SFID_MSF.

8. Rules for CellList

 MSF uses 2-step 6P Transactions exclusively. 6P Transactions are
 only initiated by a node towards it preferred parent. As a result,
 the cells to put in the CellList of a 6P ADD command, and in the
 candidate CellList of a RELOCATE command, are chosen by the node
 initiating the 6P Transaction. In both cases, the same rules apply:

 o The CellList SHOULD contain 5 or more cells.
 o Each cell in the CellList MUST have a different slotOffset value.
 o For each cell in the CellList, the node MUST NOT have any
 scheduled cell on the same slotOffset.
 o The slotOffset value of any cell in the CellList MUST NOT be the
 same as the slotOffset of the minimal cell (slotOffset=0).
 o The slotOffset of a cell in the CellList SHOULD be randomly and
 uniformly chosen among all the slotOffset values that satisfy the
 restrictions above.
 o The channelOffset of a cell in the CellList SHOULD be randomly and
 uniformly chosen in [0..numFrequencies], where numFrequencies
 represents the number of frequencies a node can communicate on.

9. 6P Timeout Value

 The 6P Timeout is not a constant value. It is calculated as
 (1/C)*(1/PDR)*SIXP_TIMEOUT_SEC_FACTOR, where:

 o C represents the number of cells per second scheduled to that
 neighbor
 o PDR represents the average PDR of those cells
 o SIXP_TIMEOUT_SEC_FACTOR is a security factor, a constant

10. Rule for Ordering Cells

 Cells are ordered slotOffset first, channelOffset second.

 The following sequence is correctly ordered (each element represents
 the [slottOffset,channelOffset] of a cell in the schedule):

 [1,3],[1,4],[2,0],[5,3],[6,0],[6,3],[7,9]

Chang, et al. Expires January 3, 2019 [Page 12]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

11. Meaning of the Metadata Field

 The Metadata field is not used by MSF.

12. 6P Error Handling

 Section 6.2.4 of [I-D.ietf-6tisch-6top-protocol] lists the 6P Return
 Codes. Figure 1 lists the same error codes, and the behavior a node
 implementing MSF SHOULD follow.

 +-----------------+----------------------+
 | Code | RECOMMENDED behavior |
 +-----------------+----------------------+
 | RC_SUCCESS | nothing |
 | RC_EOL | nothing |
 | RC_ERR | quarantine |
 | RC_RESET | quarantine |
 | RC_ERR_VERSION | quarantine |
 | RC_ERR_SFID | quarantine |
 | RC_ERR_SEQNUM | clear |
 | RC_ERR_CELLLIST | clear |
 | RC_ERR_BUSY | waitretry |
 | RC_ERR_LOCKED | waitretry |
 +-----------------+----------------------+

 Figure 1: Recommended behavior for each 6P Error Code.

 The meaning of each behavior from Figure 1 is:

 nothing: Indicates that this Return Code is not an error. No error
 handling behavior is triggered.
 clear: Abort the 6P Transaction. Issue a 6P CLEAR command to that
 neighbor (this command may fail at the link layer). Remove all
 cells scheduled with that neighbor from the local schedule. Keep
 that node in the neighbor and routing tables.
 quarantine: Same behavior as for "clear". In addition, remove the
 node from the neighbor and routing tables. Place the node’s
 identifier in a quarantine list for QUARANTINE_DURATION. When in
 quarantine, drop all frames received from that node.
 waitretry: Abort the 6P Transaction. Wait for a duration randomly
 and uniformly chosen in [WAITDURATION_MIN,WAITDURATION_MAX].
 Retry the same transaction.

13. Schedule Inconsistency Handling

 The behavior when schedule inconsistency is detected is explained in
 Figure 1, for 6P Return Code RC_ERR_SEQNUM.

Chang, et al. Expires January 3, 2019 [Page 13]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

14. MSF Constants

 Figure 2 lists MSF Constants and their RECOMMENDED values.

 +------------------------------+-------------------+
 | Name | RECOMMENDED value |
 +------------------------------+-------------------+
 | KA_PERIOD | 10 s |
 | LIM_NUMCELLSUSED_HIGH | 75 % |
 | LIM_NUMCELLSUSED_LOW | 25 % |
 | HOUSEKEEPINGCOLLISION_PERIOD | 1 min |
 | RELOCATE_PDRTHRES | 50 % |
 | SIXP_TIMEOUT_SEC_FACTOR | 3 x |
 | SLOTFRAME_LENGTH | 101 slots |
 | QUARANTINE_DURATION | 5 min |
 | WAITDURATION_MIN | 30 s |
 | WAITDURATION_MAX | 60 s |
 +------------------------------+-------------------+

 Figure 2: MSF Constants and their RECOMMENDED values.

15. MSF Statistics

 Figure 3 lists MSF Statistics and their RECOMMENDED width.

 +-----------------+-------------------+
 | Name | RECOMMENDED width |
 +-----------------+-------------------+
 | NumCellsPassed | 1 byte |
 | NumCellsUsed | 1 byte |
 | NumTx | 1 byte |
 | NumTxAck | 1 byte |
 +-----------------+-------------------+

 Figure 3: MSF Statistics and their RECOMMENDED width.

16. Security Considerations

 MSF defines a series of "rules" for the node to follow. It triggers
 several actions, that are carried out by the protocols defined in the
 following specifications: the Minimal IPv6 over the TSCH Mode of IEEE
 802.15.4e (6TiSCH) Configuration [RFC8180], the 6TiSCH Operation
 Sublayer Protocol (6P) [I-D.ietf-6tisch-6top-protocol], and the
 Minimal Security Framework for 6TiSCH
 [I-D.ietf-6tisch-minimal-security]. In particular, MSF does not
 define a new protocol or packet format.

Chang, et al. Expires January 3, 2019 [Page 14]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 MSF relies entirely on the security mechanisms defined in the
 specifications listed above.

17. IANA Considerations

17.1. MSF Scheduling Function Identifiers

 This document adds the following number to the "6P Scheduling
 Function Identifiers" sub-registry, part of the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TiSCH) parameters" registry, as defined by
 [I-D.ietf-6tisch-6top-protocol]:

 +----------------------+-----------------------------+-------------+
 | SFID | Name | Reference |
 +----------------------+-----------------------------+-------------+
 | IANA_6TISCH_SFID_MSF | Minimal Scheduling Function | RFCXXXX |
 | | (MSF) | (NOTE:this) |
 +----------------------+-----------------------------+-------------+

 Figure 4: IETF IE Subtype ’6P’.

18. References

18.1. Normative References

 [I-D.ietf-6tisch-6top-protocol]
 Wang, Q., Vilajosana, X., and T. Watteyne, "6TiSCH
 Operation Sublayer Protocol (6P)", draft-ietf-6tisch-6top-
 protocol-12 (work in progress), June 2018.

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Minimal Security Framework for 6TiSCH", draft-ietf-
 6tisch-minimal-security-06 (work in progress), May 2018.

 [I-D.richardson-6tisch-join-enhanced-beacon]
 Dujovne, D. and M. Richardson, "IEEE802.15.4 Informational
 Element encapsulation of 6tisch Join Information", draft-
 richardson-6tisch-join-enhanced-beacon-03 (work in
 progress), January 2018.

 [IEEE802154-2015]
 IEEE standard for Information Technology, "IEEE Std
 802.15.4-2015 Standard for Low-Rate Wireless Personal Area
 Networks (WPANs)", December 2015.

Chang, et al. Expires January 3, 2019 [Page 15]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <https://www.rfc-editor.org/info/rfc7554>.

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
 May 2017, <https://www.rfc-editor.org/info/rfc8180>.

18.2. Informative References

 [OpenWSN] Watteyne, T., Vilajosana, X., Kerkez, B., Chraim, F.,
 Weekly, K., Wang, Q., Glaser, S., and K. Pister, "OpenWSN:
 a Standards-Based Low-Power Wireless Development
 Environment", Transactions on Emerging Telecommunications
 Technologies , August 2012.

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982,
 DOI 10.17487/RFC6982, July 2013,
 <https://www.rfc-editor.org/info/rfc6982>.

 [SAX-DASFAA]
 Ramakrishna, M. and J. Zobel, "Performance in Practice of
 String Hashing Functions", DASFAA , 1997.

Appendix A. Contributors

 Beshr Al Nahas (Chalmers University, beshr@chalmers.se) and Olaf
 Landsiedel (Chalmers University, olafl@chalmers.se) contributed to
 the design and evaluation of autonomous unicast cells.

Chang, et al. Expires January 3, 2019 [Page 16]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

Appendix B. Implementation Status

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC6982].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC6982], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

 OpenWSN: MSF is being implemented in the OpenWSN project [OpenWSN]
 under a BSD open-source license. The authors of this document are
 collaborating with the OpenWSN community to gather feedback about
 the status and performance of the protocols described in this
 document. Results from that discussion will appear in this
 section in future revision of this specification. More
 information about this implementation at http://www.openwsn.org/.
 6TiSCH simulator The 6TiSCH simulator is a Python-based high-level
 simulator on which MSF is being implemented. More information at
 https://bitbucket.org/6tisch/simulator/.

Appendix C. Performance Evaluation

 The performance of MSF may be published as companion documents to
 this specification, possibly under the form a applicability
 statements.

Appendix D. [TEMPORARY] Changelog

 o draft-chang-6tisch-msf-02

 * Added autonomous cell.
 o draft-chang-6tisch-msf-01

 * When neighbor is unreachable, sending a CLEAR command was a
 MUST, now a MAY.

Chang, et al. Expires January 3, 2019 [Page 17]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 * Fixing 6P Timeout calculation.
 * Clearer text for "Handling Schedule Collisions" section.
 * Typos.
 * Input from Yasuyuki Tanaka’s review (https://www.ietf.org/mail-
 archive/web/6tisch/current/msg05723.html).
 o draft-chang-6tisch-msf-00

 * Initial submission.

Authors’ Addresses

 Tengfei Chang (editor)
 Inria
 2 rue Simone Iff
 Paris 75012
 France

 Email: tengfei.chang@inria.fr

 Malisa Vucinic
 University of Montenegro
 Dzordza Vasingtona bb
 Podgorica 81000
 Montenegro

 Email: malisav@ac.me

 Xavier Vilajosana
 Universitat Oberta de Catalunya
 156 Rambla Poblenou
 Barcelona, Catalonia 08018
 Spain

 Email: xvilajosana@uoc.edu

 Simon Duquennoy
 RISE SICS
 Isafjordsgatan 22
 164 29 Kista
 Sweden

 Email: simon.duquennoy@ri.se

Chang, et al. Expires January 3, 2019 [Page 18]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) July 2018

 Diego Dujovne (editor)
 Universidad Diego Portales
 Escuela de Informatica y Telecomunicaciones
 Av. Ejercito 441
 Santiago, Region Metropolitana
 Chile

 Phone: +56 (2) 676-8121
 Email: diego.dujovne@mail.udp.cl

Chang, et al. Expires January 3, 2019 [Page 19]

