
ACE Working Group S. Gerdes
Internet-Draft O. Bergmann
Intended status: Standards Track C. Bormann
Expires: 6 December 2021 Universität Bremen TZI
 G. Selander
 Ericsson AB
 L. Seitz
 Combitech
 4 June 2021

Datagram Transport Layer Security (DTLS) Profile for Authentication and
 Authorization for Constrained Environments (ACE)
 draft-ietf-ace-dtls-authorize-18

Abstract

 This specification defines a profile of the ACE framework that allows
 constrained servers to delegate client authentication and
 authorization. The protocol relies on DTLS version 1.2 for
 communication security between entities in a constrained network
 using either raw public keys or pre-shared keys. A resource-
 constrained server can use this protocol to delegate management of
 authorization information to a trusted host with less severe
 limitations regarding processing power and memory.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 6 December 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Gerdes, et al. Expires 6 December 2021 [Page 1]

Internet-Draft CoAP-DTLS June 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. Protocol Overview . 4
 3. Protocol Flow . 6
 3.1. Communication Between the Client and the Authorization
 Server . 6
 3.2. Raw Public Key Mode 7
 3.2.1. Access Token Retrieval from the Authorization
 Server . 7
 3.2.2. DTLS Channel Setup Between Client and Resource
 Server . 9
 3.3. PreSharedKey Mode . 10
 3.3.1. Access Token Retrieval from the Authorization
 Server . 11
 3.3.2. DTLS Channel Setup Between Client and Resource
 Server . 15
 3.4. Resource Access . 17
 4. Dynamic Update of Authorization Information 19
 5. Token Expiration . 20
 6. Secure Communication with an Authorization Server 20
 7. Security Considerations 21
 7.1. Reuse of Existing Sessions 23
 7.2. Multiple Access Tokens 23
 7.3. Out-of-Band Configuration 23
 8. Privacy Considerations 24
 9. IANA Considerations . 24
 10. Acknowledgments . 25
 11. References . 25
 11.1. Normative References 25
 11.2. Informative References 27
 Authors’ Addresses . 28

Gerdes, et al. Expires 6 December 2021 [Page 2]

Internet-Draft CoAP-DTLS June 2021

1. Introduction

 This specification defines a profile of the ACE framework
 [I-D.ietf-ace-oauth-authz]. In this profile, a client and a resource
 server use CoAP [RFC7252] over DTLS version 1.2 [RFC6347] to
 communicate. This specification uses DTLS 1.2 terminology, but later
 versions such as DTLS 1.3 can be used instead. The client obtains an
 access token, bound to a key (the proof-of-possession key), from an
 authorization server to prove its authorization to access protected
 resources hosted by the resource server. Also, the client and the
 resource server are provided by the authorization server with the
 necessary keying material to establish a DTLS session. The
 communication between client and authorization server may also be
 secured with DTLS. This specification supports DTLS with Raw Public
 Keys (RPK) [RFC7250] and with Pre-Shared Keys (PSK) [RFC4279]. How
 token introspection [RFC7662] is performed between RS and AS is out
 of scope for this specification.

 The ACE framework requires that client and server mutually
 authenticate each other before any application data is exchanged.
 DTLS enables mutual authentication if both client and server prove
 their ability to use certain keying material in the DTLS handshake.
 The authorization server assists in this process on the server side
 by incorporating keying material (or information about keying
 material) into the access token, which is considered a "proof of
 possession" token.

 In the RPK mode, the client proves that it can use the RPK bound to
 the token and the server shows that it can use a certain RPK.

 The resource server needs access to the token in order to complete
 this exchange. For the RPK mode, the client must upload the access
 token to the resource server before initiating the handshake, as
 described in Section 5.10.1 of the ACE framework
 [I-D.ietf-ace-oauth-authz].

 In the PSK mode, client and server show with the DTLS handshake that
 they can use the keying material that is bound to the access token.
 To transfer the access token from the client to the resource server,
 the "psk_identity" parameter in the DTLS PSK handshake may be used
 instead of uploading the token prior to the handshake.

 As recommended in Section 5.8 of [I-D.ietf-ace-oauth-authz], this
 specification uses CBOR web tokens to convey claims within an access
 token issued by the server. While other formats could be used as
 well, those are out of scope for this document.

Gerdes, et al. Expires 6 December 2021 [Page 3]

Internet-Draft CoAP-DTLS June 2021

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 described in [I-D.ietf-ace-oauth-authz] and in
 [I-D.ietf-ace-oauth-params].

 The authorization information (authz-info) resource refers to the
 authorization information endpoint as specified in
 [I-D.ietf-ace-oauth-authz]. The term "claim" is used in this
 document with the same semantics as in [I-D.ietf-ace-oauth-authz],
 i.e., it denotes information carried in the access token or returned
 from introspection.

2. Protocol Overview

 The CoAP-DTLS profile for ACE specifies the transfer of
 authentication information and, if necessary, authorization
 information between the client (C) and the resource server (RS)
 during setup of a DTLS session for CoAP messaging. It also specifies
 how the client can use CoAP over DTLS to retrieve an access token
 from the authorization server (AS) for a protected resource hosted on
 the resource server. As specified in Section 6.7 of
 [I-D.ietf-ace-oauth-authz], use of DTLS for one or both of these
 interactions is completely independent.

 This profile requires the client to retrieve an access token for
 protected resource(s) it wants to access on the resource server as
 specified in [I-D.ietf-ace-oauth-authz]. Figure 1 shows the typical
 message flow in this scenario (messages in square brackets are
 optional):

 C RS AS
 | [---- Resource Request ------>]| |
 | | |
 | [<-AS Request Creation Hints-] | |
 | | |
 | ------- Token Request ----------------------------> |
 | | |
 | <---------------------------- Access Token --------- |
 | + Access Information |

 Figure 1: Retrieving an Access Token

Gerdes, et al. Expires 6 December 2021 [Page 4]

Internet-Draft CoAP-DTLS June 2021

 To determine the authorization server in charge of a resource hosted
 at the resource server, the client can send an initial Unauthorized
 Resource Request message to the resource server. The resource server
 then denies the request and sends an AS Request Creation Hints
 message containing the address of its authorization server back to
 the client as specified in Section 5.3 of [I-D.ietf-ace-oauth-authz].

 Once the client knows the authorization server’s address, it can send
 an access token request to the token endpoint at the authorization
 server as specified in [I-D.ietf-ace-oauth-authz]. As the access
 token request as well as the response may contain confidential data,
 the communication between the client and the authorization server
 must be confidentiality-protected and ensure authenticity. The
 client is expected to have been registered at the authorization
 server as outlined in Section 4 of [I-D.ietf-ace-oauth-authz].

 The access token returned by the authorization server can then be
 used by the client to establish a new DTLS session with the resource
 server. When the client intends to use an asymmetric proof-of-
 possession key in the DTLS handshake with the resource server, the
 client MUST upload the access token to the authz-info resource, i.e.
 the authz-info endpoint, on the resource server before starting the
 DTLS handshake, as described in Section 5.10.1 of
 [I-D.ietf-ace-oauth-authz]. In case the client uses a symmetric
 proof-of-possession key in the DTLS handshake, the procedure as above
 MAY be used, or alternatively, the access token MAY instead be
 transferred in the DTLS ClientKeyExchange message (see
 Section 3.3.2). In any case, DTLS MUST be used in a mode that
 provides replay protection.

 Figure 2 depicts the common protocol flow for the DTLS profile after
 the client has retrieved the access token from the authorization
 server, AS.

 C RS AS
 | [--- Access Token ------>] | |
 | | |
 | <== DTLS channel setup ==> | |
 | | |
 | == Authorized Request ===> | |
 | | |
 | <=== Protected Resource == | |

 Figure 2: Protocol overview

Gerdes, et al. Expires 6 December 2021 [Page 5]

Internet-Draft CoAP-DTLS June 2021

3. Protocol Flow

 The following sections specify how CoAP is used to interchange
 access-related data between the resource server, the client and the
 authorization server so that the authorization server can provide the
 client and the resource server with sufficient information to
 establish a secure channel, and convey authorization information
 specific for this communication relationship to the resource server.

 Section 3.1 describes how the communication between the client (C)
 and the authorization server (AS) must be secured. Depending on the
 used CoAP security mode (see also Section 9 of [RFC7252], the Client-
 to-AS request, AS-to-Client response and DTLS session establishment
 carry slightly different information. Section 3.2 addresses the use
 of raw public keys while Section 3.3 defines how pre-shared keys are
 used in this profile.

3.1. Communication Between the Client and the Authorization Server

 To retrieve an access token for the resource that the client wants to
 access, the client requests an access token from the authorization
 server. Before the client can request the access token, the client
 and the authorization server MUST establish a secure communication
 channel. This profile assumes that the keying material to secure
 this communication channel has securely been obtained either by
 manual configuration or in an automated provisioning process. The
 following requirements in alignment with Section 6.5 of
 [I-D.ietf-ace-oauth-authz] therefore must be met:

 * The client MUST securely have obtained keying material to
 communicate with the authorization server.

 * Furthermore, the client MUST verify that the authorization server
 is authorized to provide access tokens (including authorization
 information) about the resource server to the client, and that
 this authorization information about the authorization server is
 still valid.

 * Also, the authorization server MUST securely have obtained keying
 material for the client, and obtained authorization rules approved
 by the resource owner (RO) concerning the client and the resource
 server that relate to this keying material.

Gerdes, et al. Expires 6 December 2021 [Page 6]

Internet-Draft CoAP-DTLS June 2021

 The client and the authorization server MUST use their respective
 keying material for all exchanged messages. How the security
 association between the client and the authorization server is
 bootstrapped is not part of this document. The client and the
 authorization server must ensure the confidentiality, integrity and
 authenticity of all exchanged messages within the ACE protocol.

 Section 6 specifies how communication with the authorization server
 is secured.

3.2. Raw Public Key Mode

 When the client uses raw public key authentication, the procedure is
 as described in the following.

3.2.1. Access Token Retrieval from the Authorization Server

 After the client and the authorization server mutually authenticated
 each other and validated each other’s authorization, the client sends
 a token request to the authorization server’s token endpoint. The
 client MUST add a "req_cnf" object carrying either its raw public key
 or a unique identifier for a public key that it has previously made
 known to the authorization server. It is RECOMMENDED that the client
 uses DTLS with the same keying material to secure the communication
 with the authorization server, proving possession of the key as part
 of the token request. Other mechanisms for proving possession of the
 key may be defined in the future.

 An example access token request from the client to the authorization
 server is depicted in Figure 3.

 POST coaps://as.example.com/token
 Content-Format: application/ace+cbor
 Payload:
 {
 grant_type : client_credentials,
 audience : "tempSensor4711",
 req_cnf : {
 COSE_Key : {
 kty : EC2,
 crv : P-256,
 x : h’e866c35f4c3c81bb96a1...’,
 y : h’2e25556be097c8778a20...’
 }
 }
 }

 Figure 3: Access Token Request Example for RPK Mode

Gerdes, et al. Expires 6 December 2021 [Page 7]

Internet-Draft CoAP-DTLS June 2021

 The example shows an access token request for the resource identified
 by the string "tempSensor4711" on the authorization server using a
 raw public key.

 The authorization server MUST check if the client that it
 communicates with is associated with the RPK in the "req_cnf"
 parameter before issuing an access token to it. If the authorization
 server determines that the request is to be authorized according to
 the respective authorization rules, it generates an access token
 response for the client. The access token MUST be bound to the RPK
 of the client by means of the "cnf" claim.

 The response MUST contain an "ace_profile" parameter if
 the"ace_profile" parameter in the request is empty, and MAY contain
 this parameter otherwise (see Section 5.8.2 of
 [I-D.ietf-ace-oauth-authz]). This parameter is set to "coap_dtls" to
 indicate that this profile MUST be used for communication between the
 client and the resource server. The response also contains an access
 token with information for the resource server about the client’s
 public key. The authorization server MUST return in its response the
 parameter "rs_cnf" unless it is certain that the client already knows
 the public key of the resource server. The authorization server MUST
 ascertain that the RPK specified in "rs_cnf" belongs to the resource
 server that the client wants to communicate with. The authorization
 server MUST protect the integrity of the access token such that the
 resource server can detect unauthorized changes. If the access token
 contains confidential data, the authorization server MUST also
 protect the confidentiality of the access token.

 The client MUST ascertain that the access token response belongs to a
 certain previously sent access token request, as the request may
 specify the resource server with which the client wants to
 communicate.

 An example access token response from the authorization server to the
 client is depicted in Figure 4. Here, the contents of the
 "access_token" claim have been truncated to improve readability. The
 response comprises access information for the client that contains
 the server’s public key in the "rs_cnf" parameter. Caching proxies
 process the Max-Age option in the CoAP response which has a default
 value of 60 seconds (Section 5.6.1 of [RFC7252]). The authorization
 server SHOULD adjust the Max-Age option such that it does not exceed
 the "expires_in" parameter to avoid stale responses.

Gerdes, et al. Expires 6 December 2021 [Page 8]

Internet-Draft CoAP-DTLS June 2021

 2.01 Created
 Content-Format: application/ace+cbor
 Max-Age: 3560
 Payload:
 {
 access_token : b64’SlAV32hkKG...
 (remainder of CWT omitted for brevity;
 CWT contains the client’s RPK in the cnf claim)’,
 expires_in : 3600,
 rs_cnf : {
 COSE_Key : {
 kty : EC2,
 crv : P-256,
 x : h’d7cc072de2205bdc1537...’,
 y : h’f95e1d4b851a2cc80fff...’
 }
 }
 }

 Figure 4: Access Token Response Example for RPK Mode

3.2.2. DTLS Channel Setup Between Client and Resource Server

 Before the client initiates the DTLS handshake with the resource
 server, the client MUST send a "POST" request containing the obtained
 access token to the authz-info resource hosted by the resource
 server. After the client receives a confirmation that the resource
 server has accepted the access token, it proceeds to establish a new
 DTLS channel with the resource server. The client MUST use its
 correct public key in the DTLS handshake. If the authorization
 server has specified a "cnf" field in the access token response, the
 client MUST use this key. Otherwise, the client MUST use the public
 key that it specified in the "req_cnf" of the access token request.
 The client MUST specify this public key in the SubjectPublicKeyInfo
 structure of the DTLS handshake as described in [RFC7250].

 If the client does not have the keying material belonging to the
 public key, the client MAY try to send an access token request to the
 AS where it specifies its public key in the "req_cnf" parameter. If
 the AS still specifies a public key in the response that the client
 does not have, the client SHOULD re-register with the authorization
 server to establish a new client public key. This process is out of
 scope for this document.

 To be consistent with [RFC7252], which allows for shortened MAC tags
 in constrained environments, an implementation that supports the RPK
 mode of this profile MUST at least support the cipher suite
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251]. As discussed in

Gerdes, et al. Expires 6 December 2021 [Page 9]

Internet-Draft CoAP-DTLS June 2021

 [RFC7748], new ECC curves have been defined recently that are
 considered superior to the so-called NIST curves. Implementations of
 this profile therefore MUST implement support for curve25519 (cf.
 [RFC8032], [RFC8422]) as this curve said to be efficient and less
 dangerous regarding implementation errors than the secp256r1 curve
 mandated in [RFC7252].

 The resource server MUST check if the access token is still valid, if
 the resource server is the intended destination (i.e., the audience)
 of the token, and if the token was issued by an authorized
 authorization server (see also section 5.10.1.1 of
 [I-D.ietf-ace-oauth-authz]). The access token is constructed by the
 authorization server such that the resource server can associate the
 access token with the Client’s public key. The "cnf" claim MUST
 contain either the client’s RPK or, if the key is already known by
 the resource server (e.g., from previous communication), a reference
 to this key. If the authorization server has no certain knowledge
 that the Client’s key is already known to the resource server, the
 Client’s public key MUST be included in the access token’s "cnf"
 parameter. If CBOR web tokens [RFC8392] are used (as recommended in
 [I-D.ietf-ace-oauth-authz]), keys MUST be encoded as specified in
 [RFC8747]. A resource server MUST have the capacity to store one
 access token for every proof-of-possession key of every authorized
 client.

 The raw public key used in the DTLS handshake with the client MUST
 belong to the resource server. If the resource server has several
 raw public keys, it needs to determine which key to use. The
 authorization server can help with this decision by including a "cnf"
 parameter in the access token that is associated with this
 communication. In this case, the resource server MUST use the
 information from the "cnf" field to select the proper keying
 material.

 Thus, the handshake only finishes if the client and the resource
 server are able to use their respective keying material.

3.3. PreSharedKey Mode

 When the client uses pre-shared key authentication, the procedure is
 as described in the following.

Gerdes, et al. Expires 6 December 2021 [Page 10]

Internet-Draft CoAP-DTLS June 2021

3.3.1. Access Token Retrieval from the Authorization Server

 To retrieve an access token for the resource that the client wants to
 access, the client MAY include a "cnf" object carrying an identifier
 for a symmetric key in its access token request to the authorization
 server. This identifier can be used by the authorization server to
 determine the shared secret to construct the proof-of-possession
 token. The authorization server MUST check if the identifier refers
 to a symmetric key that was previously generated by the authorization
 server as a shared secret for the communication between this client
 and the resource server. If no such symmetric key was found, the
 authorization server MUST generate a new symmetric key that is
 returned in its response to the client.

 The authorization server MUST determine the authorization rules for
 the client it communicates with as defined by the resource owner and
 generate the access token accordingly. If the authorization server
 authorizes the client, it returns an AS-to-Client response. If the
 "ace_profile" parameter is present, it is set to "coap_dtls". The
 authorization server MUST ascertain that the access token is
 generated for the resource server that the client wants to
 communicate with. Also, the authorization server MUST protect the
 integrity of the access token to ensure that the resource server can
 detect unauthorized changes. If the token contains confidential data
 such as the symmetric key, the confidentiality of the token MUST also
 be protected. Depending on the requested token type and algorithm in
 the access token request, the authorization server adds access
 Information to the response that provides the client with sufficient
 information to setup a DTLS channel with the resource server. The
 authorization server adds a "cnf" parameter to the access information
 carrying a "COSE_Key" object that informs the client about the shared
 secret that is to be used between the client and the resource server.
 To convey the same secret to the resource server, the authorization
 server can include it directly in the access token by means of the
 "cnf" claim or provide sufficient information to enable the resource
 server to derive the shared secret from the access token. As an
 alternative, the resource server MAY use token introspection to
 retrieve the keying material for this access token directly from the
 authorization server.

 An example access token request for an access token with a symmetric
 proof-of-possession key is illustrated in Figure 5.

Gerdes, et al. Expires 6 December 2021 [Page 11]

Internet-Draft CoAP-DTLS June 2021

 POST coaps://as.example.com/token
 Content-Format: application/ace+cbor
 Payload:
 {
 audience : "smokeSensor1807",
 }

 Figure 5: Example Access Token Request, (implicit) symmetric PoP-key

 A corresponding example access token response is illustrated in
 Figure 6. In this example, the authorization server returns a 2.01
 response containing a new access token (truncated to improve
 readability) and information for the client, including the symmetric
 key in the cnf claim. The information is transferred as a CBOR data
 structure as specified in [I-D.ietf-ace-oauth-authz].

 2.01 Created
 Content-Format: application/ace+cbor
 Max-Age: 85800
 Payload:
 {
 access_token : h’d08343a10...
 (remainder of CWT omitted for brevity)
 token_type : PoP,
 expires_in : 86400,
 profile : coap_dtls,
 cnf : {
 COSE_Key : {
 kty : symmetric,
 kid : h’3d027833fc6267ce’,
 k : h’73657373696f6e6b6579’
 }
 }
 }

 Figure 6: Example Access Token Response, symmetric PoP-key

 The access token also comprises a "cnf" claim. This claim usually
 contains a "COSE_Key" object [RFC8152] that carries either the
 symmetric key itself or a key identifier that can be used by the
 resource server to determine the secret key it shares with the
 client. If the access token carries a symmetric key, the access
 token MUST be encrypted using a "COSE_Encrypt0" structure (see
 section 7.1 of [RFC8392]). The authorization server MUST use the
 keying material shared with the resource server to encrypt the token.

 The "cnf" structure in the access token is provided in Figure 7.

Gerdes, et al. Expires 6 December 2021 [Page 12]

Internet-Draft CoAP-DTLS June 2021

 cnf : {
 COSE_Key : {
 kty : symmetric,
 kid : h’3d027833fc6267ce’
 }
 }

 Figure 7: Access Token without Keying Material

 A response that declines any operation on the requested resource is
 constructed according to Section 5.2 of [RFC6749], (cf.
 Section 5.8.3. of [I-D.ietf-ace-oauth-authz]). Figure 8 shows an
 example for a request that has been rejected due to invalid request
 parameters.

 4.00 Bad Request
 Content-Format: application/ace+cbor
 Payload:
 {
 error : invalid_request
 }

 Figure 8: Example Access Token Response With Reject

 The method for how the resource server determines the symmetric key
 from an access token containing only a key identifier is application-
 specific; the remainder of this section provides one example.

 The authorization server and the resource server are assumed to share
 a key derivation key used to derive the symmetric key shared with the
 client from the key identifier in the access token. The key
 derivation key may be derived from some other secret key shared
 between the authorization server and the resource server. This key
 needs to be securely stored and processed in the same way as the key
 used to protect the communication between the authorization server
 and the resource server.

 Knowledge of the symmetric key shared with the client must not reveal
 any information about the key derivation key or other secret keys
 shared between the authorization server and resource server.

 In order to generate a new symmetric key to be used by client and
 resource server, the authorization server generates a new key
 identifier which MUST be unique among all key identifiers used by the
 authorization server for this resource server. The authorization
 server then uses the key derivation key shared with the resource
 server to derive the symmetric key as specified below. Instead of
 providing the keying material in the access token, the authorization

Gerdes, et al. Expires 6 December 2021 [Page 13]

Internet-Draft CoAP-DTLS June 2021

 server includes the key identifier in the "kid" parameter, see
 Figure 7. This key identifier enables the resource server to
 calculate the symmetric key used for the communication with the
 client using the key derivation key and a KDF to be defined by the
 application, for example HKDF-SHA-256. The key identifier picked by
 the authorization server MUST be unique for each access token where a
 unique symmetric key is required.

 In this example, HKDF consists of the composition of the HKDF-Extract
 and HKDF-Expand steps [RFC5869]. The symmetric key is derived from
 the key identifier, the key derivation key and other data:

 OKM = HKDF(salt, IKM, info, L),

 where:

 * OKM, the output keying material, is the derived symmetric key

 * salt is the empty byte string

 * IKM, the input keying material, is the key derivation key as
 defined above

 * info is the serialization of a CBOR array consisting of
 ([RFC8610]):

 info = [
 type : tstr,
 L : uint,
 access_token: bytes
]

 where:

 * type is set to the constant text string "ACE-CoAP-DTLS-key-
 derivation",

 * L is the size of the symmetric key in bytes,

 * access_token is the content of the "access_token" field as
 transferred from the authorization server to the resource server.

 All CBOR data types are encoded in CBOR using preferred serialization
 and deterministic encoding as specified in Section 4 of [RFC8949].
 This implies in particular that the "type" and "L" components use the
 minimum length encoding. The content of the "access_token" field is
 treated as opaque data for the purpose of key derivation.

Gerdes, et al. Expires 6 December 2021 [Page 14]

Internet-Draft CoAP-DTLS June 2021

 Use of a unique (per resource server) "kid" and the use of a key
 derivation IKM that MUST be unique per authorization server/resource
 server pair as specified above will ensure that the derived key is
 not shared across multiple clients. However, to provide variation in
 the derived key across different tokens used by the same client, it
 is additionally RECOMMENDED to include the "iat" claim and either the
 "exp" or "exi" claims in the access token.

3.3.2. DTLS Channel Setup Between Client and Resource Server

 When a client receives an access token response from an authorization
 server, the client MUST check if the access token response is bound
 to a certain previously sent access token request, as the request may
 specify the resource server with which the client wants to
 communicate.

 The client checks if the payload of the access token response
 contains an "access_token" parameter and a "cnf" parameter. With
 this information the client can initiate the establishment of a new
 DTLS channel with a resource server. To use DTLS with pre-shared
 keys, the client follows the PSK key exchange algorithm specified in
 Section 2 of [RFC4279] using the key conveyed in the "cnf" parameter
 of the AS response as PSK when constructing the premaster secret. To
 be consistent with the recommendations in [RFC7252], a client in the
 PSK mode MUST support the cipher suite TLS_PSK_WITH_AES_128_CCM_8
 [RFC6655].

 In PreSharedKey mode, the knowledge of the shared secret by the
 client and the resource server is used for mutual authentication
 between both peers. Therefore, the resource server must be able to
 determine the shared secret from the access token. Following the
 general ACE authorization framework, the client can upload the access
 token to the resource server’s authz-info resource before starting
 the DTLS handshake. The client then needs to indicate during the
 DTLS handshake which previously uploaded access token it intends to
 use. To do so, it MUST create a "COSE_Key" structure with the "kid"
 that was conveyed in the "rs_cnf" claim in the token response from
 the authorization server and the key type "symmetric". This
 structure then is included as the only element in the "cnf" structure
 whose CBOR serialization is used as value for "psk_identity" as shown
 in Figure 9.

Gerdes, et al. Expires 6 December 2021 [Page 15]

Internet-Draft CoAP-DTLS June 2021

 { cnf : {
 COSE_Key : {
 kty: symmetric,
 kid : h’3d027833fc6267ce’
 }
 }
 }

 Figure 9: Access token containing a single kid parameter

 The actual CBOR serialization for the data structure from Figure 9 as
 sequence of bytes in hexadecimal notation will be:

 A1 08 A1 01 A2 01 04 02 48 3D 02 78 33 FC 62 67 CE

 As an alternative to the access token upload, the client can provide
 the most recent access token in the "psk_identity" field of the
 ClientKeyExchange message. To do so, the client MUST treat the
 contents of the "access_token" field from the AS-to-Client response
 as opaque data as specified in Section 4.2 of [RFC7925] and not
 perform any re-coding. This allows the resource server to retrieve
 the shared secret directly from the "cnf" claim of the access token.

 If a resource server receives a ClientKeyExchange message that
 contains a "psk_identity" with a length greater than zero, it MUST
 parse the contents of the "psk_identity" field as CBOR data structure
 and process the contents as following:

 * If the data contains a "cnf" field with a "COSE_Key" structure
 with a "kid", the resource server continues the DTLS handshake
 with the associated key that corresponds to this kid.

 * If the data comprises additional CWT information, this information
 must be stored as an access token for this DTLS association before
 continuing with the DTLS handshake.

 If the contents of the "psk_identity" do not yield sufficient
 information to select a valid access token for the requesting client,
 the resource server aborts the DTLS handshake with an
 "illegal_parameter" alert.

 When the resource server receives an access token, it MUST check if
 the access token is still valid, if the resource server is the
 intended destination (i.e., the audience of the token), and if the
 token was issued by an authorized authorization server. This
 specification implements access tokens as proof-of-possession tokens.
 Therefore, the access token is bound to a symmetric PoP key that is
 used as shared secret between the client and the resource server. A

Gerdes, et al. Expires 6 December 2021 [Page 16]

Internet-Draft CoAP-DTLS June 2021

 resource server MUST have the capacity to store one access token for
 every proof-of-possession key of every authorized client. The
 resource server may use token introspection [RFC7662] on the access
 token to retrieve more information about the specific token. The use
 of introspection is out of scope for this specification.

 While the client can retrieve the shared secret from the contents of
 the "cnf" parameter in the AS-to-Client response, the resource server
 uses the information contained in the "cnf" claim of the access token
 to determine the actual secret when no explicit "kid" was provided in
 the "psk_identity" field. If key derivation is used, the "cnf" claim
 MUST contain a "kid" parameter to be used by the server as the IKM
 for key derivation as described above.

3.4. Resource Access

 Once a DTLS channel has been established as described in Section 3.2
 or Section 3.3, respectively, the client is authorized to access
 resources covered by the access token it has uploaded to the authz-
 info resource hosted by the resource server.

 With the successful establishment of the DTLS channel, the client and
 the resource server have proven that they can use their respective
 keying material. An access token that is bound to the client’s
 keying material is associated with the channel. According to
 Section 5.10.1 of [I-D.ietf-ace-oauth-authz], there should be only
 one access token for each client. New access tokens issued by the
 authorization server SHOULD replace previously issued access tokens
 for the respective client. The resource server therefore needs a
 common understanding with the authorization server how access tokens
 are ordered. The authorization server may, e.g., specify a "cti"
 claim for the access token (see Section 5.9.4 of
 [I-D.ietf-ace-oauth-authz]) to employ a strict order.

 Any request that the resource server receives on a DTLS channel that
 is tied to an access token via its keying material MUST be checked
 against the authorization rules that can be determined with the
 access token. The resource server MUST check for every request if
 the access token is still valid. If the token has expired, the
 resource server MUST remove it. Incoming CoAP requests that are not
 authorized with respect to any access token that is associated with
 the client MUST be rejected by the resource server with 4.01
 response. The response SHOULD include AS Request Creation Hints as
 described in Section 5.2 of [I-D.ietf-ace-oauth-authz].

 The resource server MUST NOT accept an incoming CoAP request as
 authorized if any of the following fails:

Gerdes, et al. Expires 6 December 2021 [Page 17]

Internet-Draft CoAP-DTLS June 2021

 1. The message was received on a secure channel that has been
 established using the procedure defined in this document.

 2. The authorization information tied to the sending client is
 valid.

 3. The request is destined for the resource server.

 4. The resource URI specified in the request is covered by the
 authorization information.

 5. The request method is an authorized action on the resource with
 respect to the authorization information.

 Incoming CoAP requests received on a secure DTLS channel that are not
 thus authorized MUST be rejected according to Section 5.10.1.1 of
 [I-D.ietf-ace-oauth-authz]

 1. with response code 4.03 (Forbidden) when the resource URI
 specified in the request is not covered by the authorization
 information, and

 2. with response code 4.05 (Method Not Allowed) when the resource
 URI specified in the request covered by the authorization
 information but not the requested action.

 The client MUST ascertain that its keying material is still valid
 before sending a request or processing a response. If the client
 recently has updated the access token (see Section 4), it must be
 prepared that its request is still handled according to the previous
 authorization rules as there is no strict ordering between access
 token uploads and resource access messages. See also Section 7.2 for
 a discussion of access token processing.

 If the client gets an error response containing AS Request Creation
 Hints (cf. Section 5.3 of [I-D.ietf-ace-oauth-authz] as response to
 its requests, it SHOULD request a new access token from the
 authorization server in order to continue communication with the
 resource server.

 Unauthorized requests that have been received over a DTLS session
 SHOULD be treated as non-fatal by the resource server, i.e., the DTLS
 session SHOULD be kept alive until the associated access token has
 expired.

Gerdes, et al. Expires 6 December 2021 [Page 18]

Internet-Draft CoAP-DTLS June 2021

4. Dynamic Update of Authorization Information

 Resource servers must only use a new access token to update the
 authorization information for a DTLS session if the keying material
 that is bound to the token is the same that was used in the DTLS
 handshake. By associating the access tokens with the identifier of
 an existing DTLS session, the authorization information can be
 updated without changing the cryptographic keys for the DTLS
 communication between the client and the resource server, i.e. an
 existing session can be used with updated permissions.

 The client can therefore update the authorization information stored
 at the resource server at any time without changing an established
 DTLS session. To do so, the client requests a new access token from
 the authorization server for the intended action on the respective
 resource and uploads this access token to the authz-info resource on
 the resource server.

 Figure 10 depicts the message flow where the client requests a new
 access token after a security association between the client and the
 resource server has been established using this protocol. If the
 client wants to update the authorization information, the token
 request MUST specify the key identifier of the proof-of-possession
 key used for the existing DTLS channel between the client and the
 resource server in the "kid" parameter of the Client-to-AS request.
 The authorization server MUST verify that the specified "kid" denotes
 a valid verifier for a proof-of-possession token that has previously
 been issued to the requesting client. Otherwise, the Client-to-AS
 request MUST be declined with the error code "unsupported_pop_key" as
 defined in Section 5.8.3 of [I-D.ietf-ace-oauth-authz].

 When the authorization server issues a new access token to update
 existing authorization information, it MUST include the specified
 "kid" parameter in this access token. A resource server MUST replace
 the authorization information of any existing DTLS session that is
 identified by this key identifier with the updated authorization
 information.

Gerdes, et al. Expires 6 December 2021 [Page 19]

Internet-Draft CoAP-DTLS June 2021

 C RS AS
 | <===== DTLS channel =====> | |
 | + Access Token | |
 | | |
 | --- Token Request ----------------------------> |
 | | |
 | <---------------------------- New Access Token - |
 | + Access Information |
 | | |
 | --- Update /authz-info --> | |
 | New Access Token | |
 | | |
 | == Authorized Request ===> | |
 | | |
 | <=== Protected Resource == | |

 Figure 10: Overview of Dynamic Update Operation

5. Token Expiration

 The resource server MUST delete access tokens that are no longer
 valid. DTLS associations that have been setup in accordance with
 this profile are always tied to specific tokens (which may be
 exchanged with a dynamic update as described in Section 4). As
 tokens may become invalid at any time (e.g., because they have
 expired), the association may become useless at some point. A
 resource server therefore MUST terminate existing DTLS association
 after the last access token associated with this association has
 expired.

 As specified in Section 5.10.3 of [I-D.ietf-ace-oauth-authz], the
 resource server MUST notify the client with an error response with
 code 4.01 (Unauthorized) for any long running request before
 terminating the association.

6. Secure Communication with an Authorization Server

 As specified in the ACE framework (Sections 5.8 and 5.9 of
 [I-D.ietf-ace-oauth-authz]), the requesting entity (the resource
 server and/or the client) and the authorization server communicate
 via the token endpoint or introspection endpoint. The use of CoAP
 and DTLS for this communication is RECOMMENDED in this profile.
 Other protocols fulfilling the security requirements defined in
 Section 5 of [I-D.ietf-ace-oauth-authz] MAY be used instead.

 How credentials (e.g., PSK, RPK, X.509 cert) for using DTLS with the
 authorization server are established is out of scope for this
 profile.

Gerdes, et al. Expires 6 December 2021 [Page 20]

Internet-Draft CoAP-DTLS June 2021

 If other means of securing the communication with the authorization
 server are used, the communication security requirements from
 Section 6.2 of [I-D.ietf-ace-oauth-authz] remain applicable.

7. Security Considerations

 This document specifies a profile for the Authentication and
 Authorization for Constrained Environments (ACE) framework
 [I-D.ietf-ace-oauth-authz]. As it follows this framework’s general
 approach, the general security considerations from Section 6 of
 [I-D.ietf-ace-oauth-authz] also apply to this profile.

 The authorization server must ascertain that the keying material for
 the client that it provides to the resource server actually is
 associated with this client. Malicious clients may hand over access
 tokens containing their own access permissions to other entities.
 This problem cannot be completely eliminated. Nevertheless, in RPK
 mode it should not be possible for clients to request access tokens
 for arbitrary public keys: if the client can cause the authorization
 server to issue a token for a public key without proving possession
 of the corresponding private key, this allows for identity misbinding
 attacks where the issued token is usable by an entity other than the
 intended one. The authorization server therefore at some point needs
 to validate that the client can actually use the private key
 corresponding to the client’s public key.

 When using pre-shared keys provisioned by the authorization server,
 the security level depends on the randomness of PSK, and the security
 of the TLS cipher suite and key exchange algorithm. As this
 specification targets at constrained environments, message payloads
 exchanged between the client and the resource server are expected to
 be small and rare. CoAP [RFC7252] mandates the implementation of
 cipher suites with abbreviated, 8-byte tags for message integrity
 protection. For consistency, this profile requires implementation of
 the same cipher suites. For application scenarios where the cost of
 full-width authentication tags is low compared to the overall amount
 of data being transmitted, the use of cipher suites with 16-byte
 integrity protection tags is preferred.

Gerdes, et al. Expires 6 December 2021 [Page 21]

Internet-Draft CoAP-DTLS June 2021

 The PSK mode of this profile offers a distribution mechanism to
 convey authorization tokens together with a shared secret to a client
 and a server. As this specification aims at constrained devices and
 uses CoAP [RFC7252] as transfer protocol, at least the cipher suite
 TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] should be supported. The access
 tokens and the corresponding shared secrets generated by the
 authorization server are expected to be sufficiently short-lived to
 provide similar forward-secrecy properties to using ephemeral Diffie-
 Hellman (DHE) key exchange mechanisms. For longer-lived access
 tokens, DHE cipher suites should be used, i.e., cipher suites of the
 form TLS_DHE_PSK_*.

 Constrained devices that use DTLS [RFC6347] are inherently vulnerable
 to Denial of Service (DoS) attacks as the handshake protocol requires
 creation of internal state within the device. This is specifically
 of concern where an adversary is able to intercept the initial cookie
 exchange and interject forged messages with a valid cookie to
 continue with the handshake. A similar issue exists with the
 unprotected authorization information endpoint when the resource
 server needs to keep valid access tokens for a long time.
 Adversaries could fill up the constrained resource server’s internal
 storage for a very long time with interjected or otherwise retrieved
 valid access tokens. To mitigate against this, the resource server
 should set a time boundary until an access token that has not been
 used until then will be deleted.

 The protection of access tokens that are stored in the authorization
 information endpoint depends on the keying material that is used
 between the authorization server and the resource server: The
 resource server must ensure that it processes only access tokens that
 are (encrypted and) integrity-protected by an authorization server
 that is authorized to provide access tokens for the resource server.

Gerdes, et al. Expires 6 December 2021 [Page 22]

Internet-Draft CoAP-DTLS June 2021

7.1. Reuse of Existing Sessions

 To avoid the overhead of a repeated DTLS handshake, [RFC7925]
 recommends session resumption [RFC8446] to reuse session state from
 an earlier DTLS association and thus requires client side
 implementation. In this specification, the DTLS session is subject
 to the authorization rules denoted by the access token that was used
 for the initial setup of the DTLS association. Enabling session
 resumption would require the server to transfer the authorization
 information with the session state in an encrypted SessionTicket to
 the client. Assuming that the server uses long-lived keying
 material, this could open up attacks due to the lack of forward
 secrecy. Moreover, using this mechanism, a client can resume a DTLS
 session without proving the possession of the PoP key again.
 Therefore, session resumption should be used only in combination with
 reasonably short-lived PoP keys.

 Since renegotiation of DTLS associations is prone to attacks as well,
 [RFC7925] requires clients to decline any renegotiation attempt. A
 server that wants to initiate re-keying therefore SHOULD periodically
 force a full handshake.

7.2. Multiple Access Tokens

 Developers SHOULD avoid using multiple access tokens for a client
 (see also section 5.10.1 of [I-D.ietf-ace-oauth-authz]).

 Even when a single access token per client is used, an attacker could
 compromise the dynamic update mechanism for existing DTLS connections
 by delaying or reordering packets destined for the authz-info
 endpoint. Thus, the order in which operations occur at the resource
 server (and thus which authorization info is used to process a given
 client request) cannot be guaranteed. Especially in the presence of
 later-issued access tokens that reduce the client’s permissions from
 the initial access token, it is impossible to guarantee that the
 reduction in authorization will take effect prior to the expiration
 of the original token.

7.3. Out-of-Band Configuration

 To communicate securely, the authorization server, the client and the
 resource server require certain information that must be exchanged
 outside the protocol flow described in this document. The
 authorization server must have obtained authorization information
 concerning the client and the resource server that is approved by the
 resource owner as well as corresponding keying material. The
 resource server must have received authorization information approved
 by the resource owner concerning its authorization managers and the

Gerdes, et al. Expires 6 December 2021 [Page 23]

Internet-Draft CoAP-DTLS June 2021

 respective keying material. The client must have obtained
 authorization information concerning the authorization server
 approved by its owner as well as the corresponding keying material.
 Also, the client’s owner must have approved of the client’s
 communication with the resource server. The client and the
 authorization server must have obtained a common understanding how
 this resource server is identified to ensure that the client obtains
 access token and keying material for the correct resource server. If
 the client is provided with a raw public key for the resource server,
 it must be ascertained to which resource server (which identifier and
 authorization information) the key is associated. All authorization
 information and keying material must be kept up to date.

8. Privacy Considerations

 This privacy considerations from Section 7 of the
 [I-D.ietf-ace-oauth-authz] apply also to this profile.

 An unprotected response to an unauthorized request may disclose
 information about the resource server and/or its existing
 relationship with the client. It is advisable to include as little
 information as possible in an unencrypted response. When a DTLS
 session between an authenticated client and the resource server
 already exists, more detailed information MAY be included with an
 error response to provide the client with sufficient information to
 react on that particular error.

 Also, unprotected requests to the resource server may reveal
 information about the client, e.g., which resources the client
 attempts to request or the data that the client wants to provide to
 the resource server. The client SHOULD NOT send confidential data in
 an unprotected request.

 Note that some information might still leak after DTLS session is
 established, due to observable message sizes, the source, and the
 destination addresses.

9. IANA Considerations

 The following registrations are done for the ACE OAuth Profile
 Registry following the procedure specified in
 [I-D.ietf-ace-oauth-authz].

 Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"
 with the RFC number of this specification and delete this paragraph.

 Profile name: coap_dtls

Gerdes, et al. Expires 6 December 2021 [Page 24]

Internet-Draft CoAP-DTLS June 2021

 Profile Description: Profile for delegating client authentication and
 authorization in a constrained environment by establishing a Datagram
 Transport Layer Security (DTLS) channel between resource-constrained
 nodes.

 Profile ID: TBD (suggested: 1)

 Change Controller: IESG

 Reference: [RFC-XXXX]

10. Acknowledgments

 Special thanks to Jim Schaad for his contributions and reviews of
 this document and to Ben Kaduk for his thorough reviews of this
 document. Thanks also to Paul Kyzivat for his review. The authors
 also would like to thank Marco Tiloca for his contributions.

 Ludwig Seitz worked on this document as part of the CelticNext
 projects CyberWI, and CRITISEC with funding from Vinnova.

11. References

11.1. Normative References

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", Work in Progress, Internet-Draft,
 draft-ietf-ace-oauth-authz-41, 6 May 2021,
 <https://www.ietf.org/archive/id/draft-ietf-ace-oauth-
 authz-41.txt>.

 [I-D.ietf-ace-oauth-params]
 Seitz, L., "Additional OAuth Parameters for Authorization
 in Constrained Environments (ACE)", Work in Progress,
 Internet-Draft, draft-ietf-ace-oauth-params-15, 6 May
 2021, <https://www.ietf.org/archive/id/draft-ietf-ace-
 oauth-params-15.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Gerdes, et al. Expires 6 December 2021 [Page 25]

Internet-Draft CoAP-DTLS June 2021

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
 <https://www.rfc-editor.org/info/rfc7251>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

Gerdes, et al. Expires 6 December 2021 [Page 26]

Internet-Draft CoAP-DTLS June 2021

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

11.2. Informative References

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655,
 DOI 10.17487/RFC6655, July 2012,
 <https://www.rfc-editor.org/info/rfc6655>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Gerdes, et al. Expires 6 December 2021 [Page 27]

Internet-Draft CoAP-DTLS June 2021

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Authors’ Addresses

 Stefanie Gerdes
 Universität Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63906
 Email: gerdes@tzi.org

 Olaf Bergmann
 Universität Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63904
 Email: bergmann@tzi.org

 Carsten Bormann
 Universität Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Göran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

Gerdes, et al. Expires 6 December 2021 [Page 28]

Internet-Draft CoAP-DTLS June 2021

 Ludwig Seitz
 Combitech
 Djäknegatan 31
 SE-211 35 Malmö
 Sweden

 Email: ludwig.seitz@combitech.com

Gerdes, et al. Expires 6 December 2021 [Page 29]

