
Internet Engineering Task Force K. Larose
Internet-Draft Agilicus
Intended status: Informational D. Dolson
Expires: 27 March 2021
 H. Liu
 Google
 23 September 2020

 Captive Portal Architecture
 draft-ietf-capport-architecture-10

Abstract

 This document describes a captive portal architecture. Network
 provisioning protocols such as DHCP or Router Advertisements (RAs),
 an optional signaling protocol, and an HTTP API are used to provide
 the solution.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 March 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Larose, et al. Expires 27 March 2021 [Page 1]

Internet-Draft Captive Portal Architecture September 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 5
 1.2. Terminology . 5
 2. Components . 6
 2.1. User Equipment . 6
 2.2. Provisioning Service 7
 2.2.1. DHCP or Router Advertisements 8
 2.2.2. Provisioning Domains 8
 2.3. Captive Portal API Server 8
 2.4. Captive Portal Enforcement Device 9
 2.5. Captive Portal Signal 10
 2.6. Component Diagram . 10
 3. User Equipment Identity 12
 3.1. Identifiers . 12
 3.2. Recommended Properties 12
 3.2.1. Uniquely Identify User Equipment 13
 3.2.2. Hard to Spoof . 13
 3.2.3. Visible to the API Server 13
 3.2.4. Visible to the Enforcement Device 14
 3.3. Evaluating Types of Identifiers 14
 3.4. Example Identifier Types 14
 3.4.1. Physical Interface 14
 3.4.2. IP Address . 15
 3.4.3. Media Access Control (MAC) Address 16
 3.5. Context-free URI . 16
 4. Solution Workflow . 17
 4.1. Initial Connection 17
 4.2. Conditions About to Expire 17
 4.3. Handling of Changes in Portal URI 18
 5. Acknowledgments . 18
 6. IANA Considerations . 19
 7. Security Considerations 19
 7.1. Trusting the Network 19
 7.2. Authenticated APIs 19
 7.3. Secure APIs . 20
 7.4. Risks Associated with the Signaling Protocol 20
 7.5. User Options . 21

Larose, et al. Expires 27 March 2021 [Page 2]

Internet-Draft Captive Portal Architecture September 2020

 7.6. Privacy . 21
 8. References . 21
 8.1. Normative References 21
 8.2. Informative References 22
 Appendix A. Existing Captive Portal Detection Implementations . 23
 Authors’ Addresses . 23

1. Introduction

 In this document, "Captive Portal" is used to describe a network to
 which a device may be voluntarily attached, such that network access
 is limited until some requirements have been fulfilled. Typically a
 user is required to use a web browser to fulfill requirements imposed
 by the network operator, such as reading advertisements, accepting an
 acceptable-use policy, or providing some form of credentials.

 Implementations of captive portals generally require a web server,
 some method to allow/block traffic, and some method to alert the
 user. Common methods of alerting the user in implementations prior
 to this work involve modifying HTTP or DNS traffic.

 This document describes an architecture for implementing captive
 portals while addressing most of the problems arising for current
 captive portal mechanisms. The architecture is guided by these
 requirements:

 * Current captive portal solutions typically implement some
 variations of forging DNS or HTTP responses. Some attempt man-in-
 the-middle (MITM) proxy of HTTPS in order to forge reponses.
 Captive Portal Solutions should not have to break any protocols or
 otherwise act in the manner of an attacker. Therefore, solutions
 MUST NOT require the forging of responses from DNS or HTTP
 servers, or any other protocol.

 * Solutions MUST permit clients to perform DNSSEC validation, which
 rules out solutions that forge DNS responses. Solutions SHOULD
 permit clients to detect and avoid TLS man-in-the-middle attacks
 without requiring a human to perform any kind of "exception"
 processing.

 * To maximize universality and adoption, solutions MUST operate at
 the layer of Internet Protocol (IP) or above, not being specific
 to any particular access technology such as Cable, WiFi or mobile
 telecom.

 * Solutions SHOULD allow a device to query the network to determine
 whether the device is captive, without the solution being coupled
 to forging intercepted protocols or requiring the device to make

Larose, et al. Expires 27 March 2021 [Page 3]

Internet-Draft Captive Portal Architecture September 2020

 sacrificial queries to "canary" URIs to check for response
 tampering (see Appendix A). Current captive portal solutions that
 work by affecting DNS or HTTP generally only function as intended
 with browsers, breaking other applications using those protocols;
 applications using other protocols are not alerted that the
 network is a captive portal.

 * The state of captivity SHOULD be explicitly available to devices
 via a standard protocol, rather than having to infer the state
 indirectly.

 * The architecture MUST provide a path of incremental migration,
 acknowledging the existence of a huge variety of pre-existing
 portals and end-user device implementations and software versions.
 This requirement is not to recommend or standardize existing
 approaches, rather to provide device and portal implementors a
 path to new standard.

 A side-benefit of the architecture described in this document is that
 devices without user interfaces are able to identify parameters of
 captivity. However, this document does not describe a mechanism for
 such devices to negotiate for unrestricted network access. A future
 document could provide a solution to devices without user interfaces.
 This document focuses on devices with user interfaces.

 The architecture uses the following mechanisms:

 * Network provisioning protocols provide end-user devices with a
 Uniform Resource Identifier [RFC3986] (URI) for the API that end-
 user devices query for information about what is required to
 escape captivity. DHCP, DHCPv6, and Router-Advertisement options
 for this purpose are available in [RFC7710bis]. Other protocols
 (such as RADIUS), Provisioning Domains [I-D.pfister-capport-pvd],
 or static configuration may also be used to convey this Captive
 Portal API URI. A device MAY query this API at any time to
 determine whether the network is holding the device in a captive
 state.

 * A Captive Portal can signal User Equipment in response to
 transmissions by the User Equipment. This signal works in
 response to any Internet protocol, and is not done by modifying
 protocols in-band. This signal does not carry the Captive Portal
 API URI; rather it provides a signal to the User Equipment that it
 is in a captive state.

Larose, et al. Expires 27 March 2021 [Page 4]

Internet-Draft Captive Portal Architecture September 2020

 * Receipt of a Captive Portal Signal provides a hint that User
 Equipment could be captive. In response, the device MAY query the
 provisioned API to obtain information about the network state.
 The device can take immediate action to satisfy the portal
 (according to its configuration/policy).

 The architecture attempts to provide confidentiality, authentication,
 and safety mechanisms to the extent possible.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 Captive Portal: A network which limits communication of attached
 devices to restricted hosts until the user has satisfied Captive
 Portal Conditions, after which access is permitted to a wider set of
 hosts (typically the Internet).

 Captive Portal Conditions: site-specific requirements that a user or
 device must satisfy in order to gain access to the wider network.

 Captive Portal Enforcement Device: The network equipment which
 enforces the traffic restriction. Also known as Enforcement Device.

 Captive Portal User Equipment: Also known as User Equipment. A
 device which has voluntarily joined a network for purposes of
 communicating beyond the constraints of the Captive Portal.

 User Portal: The web server providing a user interface for assisting
 the user in satisfying the conditions to escape captivity.

 Captive Portal API: Also known as API. An HTTP API allowing User
 Equipment to query information about its state of captivity within
 the Captive Portal. This information might include how to obtain
 full network access (e.g. by visting a URI).

 Captive Portal API Server: Also known as API Server. A server
 hosting the Captive Portal API.

 Captive Portal Signal: A notification from the network used to signal
 to the User Equipment that the state of its captivity could have
 changed.

Larose, et al. Expires 27 March 2021 [Page 5]

Internet-Draft Captive Portal Architecture September 2020

 Captive Portal Signaling Protocol: Also known as Signaling Protocol.
 The protocol for communicating Captive Portal Signals.

 Captive Portal Session: Also referred to simply as the "session", a
 Captive Portal Session is the association for a particular User
 Equipment that starts when it interacts with the Captive Portal and
 gains open access to the network, and ends when the User Equipment
 moves back into the original captive state. The Captive Network
 maintains the state of each active Session, and can limit Sessions
 based on a length of time or a number of bytes used. The Session is
 associated with a particular User Equipment using the User
 Equipment’s identifier (see Section 3).

2. Components

2.1. User Equipment

 The User Equipment is the device that a user desires to be attached
 to a network with full access to all hosts on the network (e.g., to
 have Internet access). The User Equipment communication is typically
 restricted by the Enforcement Device, described in Section 2.4, until
 site-specific requirements have been met.

 This document only considers devices with web browsers, with web
 applications being the means of satisfying Captive Portal Conditions.
 An example of such User Equipment is a smart phone.

 The User Equipment:

 * SHOULD support provisioning of the URI for the Captive Portal API
 (e.g., by DHCP)

 * SHOULD distinguish Captive Portal API access per network
 interface, in the manner of Provisioning Domain Architecture
 [RFC7556].

 * SHOULD have a non-spoofable mechanism for notifying the user of
 the Captive Portal

 * SHOULD have a web browser so that the user may navigate to the
 User Portal.

 * SHOULD support updates to the Captive Portal API URI from the
 network provisioning service.

 * MAY prevent applications from using networks that do not grant
 full network access. E.g., a device connected to a mobile network
 may be connecting to a captive WiFi network; the operating system

Larose, et al. Expires 27 March 2021 [Page 6]

Internet-Draft Captive Portal Architecture September 2020

 could avoid updating the default route to a device on captive WiFi
 network until network access restrictions have been lifted
 (excepting access to the User Portal) in the new network. This
 has been termed "make before break".

 None of the above requirements are mandatory because (a) we do not
 wish to say users or devices must seek full access to the Captive
 Portal, (b) the requirements may be fulfilled by manually visiting
 the captive portal web application, and (c) legacy devices must
 continue to be supported.

 If User Equipment supports the Captive Portal API, it MUST validate
 the API server’s TLS certificate (see [RFC2818]) according to the
 procedures in [RFC6125]. The API server’s URI is obtained via a
 network provisioning protocol, which will typically provide a
 hostname to be used in TLS server certificate validation, against a
 DNS-ID in the server certificate. If the API server is identified by
 IP address, the iPAddress subjectAltName is used to validate the
 server certificate. An Enforcement Device SHOULD allow access to any
 services that User Equipment could need to contact to perform
 certificate validation, such as OCSP responders, CRLs, and NTP
 servers; see Section 4.1 of [I-D.ietf-capport-api] for more
 information. If certificate validation fails, User Equipment MUST
 NOT make any calls to the API server.

 The User Equipment can store the last response it received from the
 Captive Portal API as a cached view of its state within the Captive
 Portal. This state can be used to determine whether its Captive
 Portal Session is near expiry. For example, the User Equipment might
 compare a timestamp indicating when the session expires to the
 current time. Storing state in this way can reduce the need for
 communication with the Captive Portal API. However, it could lead to
 the state becoming stale if the User Equipment’s view of the relevant
 conditions (byte quota, for example) is not consistent with the
 Captive Portal API’s.

2.2. Provisioning Service

 The Provisioning Service is primarily responsible for providing a
 Captive Portal API URI to the User Equipment when it connects to the
 network, and later if the URI changes. The provisioning service
 could also be the same service which is responsible for provisioning
 the User Equipment for access to the Captive Portal (e.g., by
 providing it with an IP address). This section discusses two
 mechanisms which may be used to provide the Captive Portal API URI to
 the User Equipment.

Larose, et al. Expires 27 March 2021 [Page 7]

Internet-Draft Captive Portal Architecture September 2020

2.2.1. DHCP or Router Advertisements

 A standard for providing a Captive Portal API URI using DHCP or
 Router Advertisements is described in [RFC7710bis]. The captive
 portal architecture expects this URI to indicate the API described in
 Section 2.3.

2.2.2. Provisioning Domains

 Although still a work in progress, [I-D.pfister-capport-pvd] proposes
 a mechanism for User Equipment to be provided with PvD Bootstrap
 Information containing the URI for the API described in Section 2.3.

2.3. Captive Portal API Server

 The purpose of a Captive Portal API is to permit a query of Captive
 Portal state without interrupting the user. This API thereby removes
 the need for User Equipment to perform clear-text "canary" (see
 Appendix A) queries to check for response tampering.

 The URI of this API will have been provisioned to the User Equipment.
 (Refer to Section 2.2).

 This architecture expects the User Equipment to query the API when
 the User Equipment attaches to the network and multiple times
 thereafter. Therefore the API MUST support multiple repeated queries
 from the same User Equipment and return the state of captivity for
 the equipment.

 At minimum, the API MUST provide the state of captivity. Further the
 API MUST be able to provide a URI for the User Portal. The scheme
 for the URI MUST be https so that the User Equipment communicates
 with the User Portal over TLS.

 If the API receives a request for state that does not correspond to
 the requesting User Equipment, the API SHOULD deny access. Given
 that the API might use the User Equipment’s identifier for
 authentication, this requirement motivates Section 3.2.2.

 A caller to the API needs to be presented with evidence that the
 content it is receiving is for a version of the API that it supports.
 For an HTTP-based interaction, such as in [I-D.ietf-capport-api] this
 might be achieved by using a content type that is unique to the
 protocol.

Larose, et al. Expires 27 March 2021 [Page 8]

Internet-Draft Captive Portal Architecture September 2020

 When User Equipment receives Captive Portal Signals, the User
 Equipment MAY query the API to check its state of captivity. The
 User Equipment SHOULD rate-limit these API queries in the event of
 the signal being flooded. (See Section 7.)

 The API MUST be extensible to support future use-cases by allowing
 extensible information elements.

 The API MUST use TLS to ensure server authentication. The
 implementation of the API MUST ensure both confidentiality and
 integrity of any information provided by or required by it.

 This document does not specify the details of the API.

2.4. Captive Portal Enforcement Device

 The Enforcement Device component restricts the network access of User
 Equipment according to site-specific policy. Typically User
 Equipment is permitted access to a small number of services
 (according to the policies of the network provider) and is denied
 general network access until it satisfies the Captive Portal
 Conditions.

 The Enforcement Device component:

 * Allows traffic to pass for User Equipment that is permitted to use
 the network and has satisfied the Captive Portal Conditions.

 * Blocks (discards) traffic according to the site-specific policy
 for User Equipment that has not yet satisfied the Captive Portal
 Conditions.

 * Optionally signals User Equipment using the Captive Portal
 Signaling protocol if certain traffic is blocked.

 * Permits User Equipment that has not satisfied the Captive Portal
 Conditions to access necessary APIs and web pages to fulfill
 requirements for escaping captivity.

 * Updates allow/block rules per User Equipment in response to
 operations from the User Portal.

Larose, et al. Expires 27 March 2021 [Page 9]

Internet-Draft Captive Portal Architecture September 2020

2.5. Captive Portal Signal

 When User Equipment first connects to a network, or when there are
 changes in status, the Enforcement Device could generate a signal
 toward the User Equipment. This signal indicates that the User
 Equipment might need to contact the API Server to receive updated
 information. For instance, this signal might be generated when the
 end of a session is imminent, or when network access was denied. For
 simplicity, and to reduce the attack surface, all signals SHOULD be
 considered equivalent by the User Equipment: as a hint to contact the
 API. If future solutions have multiple signal types, each type
 SHOULD be rate-limited independently.

 An Enforcement Device MUST rate-limit any signal generated in
 response to these conditions. See Section 7.4 for a discussion of
 risks related to a Captive Portal Signal.

2.6. Component Diagram

 The following diagram shows the communication between each component
 in the case where the Captive Portal has a User Portal, and the User
 Equipment chooses to visit the User Portal in response to discovering
 and interacting with the API Server.

Larose, et al. Expires 27 March 2021 [Page 10]

Internet-Draft Captive Portal Architecture September 2020

 o . o
 . CAPTIVE PORTAL .
 . +------------+ Join Network +--------------+ .
 . | |+--------------------------->| Provisioning | .
 . | | Provision API URI | Service | .
 . | |<---------------------------+| | .
 . | User | +--------------+ .
 . | Equipment | Query captivity status +-------------+ .
 . | |+--------------------------->| API | .
 . | | Captivity status response | Server | .
 . | |<---------------------------+| | .
 . | | +------+------+ .
 . | | | Status .
 . | | Portal UI page requests +------+------+ .
 . | |+--------------------------->| | .
 . | | Portal UI pages | User Portal | .
 . | |<---------------------------+| | .
 . +------------+ | | .
 . ^ ^ | +-------------+ .
 . | | | Data to/from ext. network | .
 . | | +-----------------> +---------------+ Allow/Deny .
 . | +--------------------+| | Rules .
 . | | Enforcement | | .
 . | Captive Portal Signal | Device |<----+ .
 . +-------------------------+---------------+ .
 . ^ | .
 . | | .
 . Data to/from external network .
 . | | .
 o| |. o
 | v
 EXTERNAL NETWORK

 Figure 1: Captive Portal Architecture Component Diagram

 In the diagram:

 * During provisioning (e.g., DHCP), and possibly later, the User
 Equipment acquires the Captive Portal API URI.

 * The User Equipment queries the API to learn of its state of
 captivity. If captive, the User Equipment presents the portal
 user interface from the User Portal to the user.

 * Based on user interaction, the User Portal directs the Enforcement
 Device to either allow or deny external network access for the
 User Equipment.

Larose, et al. Expires 27 March 2021 [Page 11]

Internet-Draft Captive Portal Architecture September 2020

 * The User Equipment attempts to communicate to the external network
 through the Enforcement Device.

 * The Enforcement Device either allows the User Equipment’s packets
 to the external network, or blocks the packets. If blocking
 traffic and a signal has been implemented, it may respond with a
 Captive Portal Signal.

 The Provisioning Service, API Server, and User Portal are described
 as discrete functions. An implementation might provide the multiple
 functions within a single entity. Furthermore, these functions,
 combined or not, as well as the Enforcement Device, could be
 replicated for redundancy or scale.

3. User Equipment Identity

 Multiple components in the architecture interact with both the User
 Equipment and each other. Since the User Equipment is the focus of
 these interactions, the components must be able to both identify the
 User Equipment from their interactions with it, and to agree on the
 identity of the User Equipment when interacting with each other.

 The methods by which the components interact restrict the type of
 information that may be used as an identifying characteristics. This
 section discusses the identifying characteristics.

3.1. Identifiers

 An Identifier is a characteristic of the User Equipment used by the
 components of a Captive Portal to uniquely determine which specific
 User Equipment is interacting with them. An Identifier can be a
 field contained in packets sent by the User Equipment to the External
 Network. Or, an Identifier can be an ephemeral property not
 contained in packets destined for the External Network, but instead
 correlated with such information through knowledge available to the
 different components.

3.2. Recommended Properties

 The set of possible identifiers is quite large. However, in order to
 be considered a good identifier, an identifier SHOULD meet the
 following criteria. Note that the optimal identifier will likely
 change depending on the position of the components in the network as
 well as the information available to them. An identifier SHOULD:

 * uniquely identify the User Equipment

 * be hard to spoof

Larose, et al. Expires 27 March 2021 [Page 12]

Internet-Draft Captive Portal Architecture September 2020

 * be visible to the API Server

 * be visible to the Enforcement Device

 An identifier might only apply to the current point of network
 attachment. If the device moves to a different network location its
 identity could change.

3.2.1. Uniquely Identify User Equipment

 The Captive Portal MUST associate the User Equipment with an
 identifier that is unique among the User Equipment that are
 interacting with the Captive Portal at that time.

 Over time, the User Equipment assigned to an identifier value MAY
 change. Allowing the identified device to change over time ensures
 that the space of possible identifying values need not be overly
 large.

 Independent Captive Portals MAY use the same identifying value to
 identify different User Equipment. Allowing independent captive
 portals to reuse identifying values allows the identifier to be a
 property of the local network, expanding the space of possible
 identifiers.

3.2.2. Hard to Spoof

 A good identifier does not lend itself to being easily spoofed. At
 no time should it be simple or straightforward for one User Equipment
 to pretend to be another User Equipment, regardless of whether both
 are active at the same time. This property is particularly important
 when the User Equipment identifier is referenced externally by
 devices such as billing systems, or where the identity of the User
 Equipment could imply liability.

3.2.3. Visible to the API Server

 Since the API Server will need to perform operations which rely on
 the identity of the User Equipment, such as answering a query about
 whether the User Equipment is captive, the API Server needs to be
 able to relate a request to the User Equipment making the request.

Larose, et al. Expires 27 March 2021 [Page 13]

Internet-Draft Captive Portal Architecture September 2020

3.2.4. Visible to the Enforcement Device

 The Enforcement Device will decide on a per-packet basis whether the
 packet should be forwarded to the external network. Since this
 decision depends on which User Equipment sent the packet, the
 Enforcement Device requires that it be able to map the packet to its
 concept of the User Equipment.

3.3. Evaluating Types of Identifiers

 To evaluate whether a type of identifier is appropriate, one should
 consider every recommended property from the perspective of
 interactions among the components in the architecture. When
 comparing identifier types, choose the one which best satisfies all
 of the recommended properties. The architecture does not provide an
 exact measure of how well an identifier type satisfies a given
 property; care should be taken in performing the evaluation.

3.4. Example Identifier Types

 This section provides some example identifier types, along with some
 evaluation of whether they are suitable types. The list of
 identifier types is not exhaustive. Other types may be used. An
 important point to note is that whether a given identifier type is
 suitable depends heavily on the capabilities of the components and
 where in the network the components exist.

3.4.1. Physical Interface

 The physical interface by which the User Equipment is attached to the
 network can be used to identify the User Equipment. This identifier
 type has the property of being extremely difficult to spoof: the User
 Equipment is unaware of the property; one User Equipment cannot
 manipulate its interactions to appear as though it is another.

 Further, if only a single User Equipment is attached to a given
 physical interface, then the identifier will be unique. If multiple
 User Equipment is attached to the network on the same physical
 interface, then this type is not appropriate.

 Another consideration related to uniqueness of the User Equipment is
 that if the attached User Equipment changes, both the API Server and
 the Enforcement Device MUST invalidate their state related to the
 User Equipment.

Larose, et al. Expires 27 March 2021 [Page 14]

Internet-Draft Captive Portal Architecture September 2020

 The Enforcement Device needs to be aware of the physical interface,
 which constrains the environment: it must either be part of the
 device providing physical access (e.g., implemented in firmware), or
 packets traversing the network must be extended to include
 information about the source physical interface (e.g. a tunnel).

 The API Server faces a similar problem, implying that it should co-
 exist with the Enforcement Device, or that the Enforcement Device
 should extend requests to it with the identifying information.

3.4.2. IP Address

 A natural identifier type to consider is the IP address of the User
 Equipment. At any given time, no device on the network can have the
 same IP address without causing the network to malfunction, so it is
 appropriate from the perspective of uniqueness.

 However, it may be possible to spoof the IP address, particularly for
 malicious reasons where proper functioning of the network is not
 necessary for the malicious actor. Consequently, any solution using
 the IP address SHOULD proactively try to prevent spoofing of the IP
 address. Similarly, if the mapping of IP address to User Equipment
 is changed, the components of the architecture MUST remove or update
 their mapping to prevent spoofing. Demonstrations of return
 routeability, such as that required for TCP connection establishment,
 might be sufficient defense against spoofing, though this might not
 be sufficient in networks that use broadcast media (such as some
 wireless networks).

 Since the IP address may traverse multiple segments of the network,
 more flexibility is afforded to the Enforcement Device and the API
 Server: they simply must exist on a segment of the network where the
 IP address is still unique. However, consider that a NAT may be
 deployed between the User Equipment and the Enforcement Device. In
 such cases, it is possible for the components to still uniquely
 identify the device if they are aware of the port mapping.

Larose, et al. Expires 27 March 2021 [Page 15]

Internet-Draft Captive Portal Architecture September 2020

 In some situations, the User Equipment may have multiple IP addresses
 (either IPv4, IPv6 or a dual-stack [RFC4213] combination), while
 still satisfying all of the recommended properties. This raises some
 challenges to the components of the network. For example, if the
 User Equipment tries to access the network with multiple IP
 addresses, should the Enforcement Device and API Server treat each IP
 address as a unique User Equipment, or should it tie the multiple
 addresses together into one view of the subscriber? An
 implementation MAY do either. Attention should be paid to IPv6 and
 the fact that it is expected for a device to have multiple IPv6
 addresses on a single link. In such cases, identification could be
 performed by subnet, such as the /64 to which the IP belongs.

3.4.3. Media Access Control (MAC) Address

 The MAC address of a device is often used as an identifier in
 existing implementations. This document does not discuss the use of
 MAC addresses within a captive portal system, but they can be used as
 an identifier type, subject to the criteria in Section 3.2.

3.5. Context-free URI

 A Captive Portal API needs to present information to clients that is
 unique to that client. To do this, some systems use information from
 the context of a request, such as the source address, to identify the
 User Equipment.

 Using information from context rather than information from the URI
 allows the same URI to be used for different clients. However, it
 also means that the resource is unable to provide relevant
 information if the User Equipment makes a request using a different
 network path. This might happen when User Equipment has multiple
 network interfaces. It might also happen if the address of the API
 provided by DNS depends on where the query originates (as in split
 DNS [RFC8499]).

 Accessing the API MAY depend on contextual information. However, the
 URIs provided in the API SHOULD be unique to the User Equipment and
 not dependent on contextual information to function correctly.

 Though a URI might still correctly resolve when the User Equipment
 makes the request from a different network, it is possible that some
 functions could be limited to when the User Equipment makes requests
 using the Captive Portal. For example, payment options could be
 absent or a warning could be displayed to indicate the payment is not
 for the current connection.

Larose, et al. Expires 27 March 2021 [Page 16]

Internet-Draft Captive Portal Architecture September 2020

 URIs could include some means of identifying the User Equipment in
 the URIs. However, including unauthenticated User Equipment
 identifiers in the URI may expose the service to spoofing or replay
 attacks.

4. Solution Workflow

 This section aims to improve understanding by describing a possible
 workflow of solutions adhering to the architecture. Note that the
 section is not normative: it describes only as subset of possible
 implementations.

4.1. Initial Connection

 This section describes a possible workflow when User Equipment
 initially joins a Captive Portal.

 1. The User Equipment joins the Captive Portal by acquiring a DHCP
 lease, RA, or similar, acquiring provisioning information.

 2. The User Equipment learns the URI for the Captive Portal API from
 the provisioning information (e.g., [RFC7710bis]).

 3. The User Equipment accesses the Captive Portal API to receive
 parameters of the Captive Portal, including User Portal URI.
 (This step replaces the clear-text query to a canary URI.)

 4. If necessary, the User navigates to the User Portal to gain
 access to the external network.

 5. If the User interacted with the User Portal to gain access to the
 external network in the previous step, the User Portal indicates
 to the Enforcement Device that the User Equipment is allowed to
 access the external network.

 6. The User Equipment attempts a connection outside the Captive
 Portal

 7. If the requirements have been satisfied, the access is permitted;
 otherwise the "Expired" behavior occurs.

 8. The User Equipment accesses the network until conditions Expire.

4.2. Conditions About to Expire

 This section describes a possible workflow when access is about to
 expire.

Larose, et al. Expires 27 March 2021 [Page 17]

Internet-Draft Captive Portal Architecture September 2020

 1. Precondition: the API has provided the User Equipment with a
 duration over which its access is valid.

 2. The User Equipment is communicating with the outside network.

 3. The User Equipment detects that the length of time left for its
 access has fallen below a threshold by comparing its stored
 expiry time with the current time.

 4. The User Equipment visits the API again to validate the expiry
 time.

 5. If expiry is still imminent, the User Equipment prompts the user
 to access the User Portal URI again.

 6. The User accepts the prompt displayed by the User Equipment.

 7. The User extends their access through the User Portal via the
 User Equipment’s user interface.

 8. The User Equipment’s access to the outside network continues
 uninterrupted.

4.3. Handling of Changes in Portal URI

 A different Captive Portal API URI could be returned in the following
 cases:

 * If DHCP is used, a lease renewal/rebind may return a different
 Captive Portal API URI.

 * If RA is used, a new Captive Portal API URI may be specified in a
 new RA message received by end User Equipment.

 When the Network Provisioning Service updates the Captive Portal API
 URI, the User Equipment can retrieve updated state from the URI
 immediately, or it can wait as it normally would until the expiry
 conditions it retrieved from the old URI are about to expire.

5. Acknowledgments

 The authors thank Lorenzo Colitti for providing the majority of the
 content for the Captive Portal Signal requirements.

 The authors thank Benjamin Kaduk for providing the content related to
 TLS certificate validation of the API server.

Larose, et al. Expires 27 March 2021 [Page 18]

Internet-Draft Captive Portal Architecture September 2020

 The authors thank Michael Richardson for providing wording requiring
 DNSSEC and TLS to operate without the user adding exceptions.

 The authors thank various individuals for their feedback on the
 mailing list and during the IETF98 hackathon: David Bird, Erik Kline,
 Alexis La Goulette, Alex Roscoe, Darshak Thakore, and Vincent van
 Dam.

6. IANA Considerations

 This memo includes no request to IANA.

7. Security Considerations

7.1. Trusting the Network

 When joining a network, some trust is placed in the network operator.
 This is usually considered to be a decision by a user on the basis of
 the reputation of an organization. However, once a user makes such a
 decision, protocols can support authenticating that a network is
 operated by who claims to be operating it. The Provisioning Domain
 Architecture [RFC7556] provides some discussion on authenticating an
 operator.

 The user makes an informed choice to visit and trust the Captive
 Portal URI. Since the network provides Captive Portal URI to the
 user equipment, the network SHOULD do so securely so that the user’s
 trust in the network can extend to their trust of the Captive Portal
 URI. E.g., the DHCPv6 AUTH option can sign this information.

 If a user decides to incorrectly trust an attacking network, they
 might be convinced to visit an attacking web page and unwittingly
 provide credentials to an attacker. Browsers can authenticate
 servers but cannot detect cleverly misspelled domains, for example.

 Further, the possibility of an on-path attacker in an attacking
 network introduces some risks. The attacker could redirect traffic
 to arbitrary destinations. The attacker could analyze the user’s
 traffic leading to loss of confidentiality. Or, the attacker could
 modify the traffic inline.

7.2. Authenticated APIs

 The solution described here requires that when the User Equipment
 needs to access the API server, the User Equipment authenticates the
 server; see Section 2.1.

Larose, et al. Expires 27 March 2021 [Page 19]

Internet-Draft Captive Portal Architecture September 2020

 The Captive Portal API URI might change during the Captive Portal
 Session. The User Equipment can apply the same trust mechanisms to
 the new URI as it did to the URI it received initially from the
 network provisioning service.

7.3. Secure APIs

 The solution described here requires that the API be secured using
 TLS. This is required to allow the User Equipment and API Server to
 exchange secrets which can be used to validate future interactions.
 The API MUST ensure the integrity of this information, as well as its
 confidentiality.

 An attacker with access to this information might be able to
 masquerade as a specific User Equipment when interacting with the
 API, which could then allow them to masquerade as that User Equipment
 when interacting with the User Portal. This could give them the
 ability to determine whether the User Equipment has accessed the
 portal, or deny the User Equipment service by ending their session
 using mechanisms provided by the User Portal, or consume that User
 Equipment’s quota. An attacker with the ability to modify the
 information could deny service to the User Equipment, or cause them
 to appear as a different User Equipment.

7.4. Risks Associated with the Signaling Protocol

 If a Signaling Protocol is implemented, it may be possible for any
 user on the Internet to send signals in attempt to cause the
 receiving equipment to communicate with the Captive Portal API. This
 has been considered, and implementations may address it in the
 following ways:

 * The signal only signals to the User Equipment to query the API.
 It does not carry any information which may mislead or misdirect
 the User Equipment.

 * Even when responding to the signal, the User Equipment securely
 authenticates with API Servers.

 * Accesses to the Captive Portal API are rate-limited, reducing the
 impact of an attack attempting to generate excessive load on
 either User Equipment or API. Note that because there is only one
 type of signal and one type of API request in response to the
 signal, this rate-limiting will not cause loss of signalling
 information.

Larose, et al. Expires 27 March 2021 [Page 20]

Internet-Draft Captive Portal Architecture September 2020

7.5. User Options

 The Captive Portal Signal could signal to the User Equipment that it
 is being held captive. There is no requirement that the User
 Equipment do something about this. Devices MAY permit users to
 disable automatic reaction to Captive Portal Signals indications for
 privacy reasons. However, there would be the trade-off that the user
 doesn’t get notified when network access is restricted. Hence, end-
 user devices MAY allow users to manually control captive portal
 interactions, possibly on the granularity of Provisioning Domains.

7.6. Privacy

 Section 3 describes a mechanism by which all components within the
 Captive Portal are designed to use the same identifier to uniquely
 identify the User Equipment. This identifier could be abused to
 track the user. Implementers and designers of Captive Portals should
 take care to ensure that identifiers, if stored, are stored securely.
 Likewise, if any component communicates the identifier over the
 network, it should ensure the confidentiality of the identifier on
 the wire by using encryption such as TLS.

 There are benefits to choosing mutable anonymous identifiers. For
 example, User Equipment could cycle through multiple identifiers to
 help prevent long-term tracking. However, if the components of the
 network use an internal mapping to map the identity to a stable,
 long-term value in order to deal with changing identifiers, they need
 to treat that value as sensitive information: an attacker could use
 it to tie traffic back to the originating User Equipment, despite the
 User Equipment having changed identifiers.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

Larose, et al. Expires 27 March 2021 [Page 21]

Internet-Draft Captive Portal Architecture September 2020

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

 [RFC7710bis]
 Kumari, W. and E. Kline, "Captive-Portal Identification in
 DHCP / RA", Work in Progress, Internet-Draft, draft-ietf-
 capport-rfc7710bis-01, 12 January 2020,
 <https://tools.ietf.org/html/draft-ietf-capport-
 rfc7710bis-01>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [I-D.ietf-capport-api]
 Pauly, T. and D. Thakore, "Captive Portal API", Work in
 Progress, Internet-Draft, draft-ietf-capport-api-06, 31
 March 2020,
 <https://tools.ietf.org/html/draft-ietf-capport-api-06>.

 [I-D.pfister-capport-pvd]
 Pfister, P. and T. Pauly, "Using Provisioning Domains for
 Captive Portal Discovery", Work in Progress, Internet-
 Draft, draft-pfister-capport-pvd-00, 30 June 2018,
 <http://www.ietf.org/internet-drafts/draft-pfister-
 capport-pvd-00.txt>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213,
 DOI 10.17487/RFC4213, October 2005,
 <https://www.rfc-editor.org/info/rfc4213>.

Larose, et al. Expires 27 March 2021 [Page 22]

Internet-Draft Captive Portal Architecture September 2020

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Appendix A. Existing Captive Portal Detection Implementations

 Operating systems and user applications may perform various tests
 when network connectivity is established to determine if the device
 is attached to a network with a captive portal present. A common
 method is to attempt to make a HTTP request to a known, vendor-hosted
 endpoint with a fixed response. Any other response is interpreted as
 a signal that a captive portal is present. This check is typically
 not secured with TLS, as a network with a captive portal may
 intercept the connection, leading to a host name mismatch. This has
 been referred to as a "canary" request because, like the canary in
 the coal mine, it can be the first sign that something is wrong.

 Another test that can be performed is a DNS lookup to a known address
 with an expected answer. If the answer differs from the expected
 answer, the equipment detects that a captive portal is present. DNS
 queries over TCP or HTTPS are less likely to be modified than DNS
 queries over UDP due to the complexity of implementation.

 The different tests may produce different conclusions, varying by
 whether or not the implementation treats both TCP and UDP traffic,
 and by which types of DNS are intercepted.

 Malicious or misconfigured networks with a captive portal present may
 not intercept these canary requests and choose to pass them through
 or decide to impersonate, leading to the device having a false
 negative.

Authors’ Addresses

 Kyle Larose
 Agilicus

 Email: kyle@agilicus.com

 David Dolson

 Email: ddolson@acm.org

 Heng Liu
 Google

Larose, et al. Expires 27 March 2021 [Page 23]

Internet-Draft Captive Portal Architecture September 2020

 Email: liucougar@google.com

Larose, et al. Expires 27 March 2021 [Page 24]

