
Network Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI
Updates: 7049 (if approved) S. Leonard
Intended status: Standards Track Penango, Inc.
Expires: September 14, 2017 March 13, 2017

 Concise Binary Object Representation (CBOR) Tags and Techniques for
 Object Identifiers, UUIDs, Enumerations, Binary Entities, Regular
 Expressions, and Sets
 draft-bormann-cbor-tags-oid-06

Abstract

 The Concise Binary Object Representation (CBOR, RFC 7049) is a data
 format whose design goals include the possibility of extremely small
 code size, fairly small message size, and extensibility without the
 need for version negotiation.

 Useful tags and techniques have emerged since the publication of RFC
 7049; the present document makes use of CBOR’s built-in major types
 to define and refine several useful constructs, without changing the
 wire protocol. This document adds object identifiers (OIDs) to CBOR
 with CBOR tags <<O>> and <<R>> [values TBD]. It is intended as the
 reference document for the IANA registration of the CBOR tags so
 defined. Useful techniques for enumerations and sets are presented
 (without new tags). As the documentation for binary UUIDs (tag 37),
 MIME entities (tag 36) and regular expressions (tag 35) RFC 7049 left
 much out, this document provides more comprehensive specifications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Bormann & Leonard Expires September 14, 2017 [Page 1]

Internet-Draft CBOR Tags and Techniques March 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Object Identifiers . 4
 3. Examples . 6
 4. Discussion . 8
 5. Diagnostic Notation . 8
 6. A New Arc for Concise OIDs 9
 7. Tag Factoring and Tag Stacking with OID Arrays and Maps . . . 10
 8. Applications and Examples of OIDs 13
 9. Universally Unique Identifiers in CBOR 16
 10. Enumerations in CBOR . 18
 11. Binary Internet Messages and MIME Entities 22
 12. Applications and Examples of Messages and Entities 25
 13. X.690 Series Tags . 25
 14. Regular Expression Clarification 26
 15. Set and Multiset Technique 26
 16. Fruits Basket Example . 27
 17. IANA Considerations . 28
 18. Security Considerations 29
 19. References . 30
 Appendix A. Changes from -05 to -06 32
 Appendix B. Changes from -04 to -05 32
 Appendix C. Changes from -03 to -04 32
 Appendix D. Changes from -02 to -03 33
 Authors’ Addresses . 33

1. Introduction

 The Concise Binary Object Representation (CBOR, [RFC7049]) provides
 for the interchange of structured data without a requirement for a
 pre-agreed schema. RFC 7049 defines a basic set of data types, as

Bormann & Leonard Expires September 14, 2017 [Page 2]

Internet-Draft CBOR Tags and Techniques March 2017

 well as a tagging mechanism that enables extending the set of data
 types supported via an IANA registry.

 Useful tags and techniques have emerged since the publication of
 [RFC7049]. This document makes use of CBOR’s built-in major types to
 provide for several useful constructs without changing the wire
 protocol.

 The original focus of this work was to add support for object
 identifiers (OIDs, [X.660]), which many IETF protocols carry. The
 ASN.1 Basic Encoding Rules (BER, [X.690]) specify the binary
 encodings of both object identifiers and relative object identifiers.
 The contents of these encodings can be carried in a CBOR byte string.
 This document defines two CBOR tags that cover the two kinds of ASN.1
 object identifiers encoded in this way. The tags can also be applied
 to arrays and maps for more articulated identification purposes. It
 is intended as the reference document for the IANA registration of
 the tags so defined. To promote the use and usefulness of OIDs in
 CBOR, a new arc is also proposed.

 This document covers several useful techniques that have been or are
 being developed as implementers are applying CBOR to practical
 problems. Enumerations have found wide utility in CBOR, despite
 CBOR’s lack of a native enumerated type. A section covers the
 advantages of choosing built-in types, with additional consideration
 for using the newly-defined object identifier (OID) and universally
 unique identifier (UUID) types in enumerations. CBOR also lacks a
 native set type (in the mathematical sense of an arbitrary unordered
 collection of items), but has a more powerful alternative in its
 native map type. A section covers how to adapt the map type to
 express set and multiset semantics.

 Finally, this document covers the semantics of existing tags in
 [RFC7049] that were somewhat underspecified. "Tag 36 is for MIME
 messages", but the reference [RFC2045] actually defines a different
 construct, the MIME entity, that finds expression in a variety of
 message-oriented Internet protocols. Similarly, "Tag 35 is for
 regular expressions", but the references to Perl Compatible Regular
 Expressions (PCRE) and JavaScript syntax (ECMA-262) are not
 compatible with each other. Two sections cover the subtleties of
 items tagged with these tags, and so update [RFC7049] without
 changing the basic CBOR wire protocol. One section enhances UUIDs.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

Bormann & Leonard Expires September 14, 2017 [Page 3]

Internet-Draft CBOR Tags and Techniques March 2017

 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 The terminology of RFC 7049 applies; in particular the term "byte" is
 used in its now customary sense as a synonym for "octet".

2. Object Identifiers

 The International Object Identifier tree [X.660] is a hierarchically
 managed space of identifiers, each of which is uniquely represented
 as a sequence of primary integer values [X.680]. While these
 sequences can easily be represented in CBOR arrays of unsigned
 integers, a more compact representation can often be achieved by
 adopting the widely used representation of object identifiers defined
 in BER; this representation may also be more amenable to processing
 by other software making use of object identifiers.

 BER represents the sequence of unsigned integers by concatenating
 self-delimiting [RFC6256] representations of each of the primary
 integer values in sequence.

 ASN.1 distinguishes absolute object identifiers (ASN.1 Type
 "OBJECT IDENTIFIER"), which begin at a root arc ([X.660] Clause
 3.5.21), from relative object identifiers (ASN.1 Type "RELATIVE-
 OID"), which begin relative to some object identifier known from
 context ([X.680] Clause 3.8.63). As a special optimization, BER
 combines the first two integers in an absolute object identifier into
 one numeric identifier by making use of the property of the hierarchy
 that the first arc has only three integer values (0, 1, and 2), and
 the second arcs under 0 and 1 are limited to the integer values
 between 0 and 39. (The root arc "joint-iso-itu-t(2)" has no such
 limitations on its second arc.) If X and Y are the first two
 integers, the single integer actually encoded is computed as:

 X * 40 + Y

 The inverse transformation (again making use of the known ranges of X
 and Y) is applied when decoding the object identifier.

 Since the semantics of absolute and relative object identifiers
 differ, this specification defines two tags:

 Tag <<O>> (value TBD): tags a byte string as the [X.690] encoding of
 an absolute object identifier (simply "object identifier" or "OID").

 Tag <<R>> (value TBD): tags a byte string as the [X.690] encoding of
 a relative object identifier (also "relative OID").

Bormann & Leonard Expires September 14, 2017 [Page 4]

Internet-Draft CBOR Tags and Techniques March 2017

2.1. Requirements on the byte string being tagged

 A byte string tagged by <<O>> or <<R>> MUST be a syntactically valid
 BER representation of an object identifier. Specifically:

 o its first byte, and any byte that follows a byte that has the most
 significant bit unset, MUST NOT be 0x80 (this requirement excludes
 expressing the primary integer values with anything but the
 shortest form)

 o its last byte MUST NOT have the most significant bit set (this
 requirement excludes an incomplete final primary integer value)

 If either of these invalid conditions are encountered, they MUST be
 treated as decoding errors. Comparing two OIDs or relative OIDs for
 equality in a byte-for-byte fashion may not be safe before these
 checks succeed on at least one of them (this includes the case where
 one of them is a local constant); a process implementing an exclusion
 list MUST check for decoding errors first.

 [X.680] restricts RELATIVE-OID values to have at least one arc. This
 specification permits empty relative object identifiers; they may
 still be excluded by application semantics.

 [RFC7049] permits byte strings to be indefinite-length, with chunks
 divided at arbitrary byte boundaries. This contrasts with text
 strings, where each chunk in an indefinite-length text string is
 required be well-formed UTF-8 on its own: splitting the octets of a
 UTF-8 character encoding between chunks is not allowed.

 By analogy to this principle and to Clauses 8.9.1 and 8.20.1 of
 [X.690], the byte strings carrying the OIDs and relative OIDs are
 also to be treated as indivisible units: They MUST be encoded in
 definite-length form; indefinite-length form is treated as an
 encoding error (and the same considerations as above apply). (An
 added convenience is that CBOR encodings can be searched through
 efficiently for specific object identifiers without initiating the
 decoding process.)

 We provide "binary regular expression" forms for implementation
 convenience. Unlike typical regular expressions that operate on
 character sequences, the following regular expressions take bytes as
 their domain, so they can be applied directly to CBOR byte strings.

 For byte strings with tag <<O>>:

 "/^((?:[\x81-\xFF][\x80-\xFF]*)?[\x00-\x7F])+$/"

Bormann & Leonard Expires September 14, 2017 [Page 5]

Internet-Draft CBOR Tags and Techniques March 2017

 For byte strings with tag <<R>>:

 "/^((?:[\x81-\xFF][\x80-\xFF]*)?[\x00-\x7F])*$/"

 Putative CBOR data that fails these tests SHALL be rejected as
 improperly coded.

 Another (possibly more efficient) way to validate the byte strings is
 to hunt for prohibited patterns.

 For byte strings with tag <<O>>:

 "/^$|(?:^|[\x00-\x7F])\x80|[\x80-\xFF]$/"

 or with lookbehind:

 "/^$|^\x80|(?<[\x00-\x7F])\x80|(?<[\x80-\xFF])$/"

 For byte strings with tag <<R>>:

 "/(?:^|[\x00-\x7F])\x80|[\x80-\xFF]$/"

 or with lookbehind:

 "/^\x80|(?<[\x00-\x7F])\x80|(?<[\x80-\xFF])$/"

 Putative CBOR data that passes these tests SHALL be rejected as
 improperly coded.

 (It is worth pointing out that these tests, when optimally
 implemented, ought to be markedly faster than UTF-8 validation.)

3. Examples

 In the following examples, we are using tag number 6 for <<O>> and
 tag number 7 for <<R>>. See Section 17.2.

3.1. Encoding of the SHA-256 OID

 ASN.1 Value Notation
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 csor(3) nistalgorithm(4) hashalgs(2) sha256(1) }

 Dotted Decimal Notation (also XML Value Notation)
 2.16.840.1.101.3.4.2.1

Bormann & Leonard Expires September 14, 2017 [Page 6]

Internet-Draft CBOR Tags and Techniques March 2017

 06 # UNIVERSAL TAG 6
 09 # 9 bytes, primitive
 60 86 48 01 65 03 04 02 01 # X.690 Clause 8.19
 # | 840 1 | 3 4 2 1 show component encoding
 # 2.16 101

 Figure 1: SHA-256 OID in BER

 C6 # 0b110_00110: mt 6, tag 6
 49 # 0b010_01001: mt 2, 9 bytes
 60 86 48 01 65 03 04 02 01 # X.690 Clause 8.19

 Figure 2: SHA-256 OID in CBOR

3.2. Encoding of a UUID OID

 UUID
 8b0d1a20-dcc5-11d9-bda9-0002a5d5c51b

 ASN.1 Value Notation
 { joint-iso-itu-t(2) uuid(25)
 geomicaGPAS(184830721219540099336690027854602552603) }

 Dotted Decimal Notation (also XML Value Notation)
 2.25.184830721219540099336690027854602552603

 06 # UNIVERSAL TAG 6
 14 # 20 bytes, primitive
 69 82 96 8D 8D 88 9B CC A8 C7 B3 BD D4 C0 80 AA AE D7 8A 1B
 # | 184830721219540099336690027854602552603
 # 2.25

 Figure 3: UUID in an object identifier, in BER

 C6 # 0b110_00110: mt 6, tag 6
 54 # 0b010_10100: mt 2, 20 bytes
 69 82 96 8D 8D 88 9B CC A8 C7 B3 BD D4 C0 80 AA AE D7 8A 1B

 Figure 4: UUID in an object identifier, in CBOR

3.3. Encoding of a MIB Relative OID

 Given some OID (e.g., "lowpanMib", assumed to be "1.3.6.1.2.1.226"
 [RFC7388]), to which the following is added:

 ASN.1 Value Notation (not suitable for diagnostic notation)
 { lowpanObjects(1) lowpanStats(1) lowpanOutTransmits(29) }

Bormann & Leonard Expires September 14, 2017 [Page 7]

Internet-Draft CBOR Tags and Techniques March 2017

 Dotted Decimal Notation (diagnostic notation; see Section 5)
 .1.1.29

 0D # UNIVERSAL TAG 13
 03 # 3 bytes, primitive
 01 01 1D # X.690 Clause 8.20
 # 1 1 29 show component encoding

 Figure 5: MIB relative object identifier, in BER

 C7 # 0b110_00110: mt 6, tag 7
 43 # 0b010_01001: mt 2 (bstr), 3 bytes
 01 01 1D # X.690 Clause 8.20

 Figure 6: MIB relative object identifier, in CBOR

 This relative OID saves seven bytes compared to the full OID
 encoding.

4. Discussion

 Staying close to the way object identifiers are encoded in ASN.1 BER
 makes back-and-forth translation easy. Object identifiers in IETF
 protocols are serialized in dotted decimal form or BER form, so there
 is an advantage in not inventing a third form. Also, expectations of
 the cost of encoding object identifiers are based on BER; using a
 different encoding might not be aligned with these expectations. If
 additional information about an OID is desired, lookup services such
 as the OID Resolution Service (ORS) [X.672] and the OID Repository
 [OID-INFO] are available.

 This specification allocates two numbers out of the single-byte tag
 space. This use of code point space is justified by the wide use of
 object identifiers in data interchange. For most common OIDs in use
 (namely those whose contents encode to less than 24 bytes), the CBOR
 encoding will match the efficiency of [X.690]. (This preliminary
 conclusion is likely to generate some discussion, see Section 17.2.)

5. Diagnostic Notation

 Implementers will likely want to see OIDs and relative OIDs in their
 "natural forms" (as sequences of decimal unsigned integers) for
 diagnostic purposes. Accordingly, this section defines additional
 syntactic elements that can be used in conjunction with the
 diagnostic notation described in Section 6 of [RFC7049].

 An object identifier may be written in ASN.1 value notation (with
 enclosing braces and secondary identifiers, ObjectIdentifierValue of

Bormann & Leonard Expires September 14, 2017 [Page 8]

Internet-Draft CBOR Tags and Techniques March 2017

 Clause 32.3 of [X.680]), or in dotted decimal notation with at least
 three arcs. Both examples are shown in Section 3. The surrounding
 tag notation is not to be used, because the tag is implied. The
 ASN.1 value notation for OIDs does not overlap with JSON object
 notation for CBOR maps, because at least two arcs are required for a
 valid OID.

 A relative object identifier may be written in dotted decimal
 notation or in ASN.1 value notation, in both cases prefixed with a
 dot as shown in Section 3.3. The surrounding tag notation is not to
 be used, because the tag is implied.

 The notation in this section may be employed in addition to the basic
 notation, which would be a tagged binary string.

 +------------------------------+--------------+------------+
 | RFC 7049 diagnostic notation | 6(h’2b0601’) | 7(h’0601’) |
 +------------------------------+--------------+------------+
 | Dotted decimal notation | 1.3.6.1 | .6.1 |
 | ASN.1 value notation | {1 3 6 1} | .{6 1} |
 +------------------------------+--------------+------------+

 Table 1: Examples for extended diagnostic notation

6. A New Arc for Concise OIDs

 Object identifiers in [X.690] form are remarkably compact.
 Nevertheless, for some applications (and engineers), they are simply
 not compact enough, at least when compared to certain alternatives
 such as very small unsigned integers (see Section 10). The shortest
 object identifier under the IETF’s control is 1.3.6.1 (4 bytes),
 although an assignment directly under that arc has not happened since
 1999 [RFC2506], and no assignments directly under that arc have ever
 been assigned directly to protocol elements. The shortest IETF-
 controlled, First-Come, First-Served OID arc is 8 bytes by getting a
 Private Enterprise Number from IANA, an OID for which is assigned
 under 1.3.6.1.4.1. To promote object identifier usage in CBOR and to
 make OIDs as competitive as possible, (the authors / the IETF / ISOC)
 have secured a very short arc "{ x y z }" that only occupies (1, 2,
 3) byte(s).

 [[NB: Registration procedures under that arc.]]

 The history of OIDs suggests that the human mind tends to excessive
 taxonomy around them. "Excessive taxonomy" means that while
 classifying purposes are served, the detailed taxonomy comes at the
 expense of concise encoding to the point that other implementers
 complain that the OIDs are "too long". OIDs also lose mnemonic

Bormann & Leonard Expires September 14, 2017 [Page 9]

Internet-Draft CBOR Tags and Techniques March 2017

 properties when the arcs are so long that implementers cannot keep
 track of all of the divisions. Unlike assignments in the 1.3.6.1
 range, this document suggests that registrants acquire OIDs under
 this short arc "laterally" rather than hierarchically, in keeping
 with CBOR’s design goal to have concise serializations.

7. Tag Factoring and Tag Stacking with OID Arrays and Maps

 A common use of object identifiers in ASN.1 is to identify the kind
 of data in an open type (Clause 3.8.57 of [X.680]), using information
 object classes [X.681]. CBOR is schema-neutral, and (although not
 fully discussed in [RFC7049]) semantic tagging was originally
 intended to identify items in a global, context-free way (i.e., where
 a specification would not repurpose a tag with different semantics
 than its IANA registration). Therefore, using OIDs to identify
 contextual data in a similar fashion to [X.681] is RECOMMENDED.

7.1. Tag Factoring

 <<O>> and <<R>> can tag CBOR arrays and maps. The idea is that the
 tag is factored out from each individual byte string; the tag is
 placed in front of the array or map instead. The tags <<O>> and
 <<R>> are left-distributive.

 When the <<O>> or <<R>> tag is applied to an array, it means that the
 respective tag is imputed to all items in the array. For example,
 when the array is tagged with <<O>>, every array item that is a
 binary string is an OID.

 When the <<O>> or <<R>> tag is applied to a map, it means that the
 respective tag is imputed to all keys in the map. The values in the
 map are not considered specially tagged.

 Array and map stacking is permitted. For example, a 3-dimensional
 array of OIDs can be composed by using a single <<O>> tag, followed
 by an array of arrays of arrays of binary strings. All such binary
 strings are considered OIDs.

7.2. Switching OID and Relative OID

 If an individual item in a <<O>> or <<R>> tagged array, or an
 individual key in a <<O>> or <<R>> tagged map, is tagged with the
 opposite tag (<<R>> or <<O>>) of the array or map itself, that tag
 cancels and replaces the outer tag for that item. Like tags MUST NOT
 be used on such individual items; such tagging is a coding error.
 For example, if <<R>> is the outer tag on an array and <<O>> is the
 inner tag on a binary string, semantically the inner item is treated
 as a regular OID, not as a relative OID.

Bormann & Leonard Expires September 14, 2017 [Page 10]

Internet-Draft CBOR Tags and Techniques March 2017

 The purpose is to create more compact and flexible identifier spaces,
 especially when object identifiers are used as enumerated items.
 Examples:

 <<R>> outside, <<O>> inside: An implementation that strives for a
 compact representation, does not have to emit base OID arcs
 repeatedly for each item. At the same time, if a private
 organization or standards body separate from the specification needs
 to identify something that the specification maintainers disagree
 with, the separate body does not need to request registration of an
 identifier under a controlled arc (i.e., the base arc of the relative
 OIDs).

 <<O>> outside, <<R>> inside: A collection of OIDs is supposed to be
 open to all-comers, but a certain set of OIDs issued under a
 particular arc is foreseeable for the majority of implementations.
 For example, an OID protocol slot may identify cryptographic
 algorithms: anyone can write (and has written) an algorithm with an
 arbitrary OID. However, the protocol slot designer may wish to
 privilege certain algorithms (and therefore OIDs) that are well-known
 in that field of use.

7.3. Tag Stacking

 CBOR permits tag stacking (tagging a tagged item), although this
 technique has not been used much yet. This specification anticipates
 that OIDs and relative OIDs will be associated with values with
 uniform semantics. This section provides specific semantics when
 tags are "stacked", that is, a CBOR item starts with tag <<O>> or
 <<R>>, followed by one or more arbitrary tags ("subsequent tags"),
 followed by a map or array.

7.3.1. Map

 The overall gist is that the first tag applies to the keys in a map;
 the subsequent tags apply to the values in a map.

 When <<O>> or <<R>> is the first tag in a stack of tags, followed by
 a map:

 o The <<O>> or <<R>> tag indicates that the keys of the map are byte
 string OIDs, byte string relative OIDs, or tag-factored arrays or
 maps of the same.

 o The subsequent tags uniformly apply to all of the values.

Bormann & Leonard Expires September 14, 2017 [Page 11]

Internet-Draft CBOR Tags and Techniques March 2017

 For example, if tag 32 (URL) is the subsequent tag, then all values
 in the map are treated semantically as if tag 32 is applied to them
 individually. See Figure 7.

 It is possible that individual values can be tagged. Semantically,
 these tags cumulate with the outer subsequent tags; inner value tags
 do not cancel or replace the outer tags.

7.3.2. Array

 The overall gist is that the first tag applies to the ordered "keys"
 in the array (even-numbered items, assuming that the index starts at
 0); the subsequent tags apply to the ordered "values" in the array
 (odd-numbered items). This tagging technique creates an ordered
 associative array. [[NB: Some call this the FORTRAN approach. need
 to cite]]

 When <<O>> or <<R>> is the first tag in a stack of tags, followed by
 an array:

 o The <<O>> or <<R>> tag indicates that alternating items, starting
 with the first item, are byte string OIDs, byte string relative
 OIDs, or tag-factored arrays or maps of the same.

 o The subsequent tags uniformly apply to the alternating items,
 starting with the second item.

 o The array MUST have an even number of items; an array that has an
 odd number of items is a coding error.

 To create an ordered associative array wherein the values (even
 elements) are arbitrarily tagged, stack tag 55799, self-describe CBOR
 (Section 2.4.5 of [RFC7049]), after the <<O>> or <<R>> tag. Tag
 55799 imparts no special semantics, so it is an effective
 placeholder. (This sequence is mainly provided for completeness: it
 is a more compact alternative to an array of duple-arrays that each
 contain an OID or relative OID, and an arbitrary value.)

7.4. Diagnostic Notation for OID Arrays and Maps

 There are no syntactic changes to diagnostic notation beyond
 Section 5. Using <<O>> or <<R>> with arrays and maps, however, leads
 to some sublime results.

 When an array or map is tagged, that item is embraced with the usual
 tag format: "<<O>>(<item>)" or "<<R>>(<item>)". This syntax
 indicates the presence of the tag on the outer item. Inner items in
 the array or keys in the map are noted in Section 5 form, but are not

Bormann & Leonard Expires September 14, 2017 [Page 12]

Internet-Draft CBOR Tags and Techniques March 2017

 individually tagged on-the-wire when the tag is the same as the outer
 tag, because like-tagging is a coding error.

 An array or map that involves a stack of tags is notated the usual
 way. For example, the CBOR diagnostic notation of a map of OIDs to
 URIs is:

 6(32({0.9.2342.7776.1: "http://example.com/",
 0.9.2342.7776.2: "ftp://ftp.example.com/pub/"}))

 Figure 7: Map of OIDs to URIs, in CBOR Diagnostic Diagnostic Notation

8. Applications and Examples of OIDs

8.1. GPU Farm

 Consider a 3-dimensional OID array, indicating certain operations to
 perform on a matrix of values in a GPU farm. Default operations are
 under the OID arc 0.9.2342.7777 (such as .1, .2, .124, etc.); the arc
 0.9.2342.7777 itself represents the identity operation. Certain
 cryptographic operations like SHA-256 hashing
 (2.16.840.1.101.3.4.2.1) are also permitted. The resulting notation
 would be:

 7([[[.1, .2, .3],
 [.1, .2, .3],
 [.1, .2, .3]],
 [[.124, .125, .126],
 [.95, .96, .97],
 [.11, .12, .13]],
 [[h’’, .6, .4.2],
 [.6, h’’, .4.2],
 [.6, 2.16.840.1.101.3.4.2.1, h’’]]])

 Figure 8: GPU Farm Matrix Operations, in CBOR Diagnostic Notation

Bormann & Leonard Expires September 14, 2017 [Page 13]

Internet-Draft CBOR Tags and Techniques March 2017

 c7 # tag(7)
 83 # array(3)
 83 # array(3)
 83 # array(3)
 41 01 # .1 (2)
 41 02 # .2 (2)
 41 03 # .3 (2)
 83 # array(3)
 41 01 # .1 (2)
 41 02 # .2 (2)
 41 03 # .3 (2)
 83 # array(3)
 41 01 # .1 (2)
 41 02 # .2 (2)
 41 03 # .3 (2)
 83 # array(3)
 83 # array(3)
 41 7c # .124 (2)
 41 7d # .125 (2)
 41 7e # .126 (2)
 83 # array(3)
 41 5f # .95 (2)
 41 60 # .96 (2)
 41 61 # .97 (2)
 83 # array(3)
 41 0b # .11 (2)
 41 0c # .12 (2)
 41 0d # .13 (2)
 83 # array(3)
 83 # array(3)
 40 # (empty) (1)
 41 06 # .6 (2)
 42 0402 # .4.2 (3)
 83 # array(3)
 41 06 # .6 (2)
 40 # (empty) (1)
 42 0402 # .4.2 (3)
 83 # array(3)
 41 06 # .6 (2)
 c6 49 608648016503040201 # 2.16.840.1.101.3.4.2.1 (10)
 40 # (empty) (1)

 Figure 9: GPU Farm Matrix Operations, in CBOR (76 bytes)

Bormann & Leonard Expires September 14, 2017 [Page 14]

Internet-Draft CBOR Tags and Techniques March 2017

8.2. X.500 Distinguished Name

 Consider the X.500 distinguished name:

 +--+--------------------+
 | Attribute Types | Attribute Values |
 +--+--------------------+
 | c (2.5.4.6) | US |
 +--+--------------------+
l (2.5.4.7)	Los Angeles
s (2.5.4.8)	CA
postalCode (2.5.4.17)	90013
+--+--------------------+	
street (2.5.4.9)	532 S Olive St
+--+--------------------+	
businessCategory (2.5.4.15)	Public Park
buildingName (0.9.2342.19200300.100.1.48)	Pershing Square
 +--+--------------------+

 Table 2: Example X.500 Distinguished Name

 Table 2 has four RDNs. The country and street RDNs are single-
 valued. The second and fourth RDNs are multi-valued.

 The equivalent representations in CBOR diagnostic notation and CBOR
 are:

 6([{ 2.5.4.6: "US" },
 { 2.5.4.7: "Los Angeles", 2.5.4.8: "CA", 2.5.4.17: "90013" },
 { 2.5.4.9: "532 S Olive St" },
 { 2.5.4.15: "Public Park",
 0.9.2342.19200300.100.1.48: "Pershing Square" }])

 Figure 10: Distinguished Name, in CBOR Diagnostic Notation

 6([{ h’550406’: "US" },
 { h’550407’: "Los Angeles", h’550408’: "CA", h’550411’: "90013" },
 { h’550409’: "532 S Olive St" },
 { h’55040f’: "Public Park",
 h’0992268993f22c640130’: "Pershing Square" }])

 Figure 11: Distinguished Name, in CBOR Diagnostic Notation (RFC 7049
 only)

Bormann & Leonard Expires September 14, 2017 [Page 15]

Internet-Draft CBOR Tags and Techniques March 2017

 c6 # tag(6)
 84 # array(4)
 a1 # map(1)
 43 550406 # 2.5.4.6 (4)
 62 # text(2)
 5553 # "US"
 a3 # map(3)
 43 550407 # 2.5.4.7 (4)
 6b # text(11)
 4c6f7320416e67656c6573 # "Los Angeles"
 43 550408 # 2.5.4.8 (4)
 62 # text(2)
 4341 # "CA"
 43 550411 # 2.5.4.17 (4)
 65 # text(5)
 3930303133 # "90013"
 a1 # map(1)
 43 550409 # 2.5.4.9 (4)
 6e # text(14)
 3533322053204f6c697665205374 # "532 S Olive St"
 a2 # map(2)
 43 55040f # 2.5.4.15 (4)
 6b # text(11)
 5075626c6963205061726b # "Public Park"
 4a 0992268993f22c640130 # 0.9.2342.19200300.100.1.48 (11)
 6f # text(15)
 5065727368696e6720537175617265 # "Pershing Square"

 Figure 12: Distinguished Name, in CBOR (108 bytes)

 (This example encoding assumes that all attribute values are UTF-8
 strings, or can be represented as UTF-8 strings with no loss of
 information.)

 For reference, the [RFC4514] LDAP string encoding of such data would
 be:

 buildingName=Pershing Square+businessCategory=Public Park,
 street=532 S Olive St,l=Los Angeles+postalCode=90013+st=CA,c=US

 Figure 13: Distinguished Name, in LDAP String Encoding (121 bytes)

9. Universally Unique Identifiers in CBOR

 This section provides guidance on the Universally Unique Identifier
 (UUID) type, which was introduced into CBOR with tag <<U>> (currently
 tag 37, reassignment to be discussed in view of this section). A
 UUID [RFC4122] is 128 bits long and requires no central registration

Bormann & Leonard Expires September 14, 2017 [Page 16]

Internet-Draft CBOR Tags and Techniques March 2017

 process. UUIDs were originally used in the Apollo Network Computing
 System and later in the Open Software Foundation’s (OSF) Distributed
 Computing Environment (DCE), for Remote Procedure Calls (RPC)
 [DCE-RPC].

 As a tagged binary string identifier type in CBOR, the UUID type
 shares several characteristics with OID types. The main differences
 are that a UUID is always 16 bytes (anything less or more is a coding
 error), there is no central assignment process, and every 128-bit
 combination is valid. ([RFC4122] calls out the nil UUID, which is
 special but perfectly valid.) Optional registries have cropped up
 over the years; one such registry is [OID-INFO]. Users who use UUIDs
 in CBOR are strongly encouraged to document their UUIDs in such
 registries.

 To provide parity with OIDs, UUIDs MUST be encoded in definite-length
 form (see Section 2). Consequently, individual UUIDs can be easily
 searched for by looking for "d8 25" (major type 6, tag 37), "50"
 (major type 2, additional information 16), and 16 bytes. Therefore,
 a directly encoded UUID in CBOR occupies 19 bytes. In contrast,
 stuffing a UUID in an OID in CBOR requires 22 bytes (see Figure 4);
 conversion between OID-UUID form and binary or string UUID forms
 requires bit-shifting (but mercifcully not base-shifting, see
 Section 18.1). An example based on Figure 4 is below:

 D8 25 # tag(37)
 54 # 0b010_10000: mt 2, 16 bytes
 8B 0D 1A 20 DC C5 11 D9 BD A9 00 02 A5 D5 C5 1B

 Figure 14: Binary UUID in CBOR

9.1. Diagnostic Notation

 Implementers will likely want to see UUIDs in their "natural forms"
 for diagnostic purposes. Accordingly, this section defines
 additional syntactic elements that can be used in conjunction with
 the diagnostic notation described in Section 6 of [RFC7049].

 A universally unique identifier may be written in "string
 representation" as that term is defined in [RFC4122]. An example of
 such a string is "8b0d1a20-dcc5-11d9-bda9-0002a5d5c51b" (see Figure 4
 and Figure 14). Lowercase is the preferred form. (TBD: permit,
 require, or prohibit curly brace form?)

 The notation in this section may be employed in addition to the basic
 notation, which would be a tagged binary string.

Bormann & Leonard Expires September 14, 2017 [Page 17]

Internet-Draft CBOR Tags and Techniques March 2017

9.2. Tag Factoring and Tag Stacking

 Tag Factoring and Tag Stacking are hereby permitted with the UUID
 type, with the same semantics as Section 7.

10. Enumerations in CBOR

 This section provides a roadmap to using enumerated items in CBOR,
 including design considerations for choosing between OIDs, UUIDs,
 integers, and UTF-8 strings.

 CBOR does not have an ENUMERATED type like ASN.1 to identify named
 values in a protocol element with three or more states (Clause 20 and
 Clause G.2.3 of [X.680]). ASN.1 ENUMERATED turns out to be
 superfluous because ASN.1 INTEGER values can get named (and have
 historically been used for finite, multistate variables, such as
 version numbers), while ASN.1 ENUMERATED types can be defined to be
 extensible with the ellipsis lexical item. Practically, the named
 integers are not serialized in the binary encodings anyway; they
 merely serve as a semantic hints for designers and debuggers.

 CBOR expects that protocol designers will use one of the basic major
 types for multistate variables, assigning semantics to particular
 values using higher-level schemas. The obvious choices for the basic
 types are integers (particularly unsigned integers) and UTF-8
 strings. However, these major types are not without drawbacks.

 Integers are compact for small values, but have a flat namespace so
 there are mis-assignment and collision risks that can only be
 mitigated with protocol-specific registries. Arrays of integers are
 possible, but arrays require more processing logic for equality
 comparisons, and the JSON conversion is not intuitive when the
 enumerated value serves as a key in a map.

 UTF-8 strings are less compact when the strings are supposed to
 resemble their semantics, and there are normalization issues if the
 strings contain characters beyond the ASCII range. UTF-8 strings
 also comprise a flat namespace like integers unless the higher-level
 schema employs delimiters, which makes the string even larger. If
 conciseness is a design goal, other perceived advantages of a string
 as an identifier are pretty much blown out the moment one has to tack
 "https://" onto the front.

 This section provides novel alternatives in OIDs and UUIDs. It
 compares and contrasts these binary types to other enumerants, namely
 integers and text (UTF-8) strings.

Bormann & Leonard Expires September 14, 2017 [Page 18]

Internet-Draft CBOR Tags and Techniques March 2017

10.1. Factors Favoring OID Enumerations

 A protocol designer might choose OIDs or relative OIDs for an
 enumerated item in view of the following observations:

 1. OIDs and relative OIDs are quite compact: a single-arc relative
 OID encoded according to this specification occupies just two
 bytes for primary integer values 0-127 (excluding the semantic
 tag <<R>>), and three bytes for primary integer values 128-16383.
 (In contrast, an unsigned integer requires one byte for 0-23, two
 bytes for 24-255, and three bytes for 256-65535.)

 2. OIDs and relative OIDs (with base) are persistent and globally
 unambiguous.

 3. OIDs and relative OIDs have built-in semantics for designers and
 debuggers. Specifically, the advent of universal OID
 repositories such as [OID-INFO] makes it easy for a designer or
 debugger to pull up useful information about the object of
 interest (Clause 3.5.10 of [X.660]). This useful information
 (for humans) does not have to bleed into the encoded
 representation (for machines).

 4. OIDs and relative OIDs are always compared for exact equality: no
 need to deal with case folding, case sensitivity, or other
 normalization issues. ("Overlong" encodings are PROHIBITED;
 therefore overlong encodings MUST be treated as coding errors.)

 5. OIDs and relative OIDs have a built-in hierarchy, so if
 implementers want to extend an enumeration without assigning new
 values "horizontally", they have the option of assigning new
 values "vertically", possibly with more or less stringent
 assignment rules.

 6. Because OIDs and relative OIDs (with base) are part of the so-
 called International Object Identifier tree [X.660], any other
 protocol specification can reuse the enumeration if the designers
 find it useful.

 7. OIDs and relative OIDs have natural JSON representations in the
 dotted decimal notations prescribed in Section 5. OIDs and
 relative OIDs can be distinguished from each other by the
 presence or absence of the leading dot ".". As the resulting
 JSON string is entirely numeric in the ASCII range, case and
 normalization are irrelevant to the comparison. (An object
 identifier also has a semantic string representation in the form
 of an OID-IRI [X.680], for those who really want that type of
 thing.)

Bormann & Leonard Expires September 14, 2017 [Page 19]

Internet-Draft CBOR Tags and Techniques March 2017

 8. OIDs and relative OIDs are human language-neutral. A protocol
 designer working in US-English might name an enumerated value
 "sig" for "signature", but "sig" could also stand for
 "significand", "signal", or "special interest group". In Swedish
 and Norwegian, "sig" is a pronoun that means "himself, herself,
 itself, one, them", etc.--an entirely different meaning.

10.2. Factors Favoring UUID Enumerations

 A Universally Unique Identifier (UUID) is a 128-bit identifier that
 is unique across both space and time with a very high degree of
 probability; one intent is to identify "very persistent objects
 across a network", such as remote procedure call interfaces
 [DCE-RPC].

 A protocol designer might choose UUIDs for an enumerated item in view
 of the following observations:

 1. UUIDs are always 16 bytes. This means that while they are not
 particularly short, they also cannot be overly long. Space is
 constant and predictable. (As great as OIDs are, an OID that
 exceeds 17 bytes is simply excessive compared to a randomly-
 assigned UUID.)

 2. Any 128-bit combination is a valid UUID. The other types in this
 section have to be validated, even integers (e.g., to avoid
 overflow and out-of-range conditions).

 3. There is no registration authority that serves as a roadblock,
 and (for all practical purposes) no semantic or aesthetic values
 are implied by lower bit combinations.

 4. Many platforms can compare UUIDs (128-bit values) in one atomic
 operation. The comparison can be done without regard to
 endianness, provided that the endianness is the same between two
 UUIDs in memory. (On the wire, a CBOR UUID is big-endian.) For
 this reason, UUIDs may be faster than (naive) integer
 enumerations.

 5. UUIDs have natural JSON representations in the string
 representations prescribed by [RFC4122]. The resulting JSON
 strings are entirely in the ASCII range and occupy exactly 36
 characters; however, normalization (to lowercase) is a
 complicating factor.

 6. UUIDs are human language-neutral. (However, unlike OIDs, UUIDs
 are too long to be described as mnemonic in any practical sense.)

Bormann & Leonard Expires September 14, 2017 [Page 20]

Internet-Draft CBOR Tags and Techniques March 2017

10.3. Factors Favoring Integer Enumerations

 A protocol designer might choose integers for an enumerated item in
 view of the following observations:

 1. The CBOR encoding of unsigned integers 0-23 is the most compact,
 occupying exactly one byte (excluding any semantic tags).

 2. A protocol designer may wish to prohibit extensibility as a
 matter of course. Integers comprise a single flat namespace:
 there is no hierarchy.

 3. If greater range is desired while sticking to one byte, a
 protocol designer may double the range of possible values by
 allowing negative integers. However, enumerating values using
 negative integers may have unintended side-effects, because some
 programming environments (e.g., C/C++) make implementation-
 defined assumptions about the number of bits needed for an
 enumerated type.

10.4. Factors Favoring UTF-8 String Enumerations

 A protocol designer might choose UTF-8 strings for an enumerated item
 in view of the following observations:

 1. A specification can practically limit the content of UTF-8
 strings to the ASCII range (or narrower), mitigating some
 normalization problems.

 2. UTF-8 strings are easier to read on-the-wire for humans.

 3. UTF-8 strings can contain arbitrary textual identifiers, which
 can be hierarchical, e.g., URIs.

10.5. OID Enumeration Example

 An enumerated item indicates the revision level of a data format.
 Revision levels are issued by year, such as 2011, 2012, etc.
 However, in the year 2013, two revisions were issued: the first one
 and an important update in June that needs to be distinguished. The
 revision levels are assigned to some OID arc:

 "{2 25 6464646464 revs(4)}"

 In this arc, the following sub-arcs are assigned:

Bormann & Leonard Expires September 14, 2017 [Page 21]

Internet-Draft CBOR Tags and Techniques March 2017

 +--------------------+
 | Sub-Arc |
 +--------------------+
 | {v2011(1)} |
 | {v2012(2)} |
 | {v2013(3)} |
 | {v2013(3) june(6)} |
 | {v2014(4)} |
 | {v2015(5)} |
 +--------------------+

 Table 3: Example Sub-Arcs

 In CBOR, the enumeration is encoded as a relative OID. The schema
 specifies the base OID arc, which is omitted:

 c7 # tag(7)
 41 03 # .3

 c7 # tag(7)
 42 0306 # .3.6

 Figure 15: Enumerated Items in CBOR

 .3
 .{v2013(3) june(6)}

 Figure 16: Enumerated Items in CBOR Diagnostic Notation

 ".3"
 ".3.6"

 Figure 17: Enumerated Items in JSON (possibility 1)

 "v2013"
 "v2013/june"

 Figure 18: Enumerated Items in JSON (possibility 2)

11. Binary Internet Messages and MIME Entities

 Section 2.4.4.3 of [RFC7049] assigns tag 36 to "MIME messages
 (including all headers)" [RFC2045], and prescribes UTF-8 strings,
 without further elaboration. Actually MIME encircles several
 different formats, and is not limited to UTF-8 strings. This section
 updates tag 36.

Bormann & Leonard Expires September 14, 2017 [Page 22]

Internet-Draft CBOR Tags and Techniques March 2017

11.1. CBOR Byte String and Binary MIME

 Tag 36 is to be used with byte strings. When the tagged item is a
 byte string, any octet can be used in the content. Arbitrary octets
 are supported by [RFC2045] and can be supported in protocols such as
 SMTP using BINARYMIME [RFC3030].

 A conforming implementation that purports to process tag 36-tagged
 items, MUST accept byte strings as well as UTF-8 strings. Byte
 strings, rather than UTF-8 strings, SHOULD be considered the default.
 (While binary Content-Transfer-Encoding is not particularly common as
 of this writing, 8-bit encoding is, and it is foreseeable that many
 8-bit encoded messages will still have charsets other than UTF-8.)

11.2. Internet Messages, MIME Messages, and MIME Entities

 Definitions: "MIME message" is not explicitly defined in [RFC2045],
 but a careful read suggests that a MIME message is: "either a
 (complete or "top-level") RFC 822 message being transferred on a
 network, or a message encapsulated in a body of type "message/rfc822"
 or "message/partial"," that also contains MIME header fields, namely,
 MIME-Version field, which MUST be present (Section 4 of [RFC2045].
 Other MIME header fields such as Content-Type and Content-Transfer-
 Encoding are assumed to be their [RFC2045] default values, if not
 present in the data.

 When the contents have a From field (a type of "originator address
 field") and a Date field (the lone "origination date field")
 (Section 3.6 of [RFC5322]), the item is concluded to have a Content-
 Type of message/rfc822 or message/global, as appropriate, except as
 otherwise specified in this section.

 (TBD: Do we need a separate tag for a MIME entity?) (Alternate
 proposal: When the tagged data does not include a MIME-Version field
 or other fields required by RFC822 (5322) (e.g., no From field), it
 is presumed to be a MIME entity, rather than a MIME message.
 Therefore, it has no top-level content-type: instead it is simply a
 "MIME entity", consisting of one element, whose Content-Type is the
 content of the Content-Type header field, if present, or the
 [RFC2045] default of "text/plain; charset=us-ascii", if absent.
 Content-Transfer-Encoding SHALL be assumed to be 8bit when the CBOR
 item is a UTF-8 string, and SHALL be assumed to be binary when the
 CBOR item is a byte string. (Or should all be considered CTE:
 binary?) And, when the tagged data has RFC822 required fields but no
 MIME-Version, shall we assume it’s a MIME entity, or shall we assume
 it’s an Internet message that does not conform to MIME?)

Bormann & Leonard Expires September 14, 2017 [Page 23]

Internet-Draft CBOR Tags and Techniques March 2017

 Content that has no headers whatsoever is valid, and implementations
 that process tag 36 MUST permit this case: in such a case, the data
 starts with CRLF CRLF, followed by the body. In such a case, the
 content is assumed to be a MIME entity of Content-Type "text/plain;
 charset=us-ascii", and not an RFC822 (RFC5322) Internet message.
 (TBD: Confirm.)

11.3. Netnews, HTTP, and SIP Messages

 Other message types that are MIME-related are message/news, message/
 http, and message/sip.

 [RFC5537] specifies that message/news is deprecated (marked as
 obsolete) and that message/rfc822 SHOULD be used in its place;
 presumably this also extends to message/global over time. Netnews
 Article Format [RFC5536] is a strict subset of Internet Message
 Format; it can be detected by the presence of the six mandatory
 header fields: Date, From, Message-ID, Newsgroups, Path, and Subject.
 (Newsgroups and Path fields are specific to Netnews.)

 message/http [RFC7230] is the media type for HTTP requests and
 responses. It can be detected by analyzing the first line of the
 body, which is an HTTP Start Line (Section 3.1 of [RFC7230]): it does
 not conform to the syntax of an Internet Message Format header field.
 The optional parameter "msgtype" can be inferred from the Start Line.
 Implementers need to be aware that the default character encoding for
 message/http is ISO-8859-1, not UTF-8. Therefore, implementations
 SHOULD NOT encode HTTP messages with CBOR UTF-8 strings.

 Similarly, message/sip [RFC3261] is the media type of SIP request and
 response messages. It can be detected by analyzing the first line of
 the body, which is a SIP start-line (Section 7.1 of [RFC3261]): it
 does not conform to the syntax of an Internet Message Format header
 field. The optional parameter can be inferred from the start-line.

11.4. Other Messages

 The CBOR binary or UTF-8 string MAY contain other types of messages.
 An implementation MAY send such a message as a MIME entity with the
 Content-Type field appropriately set, or alternatively, MAY send the
 message at the top-level directly. However, if a purported message
 type is ambiguous with a message/rfc822 (or message/global) message,
 a receiver SHALL treat the message as message/rfc822 (or message/
 global). If a purported message type is ambiguous with a MIME entity
 (and unambiguously not message/rfc822 or message/global), a receiver
 SHALL treat the message as a MIME entity.

Bormann & Leonard Expires September 14, 2017 [Page 24]

Internet-Draft CBOR Tags and Techniques March 2017

12. Applications and Examples of Messages and Entities

 Tag 36 is the RECOMMENDED way to convey data with MIME-related
 metadata, including messages (which may or may not actually be MIME-
 enabled) and MIME entities.

 Example 1: A legacy RFC822 message is encoded as a UTF-8 string or
 byte string with tag 36. The contents have From, To, Date, and
 Subject header fields, two CRLFs, and a single line "Hello World!",
 terminated with a CRLF.

 Example 2a: A [RFC5280] certificate is encoded as a byte string with
 tag 36. The contents are comprised of "Content-Type: application/
 pkix-cert", two CRLFs, and the DER encoding of the certificate. (The
 "Content-Transfer-Encoding: binary" header is not necessary.)

 Example 2b: A [RFC5280] certificate is encoded as a UTF-8 string or
 byte string with tag 36. The contents are comprised of "Content-
 Type: application/pkix-cert", a CRLF, "Content-Transfer-Encoding:
 base64", two CRLFs, and the base64 encoding of the DER encoding of
 the certificate, conforming to Section 6.8 of [RFC2045]. In
 particular, base64 lines are limited to 76 characters, separated by
 CRLF, and the final line is supposed to end with CRLF. Needless to
 say, this is not nearly as efficient as Example 2a.

13. X.690 Series Tags

 [[NB: Carsten probably won’t like this. Plan on removing this
 section. It is mainly provided to contrast with Section 10.]]

 It is foreseeable that CBOR applications will need to send and
 receive ASN.1 data, for example, for legacy or security applications.
 While a native representation in CBOR is preferred, preserving the
 data in an ASN.1 encoding may be necessary, for example, to preserve
 cryptographic verification. A tag <<X>> is allocated for this
 purpose.

 When the tagged item is a byte string, the byte string contents are
 encoded according to [X.690], i.e., BER, CER, or DER. CBOR
 implementations are not required to validate conformance of the
 contained data to [X.690].

 When the tagged item is an array with 3 items:

 1. The first item SHALL be an OID (with tag <<O>> omitted; it SHALL
 NOT be a relative OID), indicating the ASN.1 module containing
 the type of the PDU. [[NB: this is a good example of a non-
 trivial structure in which an element is well-defined to be an

Bormann & Leonard Expires September 14, 2017 [Page 25]

Internet-Draft CBOR Tags and Techniques March 2017

 OID, which has a tag. Is the CBOR philosophy to tag the item, or
 omit the tag on the item, when the item’s semantics are already
 fixed by the outer tag? Similar situations can apply to tag 32
 (URI), etc.]]

 2. The second item SHALL be a UTF-8 string indicating the ASN.1
 value’s _type reference name_ (Clause 3.8.88 of [X.680])
 conforming to the "typereference" production (Clause 12.2 of
 [X.680]).

 3. The third item SHALL be a byte string, whose contents are encoded
 per the prior paragraph.

 (TBD: Use of tagged UTF-8 string is reserved for ASN.1 textual
 formats such as XER and ASN.1 value notation? Probably not
 necessary. Just omit.)

 Implementation note: DER-encoded items are always definite-length, so
 there is very little reason to use CBOR byte string indefinite
 encoding when encoding such DER-encoded items.

 Example: A [RFC5280] certificate can be encoded:

 1. as a byte string with tag <<X>>, or

 2. as an array with tag <<X>>, with three elements:

 (1) a byte string "h’2B 06 01 05 05 07 00 12’", which is the BER
 encoding of 1.3.6.1.5.5.7.0.18,

 (2) a UTF-8 string "Certificate", and

 (3) a byte string containing the DER encoding of the
 certificate.

14. Regular Expression Clarification

 (TODO: better specify conformance to actual regular expression
 standards with tag 35. PCRE and JavaScript/ECMAScript regular
 expressions are very different; [RFC7049] is not specific enough
 about this.)

15. Set and Multiset Technique

 CBOR has no native type for a set, which is an arbitrary unordered
 collection of items. The following technique is RECOMMENDED to
 express set and multiset semantics concisely in native CBOR data.

Bormann & Leonard Expires September 14, 2017 [Page 26]

Internet-Draft CBOR Tags and Techniques March 2017

 In computer science, a _set_ is a collection of distinct items; there
 is no ordering to the items. Thus, implementations can optimize set
 storage in many ways that are not available with ordered elements in
 arrays. Sets can be stored in hashtables, bit fields, trees, or
 other abstract data types.

 In computer science, a _multiset_ allows multiple instances of a
 set’s elements. Put another way, each distinct item has a
 cardinality property indicating the number of these items in the
 multiset.

 To store items in a set or multiset, it is RECOMMENDED to store the
 CBOR items as keys in a map; the values SHALL all be positive
 integers (major type 0, value/additional information greater than or
 equal to 1). In the special case of a set, the values SHALL be the
 integer 1. This technique has no special tag associated with it. As
 with arrays that schemas classify as "records" (i.e., arrays with
 positionally defined elements), schemas are likewise free to classify
 maps as sets in particular instances.

16. Fruits Basket Example

 Consider a basket of fruits. The basket can contain any number of
 fruits; each fruit of the same species is considered identical. This
 basket has two apples, four bananas, six pears, and one pineapple:

 {"\u{1F34E}": 2, "\u{1F34C}": 4,
 "\u{1F350}": 6, "\u{1F34D}": 1}

 Figure 19: Fruits Basket in CBOR Diagnostic Notation

 A4 # map(4)
 64 # text(4)
 f09f8d8e # "\u{1F34E}"
 02 # unsigned(2)
 64 # text(4)
 f09f8d8c # "\u{1F34C}"
 04 # unsigned(4)
 64 # text(4)
 f09f8d90 # "\u{1F350}"
 06 # unsigned(6)
 64 # text(4)
 f09f8d8d # "\u{1F34D}"
 01 # unsigned(1)

 Figure 20: Fruits Basket in CBOR (33 bytes)

Bormann & Leonard Expires September 14, 2017 [Page 27]

Internet-Draft CBOR Tags and Techniques March 2017

 [[TODO: Consider a Merkle Tree example: set of sets of sets of sets
 of things. ???]]

17. IANA Considerations

 (This section to be edited by the RFC editor.)

17.1. CBOR Tags

 IANA is requested to assign the CBOR tags in Table 4, with the
 present document as the specification reference.

 +----------+-------------+--+
 | Tag | Data Item | Semantics |
 +----------+-------------+--+
6<<TBD>>	multiple	object identifier (BER encoding)
7<<TBD>>	multiple	relative object identifier (BER
		encoding)
 +----------+-------------+--+

 Table 4: Values for New Tags

17.2. Discussion

 (This subsection to be removed by the RFC editor.)

 The space for single-byte tags in CBOR (0..23) is severely limited.
 It is not clear that the benefits of encoding OIDs/relative OIDs with
 one less byte per instance outweigh the consumption of two values in
 this code point space.

 Procedurally, this space is also reserved for standards action.

 An alternative would be to go for the specification required space,
 e.g. tag number 40 for <<O>> and tag number 41 for <<R>>. As an
 example this would change Figure 2 into:

 d8 28 # tag(40)
 49 # bytes(9)
 60 86 48 01 65 03 04 02 01 #

 Figure 21: SHA-256 OID in cbor (using specification required tag)

17.3. Pre-Existing Tags

 (TODO: complete.) IANA is requested to modify the registrations for
 the following CBOR tags:

Bormann & Leonard Expires September 14, 2017 [Page 28]

Internet-Draft CBOR Tags and Techniques March 2017

 +-----+-------------+----------------------------+
 | Tag | Data Item | Semantics |
 +-----+-------------+----------------------------+
 | 35 | <<TBD>> | regular expression <<TBD>> |
 | 36 | multiple | message or MIME entity |
 | 37 | multiple | binary UUID |
 +-----+-------------+----------------------------+

 Table 5: Values for Existing Tags

17.4. New Tags

 (TODO: complete.)

18. Security Considerations

 The security considerations of RFC 7049 apply.

 The encodings in Clauses 8.19 and 8.20 of [X.690] are extremely
 compact and unambiguous, but MUST be followed precisely to avoid
 security pitfalls. In particular, the requirements set out in
 Section 2.1 of this document need to be followed; otherwise, an
 attacker may be able to subvert a checking process by submitting
 alternative representations that are later taken as the original (or
 even something else entirely) by another decoder supposed to be
 protected by the checking process.

 OIDs and relative OIDs can always be treated as opaque byte strings.
 Actually understanding the structure that was used for generating
 them is not necessary, and, except for checking the structure
 requirements, it is strongly NOT RECOMMENDED to perform any
 processing of this kind (e.g., converting into dotted notation and
 back) unless absolutely necessary. If the OIDs are translated into
 other representations, the usual security considerations for non-
 trivial representation conversions apply; the primary integer values
 are unlimited in range (cf. Figure 4).

18.1. Conversions Between BER and Dotted Decimal Notation

 [PKILCAKE] uncovers exploit vectors for the illegal values above, as
 well as for cases in which conversion to or from the dotted decimal
 notation goes awry. Neither [X.660] nor [X.680] place an upper bound
 on the range of unsigned integer values for an arc; the integers are
 arbitrarily valued. An implementation SHOULD NOT attempt to convert
 each component using a fixed-size accumulator, as an attacker will
 certainly be able to cause the accumulator to overflow. Compact and
 efficient techniques for such conversions, such as the double dabble

Bormann & Leonard Expires September 14, 2017 [Page 29]

Internet-Draft CBOR Tags and Techniques March 2017

 algorithm [DOUBLEDABBLE] are well-known in the art; their application
 to this field is left as an exercise to the reader.

19. References

19.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <http://www.rfc-editor.org/info/rfc3261>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI
 10.17487/RFC4122, July 2005,
 <http://www.rfc-editor.org/info/rfc4122>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322, DOI
 10.17487/RFC5322, October 2008,
 <http://www.rfc-editor.org/info/rfc5322>.

 [RFC5536] Murchison, K., Ed., Lindsey, C., and D. Kohn, "Netnews
 Article Format", RFC 5536, DOI 10.17487/RFC5536, November
 2009, <http://www.rfc-editor.org/info/rfc5536>.

 [RFC5537] Allbery, R., Ed. and C. Lindsey, "Netnews Architecture and
 Protocols", RFC 5537, DOI 10.17487/RFC5537, November 2009,
 <http://www.rfc-editor.org/info/rfc5537>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC
 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Bormann & Leonard Expires September 14, 2017 [Page 30]

Internet-Draft CBOR Tags and Techniques March 2017

 [X.660] International Telecommunications Union, "Information
 technology -- Procedures for the operation of object
 identifier registration authorities: General procedures
 and top arcs of the international object identifier tree",
 ITU-T Recommendation X.660, July 2011.

 [X.680] International Telecommunications Union, "Information
 technology -- Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", ITU-T Recommendation
 X.680, August 2015.

 [X.690] International Telecommunications Union, "Information
 technology -- ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, August 2015.

19.2. Informative References

 [DCE-RPC] Open Group CAE, "DCE: Remote Procedure Call",
 Specification C309, ISBN 1-85912-041-5, August 1994.

 [DOUBLEDABBLE]
 Gao, S., Al-Khalili, D., and N. Chabini, "An improved BCD
 adder using 6-LUT FPGAs", IEEE 10th International New
 Circuits and Systems Conference (NEWCAS 2012), pp. 13-16,
 DOI: 10.1109/NEWCAS.2012.6328944, June 2012.

 [OID-INFO]
 Orange SA, "OID Repository", 2016,
 <http://www.oid-info.com/>.

 [PKILCAKE]
 Kaminsky, D., Patterson, M., and L. Sassaman, "PKI Layer
 Cake: New Collision Attacks Against the Global X.509
 Infrastructure", FC 2010, Lecture Notes in Computer
 Science 6052 289-303, DOI: 10.1007/978-3-642-14577-3_22,
 January 2010, <http://dl.acm.org/citation.cfm?id=2163593>.

 [RFC2506] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
 Registration Procedure", BCP 31, RFC 2506, DOI 10.17487/
 RFC2506, March 1999,
 <http://www.rfc-editor.org/info/rfc2506>.

 [RFC3030] Vaudreuil, G., "SMTP Service Extensions for Transmission
 of Large and Binary MIME Messages", RFC 3030, DOI
 10.17487/RFC3030, December 2000,
 <http://www.rfc-editor.org/info/rfc3030>.

Bormann & Leonard Expires September 14, 2017 [Page 31]

Internet-Draft CBOR Tags and Techniques March 2017

 [RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC
 4514, DOI 10.17487/RFC4514, June 2006,
 <http://www.rfc-editor.org/info/rfc4514>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, DOI 10.17487/RFC6256, May
 2011, <http://www.rfc-editor.org/info/rfc6256>.

 [RFC7388] Schoenwaelder, J., Sehgal, A., Tsou, T., and C. Zhou,
 "Definition of Managed Objects for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 7388, DOI
 10.17487/RFC7388, October 2014,
 <http://www.rfc-editor.org/info/rfc7388>.

 [X.672] International Telecommunications Union, "Information
 technology -- Open systems interconnection -- Object
 identifier resolution system", ITU-T Recommendation X.672,
 August 2010.

 [X.681] International Telecommunications Union, "Information
 technology -- Abstract Syntax Notation One (ASN.1):
 Information object specification", ITU-T Recommendation
 X.681, August 2015.

Appendix A. Changes from -05 to -06

 Refreshed the draft to the current date ("keep-alive").

Appendix B. Changes from -04 to -05

 Discussed UUID usage in CBOR, and incorporated fixes proposed by
 Olivier Dubuisson, including fixes regarding OID nomenclature.

Appendix C. Changes from -03 to -04

 Changes occurred based on limited feedback, mainly centered around
 the abstract and introduction, rather than substantive technical
 changes. These changes include:

 o Changed the title so that it is about tags and techniques.

Bormann & Leonard Expires September 14, 2017 [Page 32]

Internet-Draft CBOR Tags and Techniques March 2017

 o Rewrote the abstract to describe the content more accurately, and
 to point out that no changes to the wire protocol are being
 proposed.

 o Removed "ASN.1" from "object identifiers", as OIDs are independent
 of ASN.1.

 o Rewrote the introduction to be more about the present text.

 o Proposed a concise OID arc.

 o Provided binary regular expression forms for OID validation.

 o Updated IANA registration tables.

Appendix D. Changes from -02 to -03

 Many significant changes occurred in this version. These changes
 include:

 o Expanded the draft scope to be a comprehensive CBOR update.

 o Added OID-related sections: OID Enumerations, OID Maps and Arrays,
 and Applications and Examples of OIDs.

 o Added Tag 36 update (binary MIME, better definitions).

 o Added stub/experimental sections for X.690 Series Tags (tag <<X>>)
 and Regular Expressions (tag 35).

 o Added technique for representing sets and multisets.

 o Added references and fixed typos.

Authors’ Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Bormann & Leonard Expires September 14, 2017 [Page 33]

Internet-Draft CBOR Tags and Techniques March 2017

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 Email: dev+ietf@seantek.com
 URI: http://www.penango.com/

Bormann & Leonard Expires September 14, 2017 [Page 34]

