
Network Working Group M. Koster
Internet-Draft SmartThings
Intended status: Standards Track A. Keranen
Expires: January 5, 2018 J. Jimenez
 Ericsson
 July 4, 2017

Publish-Subscribe Broker for the Constrained Application Protocol (CoAP)
 draft-ietf-core-coap-pubsub-02

Abstract

 The Constrained Application Protocol (CoAP), and related extensions
 are intended to support machine-to-machine communication in systems
 where one or more nodes are resource constrained, in particular for
 low power wireless sensor networks. This document defines a publish-
 subscribe broker for CoAP that extends the capabilities of CoAP for
 supporting nodes with long breaks in connectivity and/or up-time.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Koster, et al. Expires January 5, 2018 [Page 1]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Architecture . 4
 3.1. CoAP pubsub Architecture 4
 3.2. CoAP pubsub Broker 4
 3.3. CoAP pubsub Client 5
 3.4. CoAP pubsub Topic . 5
 3.5. Brokerless pubsub . 5
 4. CoAP pubsub REST API . 6
 4.1. DISCOVERY . 6
 4.2. CREATE . 8
 4.3. PUBLISH . 10
 4.4. SUBSCRIBE . 13
 4.5. UNSUBSCRIBE . 14
 4.6. READ . 16
 4.7. REMOVE . 17
 5. CoAP pubsub Operation with Resource Directory 18
 6. Sleep-Wake Operation . 19
 7. Simple Flow Control . 19
 8. Security Considerations 20
 9. IANA Considerations . 21
 9.1. Resource Type value ’core.ps’ 21
 9.2. Resource Type value ’core.ps.discover’ 21
 9.3. Response Code value ’2.07’ 21
 9.4. Response Code value ’4.29’ 21
 10. Acknowledgements . 22
 11. References . 22
 11.1. Normative References 22
 11.2. Informative References 23
 Authors’ Addresses . 23

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] supports
 machine-to-machine communication across networks of constrained
 devices. CoAP uses a request/response model where clients make
 requests to servers in order to request actions on resources.
 Depending on the situation the same device may act either as a server
 or a client.

 One important class of constrained devices includes devices that are
 intended to run for years from a small battery, or by scavenging

Koster, et al. Expires January 5, 2018 [Page 2]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 energy from their environment. These devices have limited
 reachability because they spend most of their time in a sleeping
 state with no network connectivity. Devices may also have limited
 reachability due to certain middle-boxes, such as Network Address
 Translators (NATs) or firewalls. Such middle-boxes often prevent
 connecting to a device from the Internet unless the connection was
 initiated by the device.

 This document specifies the means for nodes with limited reachability
 to communicate using simple extensions to CoAP. The extensions
 enable publish-subscribe communication using a broker node that
 enables store-and-forward messaging between two or more nodes.
 Furthermore the extensions facilitate many-to-many communication
 using CoAP.

2. Terminology

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 specification are to be interpreted as described in [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC5988] and [RFC6690]. Readers
 should also be familiar with the terms and concepts discussed in
 [RFC7252] and [I-D.ietf-core-resource-directory]. The URI template
 format [RFC6570] is used to describe the REST interfaces defined in
 this specification.

 This specification makes use of the following additional terminology:

 Publish-Subscribe (pubsub): A messaging paradigm where messages are
 published to a broker and potential receivers can subscribe to the
 broker to receive messages. The publishers do not (need to) know
 where the message will be eventually sent: the publications and
 subscriptions are matched by a broker and publications are
 delivered by the broker to subscribed receivers.

 CoAP pubsub service: A group of REST resources, as defined in this
 document, which together implement the required features of this
 specification.

 CoAP pubsub Broker: A server node capable of receiving messages
 (publications) from and sending messages to other nodes, and able
 to match subscriptions and publications in order to route messages
 to the right destinations. The broker can also temporarily store
 publications to satisfy future subscriptions and pending
 notifications.

Koster, et al. Expires January 5, 2018 [Page 3]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 CoAP pubsub Client: A CoAP client which is capable of publish or
 subscribe operations as defined in this specification.

 Topic: A unique identifier for a particular item being published
 and/or subscribed to. A broker uses the topics to match
 subscriptions to publications. A topic is a valid CoAP URI as
 defined in [RFC7252]

3. Architecture

3.1. CoAP pubsub Architecture

 Figure 1 shows the architecture of a CoAP pubsub service. CoAP
 pubsub Clients interact with a CoAP pubsub Broker through the CoAP
 pubsub REST API which is hosted by the Broker. State information is
 updated between the Clients and the Broker. The CoAP pubsub Broker
 performs a store-and-forward of state update representations between
 certain CoAP pubsub Clients. Clients Subscribe to topics upon which
 representations are Published by other Clients, which are forwarded
 by the Broker to the subscribing clients. A CoAP pubsub Broker may
 be used as a REST resource proxy, retaining the last published
 representation to supply in response to Read requests from Clients.

 Clients pubsub Broker
 +-------+ |
 | CoAP | |
 |pubsub |---------|------+
 |Client | | | +-------+
 +-------+ | +----| CoAP |
 | |pubsub |
 +-------+ | +----|Broker |
 | CoAP | | | +-------+
 |pubsub |---------|------+
 |Client | |
 +-------+ |

 Figure 1: CoAP pubsub Architecture

3.2. CoAP pubsub Broker

 A CoAP pubsub Broker is a CoAP Server that exposes a REST API for
 clients to use to initiate publish-subscribe interactions. Avoiding
 the need for direct reachability between clients, the broker only
 needs to be reachable from all clients. The broker also needs to
 have sufficient resources (storage, bandwidth, etc.) to host CoAP
 resource services, and potentially buffer messages, on behalf of the
 clients.

Koster, et al. Expires January 5, 2018 [Page 4]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

3.3. CoAP pubsub Client

 A CoAP pubsub Client interacts with a CoAP pubsub Broker using the
 CoAP pubsub REST API defined in this document. Clients initiate
 interactions with a CoAP pubsub broker. A data source (e.g., sensor
 clients) can publish state updates to the broker and data sinks
 (e.g., actuator clients) can read from or subscribe to state updates
 from the broker. Application clients can make use of both publish
 and subscribe in order to exchange state updates with data sources
 and data sinks.

3.4. CoAP pubsub Topic

 The clients and broker use topics to identify a particular resource
 or object in a publish-subscribe system. Topics are conventionally
 formed as a hierarchy, e.g. "/sensors/weather/barometer/pressure" or
 "EP-33543/sen/3303/0/5700". The topics are hosted at the broker and
 all the clients using the broker share the same namespace for topics.
 Every CoAP pubsub topic has a link, consisting of a reference path on
 the broker using URI path [RFC3986] construction and link attributes
 [RFC6690]. Every topic is associated with zero or more stored
 representations with a content-format specified in the link. A CoAP
 pubsub topic value may alternatively be a collection of one or more
 sub-topics, consisting of links to the sub-topic URIs and indicated
 by a link-format content-format.

3.5. Brokerless pubsub

 Figure 2 shows an arrangement for using CoAP pubsub in a "brokerless"
 configuration between peer nodes. Nodes in a brokerless system may
 act as both broker and client. The Broker interface in a brokerless
 node may be pre-configured with topics that expose services and
 resources. Brokerless peer nodes can be mixed with client and broker
 nodes in a system with full interoperability.

 Peer pubsub Peer
 +-------+ | +-------+
 | CoAP | | | CoAP |
 |pubsub |---------|---------|pubsub |
 |Client | | |Broker |
 +-------+ | +-------+
 | CoAP | | | CoAP |
 |pubsub |---------|---------|pubsub |
 |Broker | | |Client |
 +-------+ | +-------+

 Figure 2: Brokerless pubsub

Koster, et al. Expires January 5, 2018 [Page 5]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

4. CoAP pubsub REST API

 This section defines the REST API exposed by a CoAP pubsub Broker to
 pubsub Clients. The examples throughout this section assume the use
 of CoAP [RFC7252]. A CoAP pubsub Broker implementing this
 specification SHOULD support the DISCOVERY, CREATE, PUBLISH,
 SUBSCRIBE, UNSUBSCRIBE, READ, and REMOVE operations defined in this
 section. Optimized implementations MAY support a subset of the
 operations as required by particular constrained use cases.

4.1. DISCOVERY

 CoAP pubsub Clients discover CoAP pubsub Brokers by using CoAP Simple
 Discovery or through a Resource Directory (RD)
 [I-D.ietf-core-resource-directory]. A CoAP pubsub Broker SHOULD
 indicate its presence and availability on a network by exposing a
 link to the entry point of its pubsub API at its .well-known/core
 location [RFC6690]. A CoAP pubsub broker MAY register its pubsub
 REST API entry point with a Resource Directory. Figure 3 shows an
 example of a client discovering a local pubsub API using CoAP Simple
 Discovery. A broker wishing to advertise the CoAP pubsub API for
 Simple Discovery or through a Resource Directory MUST use the link
 relation rt=core.ps. A broker MAY advertise its supported content
 formats and other attributes in the link to its pubsub API.

 A CoAP pubsub Broker MAY offer a topic discovery entry point to
 enable Clients to find topics of interest, either by topic name or by
 link attributes which may be registered when the topic is created.
 Figure 4 shows an example of a client looking for a topic with a
 resource type (rt) of "temperature" using Discover. The client then
 receives the URI of the resource and its content-format. A pubsub
 broker wishing to advertize topic discovery MUST use the relation
 rt=core.ps.discover in the link.

 A CoAP pubsub Broker MAY expose the Discover interface through the
 .well-known/core resource. Links to topics may be exposed at .well-
 known/core in addition to links to the pubsub API. Figure 5 shows an
 example of topic discovery through .well-known/core.

 The DISCOVER interface is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 URI Template: {+ps}/{+topic}{?q*}

Koster, et al. Expires January 5, 2018 [Page 6]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 Content-Format: application/link-format

 The following response codes are defined for this interface:

 Success: 2.05 "Content" with an application/link-format payload
 containing one or more matching entries for the broker resource.
 A pubsub broker SHOULD use the value "/ps/" for the base URI of
 the pubsub API wherever possible.

 Failure: 4.04 "Not Found" is returned in case no matching entry is
 found for a unicast request.

 Failure: 4.00 "Bad Request" is returned in case of a malformed
 request for a unicast request.

 Failure: No error response to a multicast request.

 Client Broker
 | |
 | ------ GET /.well-known/core?rt=core.ps ---->>|
 | -- Content-Format: application/link-format ---|
 | |
 | <<--- 2.05 Content |
 | </ps/>;rt=core.ps;rt=core.ps.discover;ct=40 --|
 | |

 Figure 3: Example of DISCOVER pubsub function

Koster, et al. Expires January 5, 2018 [Page 7]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 Client Broker
 | |
 | ---------- GET /ps/?rt="temperature" ------->>|
 | Content-Format: application/link-format |
 | |
 | <<-- 2.05 Content |
 | </ps/currentTemp>;rt="temperature";ct=50 ---|
 | |

 Figure 4: Example of DISCOVER topic

 Client Broker
 | |
 | -------- GET /.well-known/core?ct=50 ------->>|
 | Content-Format: application/link-format |
 | |
 | <<-- 2.05 Content |
 | </ps/currentTemp>;rt="temperature";ct=50 ---|
 | |

 Figure 5: Example of DISCOVER topic

4.2. CREATE

 A CoAP pubsub broker MAY allow Clients to create new topics on the
 broker using CREATE. A client wishing to create a topic MUST use
 CoAP POST to the pubsub API with a payload indicating the desired
 topic. The topic specification sent in the payload MUST use a
 supported serialization of the CoRE link format [RFC6690]. The
 target of the link MUST be a URI formatted string. The client MUST
 indicate the desired content format for publishes to the topic by
 using the ct (Content Format) link attribute in the link-format
 payload. The client MAY indicate the lifetime of the topic by
 including the Max-Age option in the CREATE request.

 A Broker MUST return a response code of "2.01 Created" if the topic
 is created and return the URI path of the created topic via Location-
 Path options. The broker MUST return the appropriate 4.xx response
 code indicating the reason for failure if a new topic can not be
 created. Broker SHOULD remove topics if the Max-Age of the topic is
 exceeded without any publishes to the topic. Broker SHOULD retain a
 topic indefinitely if the Max-Age option is elided or is set to zero
 upon topic creation. The lifetime of a topic MUST be refreshed upon
 create operations with a target of an existing topic.

Koster, et al. Expires January 5, 2018 [Page 8]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 Topics may be created as sub-topics of other topics. A client MAY
 create a topic with a ct (Content Format) link attribute value which
 describes a supported serialization of the CoRE link format [RFC6690]
 such as application/link-format (ct=40) or its JSON or CBOR
 serializations. If a topic is created which describes a link
 serialization, that topic may then have sub-topics created under it
 as shown in Figure 7.

 The CREATE interface is specified as follows:

 Interaction: Client -> Broker

 Method: POST

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 Content-Format: application/link-format

 Payload: The desired topic to CREATE

 The following response codes are defined for this interface:

 Success: 2.01 "Created". Successful Creation of the topic

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.03 "Forbidden". Topic already exists.

 Failure: 4.06 "Not Acceptable". Unsupported content format for
 topic.

 Figure 6 shows an example of a topic called "topic1" being
 successfully created.

Koster, et al. Expires January 5, 2018 [Page 9]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 Client Broker
 | |
 | ---------- POST /ps/ "<topic1>;ct=50" -------->|
 | |
 | <---------------- 2.01 Created ---------------|
 | Location: /ps/topic1 |
 | |

 Figure 6: Example of CREATE topic

 Client Broker
 | |
 | ------- POST /ps/ "<mainTopic>;ct=40" ------->|
 | |
 | <---------------- 2.01 Created ---------------|
 | Location: /ps/mainTopic/ |
 | |
 | --- POST /ps/mainTopic/ "<subTopic>;ct=50" -->|
 | |
 | <---------------- 2.01 Created ---------------|
 | Location: /ps/mainTopic/subTopic |
 | |
 | |

 Figure 7: Example of CREATE sub-topic

4.3. PUBLISH

 A CoAP pubsub broker MAY allow clients to PUBLISH to topics on the
 broker. A client MAY use the PUT or the POST method to publish state
 updates to the CoAP pubsub Broker. A client MUST use the content
 format specified upon creation of a given topic to publish updates to
 that topic. The broker MUST reject publish operations which do not
 use the specified content format. A CoAP client publishing on a
 topic MAY indicate the maximum lifetime of the value by including the
 Max-Age option in the publish request. The broker MUST return a
 response code of "2.04 Changed" if the publish is accepted. A Broker
 MAY return a "4.04 Not Found" if the topic does not exist. A broker
 MAY return "4.29 Too Many Requests" if simple flow control as
 described in Section 7 is implemented.

 A Broker MUST accept PUBLISH operations using the PUT method.
 PUBLISH operations using the PUT method replace any stored
 representation associated with the topic, with the supplied
 representation. A Broker MAY reject, or delay responses to, PUT

Koster, et al. Expires January 5, 2018 [Page 10]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 requests to a topic while pending resolution of notifications to
 subscribers from previous PUT requests.

 Create on PUBLISH: A Broker MAY accept PUBLISH operations to new
 topics using the PUT method. If a Broker accepts a PUBLISH using PUT
 to a topic that does not exist, the Broker MUST create the topic
 using the information in the PUT operation. The Broker MUST create a
 topic with the URI-Path of the request, including all of the sub-
 topics necessary, and create a topic link with the ct attribute set
 to the content-format of the payload of the PUT request. If topic is
 created, the Broker MUST return the response "2.01 Created" with the
 URI of the created topic, including all of the created path segments,
 returned via the Location-Path option.

 A Broker MAY accept PUBLISH operations using the POST method. If a
 broker accepts PUBLISH using POST it shall respond with the 2.04
 Changed status code.

 A Broker MAY perform garbage collection of stored representations
 which have been delivered to all subscribers or which have timed out.
 A Broker MAY retain at least one most recently published
 representation to return in response to SUBSRCIBE and READ requests.

 A Broker MUST make a best-effort attempt to notify all clients
 subscribed on a particular topic each time it receives a publish on
 that topic. An example is shown in Figure 10. If a client publishes
 to a broker with the Max-Age option, the broker MUST include the same
 value for the Max-Age option in all notifications. A broker MUST use
 CoAP Notification as described in [RFC7641] to notify subscribed
 clients.

 The PUBLISH interface is specified as follows:

 Interaction: Client -> Broker

 Method: PUT, POST

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

Koster, et al. Expires January 5, 2018 [Page 11]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 Content-Format: Any valid CoAP content format

 Payload: Representation of the topic value (CoAP resource state
 representation) in the indicated content format

 The following response codes are defined for this interface:

 Success: 2.01 "Created". Successful publish, topic is created

 Success: 2.04 "Changed". Successful publish, topic is updated

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Failure: 4.29 "Too Many Requests". The client should slow down the
 rate of publish messages for this topic (see Section 7).

 Figure 8 shows an example of a new value being successfully published
 to the topic "topic1". See Figure 10 for an example of a broker
 forwarding a message from a publishing client to a subscribed client.

 Client Broker
 | |
 | ---------- PUT /ps/topic1 "1033.3" --------> |
 | |
 | |
 | <--------------- 2.04 Changed---------------- |
 | |

 Figure 8: Example of PUBLISH

 Client Broker
 | |
 | -------- PUT /ps/exa/mpl/e "1033.3" -------> |
 | |
 | |
 | <--------------- 2.01 Created---------------- |
 | Location: /ps/exa/mpl/e |
 | |

 Figure 9: Example of CREATE on PUBLISH

Koster, et al. Expires January 5, 2018 [Page 12]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

4.4. SUBSCRIBE

 A CoAP pubsub broker MAY allow Clients to subscribe to topics on the
 Broker using CoAP Observe as described in [RFC7641]. A CoAP pubsub
 Client wishing to Subscribe to a topic on a broker MUST use a CoAP
 GET with the Observe option set to 0 (zero). The Broker MAY add the
 client to a list of observers. The Broker MUST return a response
 code of "2.05 Content" along with the most recently published value
 if the topic contains a valid value and the broker can supply the
 requested content format. The broker MUST reject Subscribe requests
 on a topic if the content format of the request is not supported by
 the content format the topic was created with. The broker MAY accept
 Subscribe requests which specify content formats that the broker can
 supply as alternate content formats to the content format the topic
 was registered with. If the topic was published with the Max-Age
 option, the broker MUST set the Max-Age option in the valid response
 to the amount of time remaining for the value to be valid since the
 last publish operation on that topic. The Broker MUST return a
 response code of "2.07 No Content" if the Max-Age of the previously
 stored value has expired. The Broker MUST return a response code
 "4.04 Not Found" if the topic does not exist or has been removed.
 The Broker MUST return a response code "4.15 Unsupported Content
 Format" if it can not return the requested content format. If a
 Broker is unable to accept a new Subscription on a topic, it SHOULD
 return the appropriate response code without the Observe option as
 per as per [RFC7641] Section 4.1. There is no explicit maximum
 lifetime of a Subscription, thus a Broker may remove subscribers at
 any time. The Broker, upon removing a Subscriber, will transmit the
 appropriate response code without the Observe option, as per
 [RFC7641] Section 4.2, to the removed Subscriber.

 The SUBSCRIBE interface is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 Options: Observe:0

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

Koster, et al. Expires January 5, 2018 [Page 13]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 The following response codes are defined for this interface:

 Success: 2.05 "Content". Successful subscribe, current value
 included

 Success: 2.07 "No Content". Successful subscribe, value not
 included

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Failure: 4.15 "Unsupported Content Format". Unsupported content
 format.

 Figure 10 shows an example of Client2 subscribing to "topic1" and
 receiving a response from the broker, with a subsequent notification.
 The subscribe response from the broker uses the last stored value
 associated with the topic1. The notification from the broker is sent
 in response to the publish received from Client1.

 Client1 Client2 Broker
 | | Subscribe |
 | | ----- GET /ps/topic1 Observe:0 Token:XX ----> |
 | | |
 | | <---------- 2.05 Content Observe:10---------- |
 | | |
 | | |
 | | Publish |
 | ---------|----------- PUT /ps/topic1 "1033.3" --------> |
 | | Notify |
 | | <---------- 2.05 Content Observe:11 --------- |
 | | |

 Figure 10: Example of SUBSCRIBE

4.5. UNSUBSCRIBE

 If a CoAP pubsub broker allows clients to SUBSCRIBE to topics on the
 broker, it MUST allow Clients to unsubscribe from topics on the
 Broker using the CoAP Cancel Observation operation. A CoAP pubsub
 Client wishing to unsubscribe to a topic on a Broker MUST either use

Koster, et al. Expires January 5, 2018 [Page 14]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 CoAP GET with Observe using an Observe parameter of 1 or send a CoAP
 Reset message in response to a publish, as per [RFC7641].

 The UNSUBSCRIBE interface is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 Options: Observe:1

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 The following response codes are defined for this interface:

 Success: 2.05 "Content". Successful unsubscribe, current value
 included

 Success: 2.07 "No Content". Successful unsubscribe, value not
 included

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Figure 11 shows an example of a client unsubscribe using the
 Observe=1 cancellation method.

 Client Broker
 | |
 | ----- GET /ps/topic1 Observe:1 Token:XX ----> |
 | |
 | <------------- 2.05 Content ----------------- |
 | |

 Figure 11: Example of UNSUBSCRIBE

Koster, et al. Expires January 5, 2018 [Page 15]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

4.6. READ

 A CoAP pubsub broker MAY accept Read requests on a topic using the
 the CoAP GET method if the content format of the request matches the
 content format the topic was created with. The broker MAY accept
 Read requests which specify content formats that the broker can
 supply as alternate content formats to the content format the topic
 was registered with. The Broker MUST return a response code of "2.05
 Content" along with the most recently published value if the topic
 contains a valid value and the broker can supply the requested
 content format. If the topic was published with the Max-Age option,
 the broker MUST set the Max-Age option in the valid response to the
 amount of time remaining for the topic to be valid since the last
 publish. The Broker MUST return a response code of "2.07 No Content"
 if the Max-Age of the previously stored value has expired. The
 Broker MUST return a response code "4.04 Not Found" if the topic does
 not exist or has been removed. The Broker MUST return a response
 code "4.15 Unsupported Content Format" if the broker can not return
 the requested content format.

 The READ interface is specified as follows:

 Interaction: Client -> Broker

 Method: GET

 URI Template: {+ps}/{+topic}{?q*}

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 The following response codes are defined for this interface:

 Success: 2.05 "Content". Successful READ, current value included

 Success: 2.07 "No Content". Topic exists, value not included

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

Koster, et al. Expires January 5, 2018 [Page 16]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 Failure: 4.15 "Unsupported Content Format". Unsupported content-
 format.

 Figure 12 shows an example of a successful READ from topic1, followed
 by a Publish on the topic, followed at some time later by a read of
 the updated value from the recent Publish.

 Client1 Client2 Broker
 | | Read |
 | | --------------- GET /ps/topic1 -------------> |
 | | |
 | | <---------- 2.05 Content "1007.1"------------ |
 | | |
 | | |
 | | Publish |
 | ---------|----------- PUT /ps/topic1 "1033.3" --------> |
 | | |
 | | |
 | | Read |
 | | --------------- GET /ps/topic1 -------------> |
 | | |
 | | <----------- 2.05 Content "1033.3" ---------- |
 | | |

 Figure 12: Example of READ

4.7. REMOVE

 A CoAP pubsub broker MAY allow clientsremove a topics from the broker
 using the CoAP Delete method on the URI of the topic. The CoAP
 pubsub Broker MUST return "2.02 Deleted" if the removal is
 successful. The broker MUST return the appropriate 4.xx response
 code indicating the reason for failure if the topic can not be
 removed. When a topic is removed for any reason, the Broker SHOULD
 return the response code 4.04 Not Found and remove all of the
 observers from the list of observers as per as per [RFC7641]
 Section 3.2. If a topic which has sub-topics is removed, then all of
 its sub-topics MUST be recursively removed.

 The REMOVE interface is specified as follows:

 Interaction: Client -> Broker

 Method: DELETE

 URI Template: {+ps}/{+topic}{?q*}

Koster, et al. Expires January 5, 2018 [Page 17]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 URI Template Variables: ps := pubsub REST API entry point
 (optional). The entry point of the pubsub REST API, as obtained
 from discovery, used to discover topics.

 topic := The desired topic to return links for (optional).

 q := Query Filter (optional). MAY contain a query filter list as
 per [RFC6690] Section 4.1.

 Content-Format: None

 Response Payload: None

 The following response codes are defined for this interface:

 Success: 2.02 "Deleted". Successful remove

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 4.01 "Unauthorized". Authorization failure.

 Failure: 4.04 "Not Found". Topic does not exist.

 Figure 13 shows a successful remove of topic1.

 Client Broker
 | |
 | ------------- DELETE /ps/topic1 ------------> |
 | |
 | |
 | <-------------- 2.02 Deleted ---------------- |
 | |

 Figure 13: Example of REMOVE

5. CoAP pubsub Operation with Resource Directory

 A CoAP pubsub Broker may register the base URI, which is the REST API
 entry point for a pubsub service, with a Resource Directory. A
 pubsub Client may use an RD to discover a pubsub Broker.

 A CoAP pubsub Client may register links [RFC6690] with a Resource
 Directory to enable discovery of created pubsub topics. A pubsub
 Client may use an RD to discover pubsub Topics. A client which
 registers pubsub Topics with an RD MUST use the context relation
 (con) [I-D.ietf-core-resource-directory] to indicate that the context
 of the registered links is the pubsub Broker.

Koster, et al. Expires January 5, 2018 [Page 18]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 A CoAP pubsub Broker may alternatively register links to its topics
 to a Resource Directory by triggering the RD to retrieve it’s links
 from .well-known/core. In order to use this method, the links must
 first be exposed in the .well-known/core of the pubsub broker. See
 Section 4.1 in this document.

 The pubsub broker triggers the RD to retrieve its links by sending a
 POST with an empty payload to the .well-known/core of the Resource
 Directory. The RD server will then retrieve the links from the
 .well-known/core of the pubsub broker and incorporate them into the
 Resource Directory. See [I-D.ietf-core-resource-directory] for
 further details.

6. Sleep-Wake Operation

 CoAP pubsub provides a way for client nodes to sleep between
 operations, conserving energy during idle periods. This is made
 possible by shifting the server role to the broker, allowing the
 broker to be always-on and respond to requests from other clients
 while a particular client is sleeping.

 For example, the broker will retain the last state update received
 from a sleeping client, in order to supply the most recent state
 update to other clients in response to read and subscribe operations.

 Likewise, the broker will retain the last state update received on
 the topic such that a sleeping client, upon waking, can perform a
 read operation to the broker to update its own state from the most
 recent system state update.

7. Simple Flow Control

 Since the broker node has to potentially send a large amount of
 notification messages for each publish message and it may be serving
 a large amount of subscribers and publishers simultaneously, the
 broker may become overwhelmed if it receives many publish messages to
 popular topics in a short period of time.

 If the broker is unable to serve a certain client that is sending
 publish messages too fast, the broker MUST respond with Response Code
 4.29, "Too Many Requests". This Response Code is like HTTP 429 "Too
 Many Requests" but uses the Max-Age Option in place of the "Retry-
 After" header field to indicate the number of seconds after which to
 retry. The broker MAY stop creating notifications from the publish
 messages from this client and to this topic for the indicated time.

 If a client receives the 4.29 Response Code from the broker for a
 publish message to a topic, it MUST NOT send new publish messages to

Koster, et al. Expires January 5, 2018 [Page 19]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 the broker on the same topic before the time indicated in Max-Age has
 passed.

8. Security Considerations

 CoAP pubsub re-uses CoAP [RFC7252], CoRE Resource Directory
 [I-D.ietf-core-resource-directory], and Web Linking [RFC5988] and
 therefore the security considerations of those documents also apply
 to this specification. Additionally, a CoAP pubsub broker and the
 clients SHOULD authenticate each other and enforce access control
 policies. A malicious client could subscribe to data it is not
 authorized to or mount a denial of service attack against the broker
 by publishing a large number of resources. The authentication can be
 performed using the already standardized DTLS offered mechanisms,
 such as certificates. DTLS also allows communication security to be
 established to ensure integrity and confidentiality protection of the
 data exchanged between these relevant parties. Provisioning the
 necessary credentials, trust anchors and authorization policies is
 non-trivial and subject of ongoing work.

 The use of a CoAP pubsub broker introduces challenges for the use of
 end-to-end security between for example a client device on a sensor
 network and a client application running in a cloud-based server
 infrastructure since brokers terminate the exchange. While running
 separate DTLS sessions from the client device to the broker and from
 broker to client application protects confidentially on those paths,
 the client device does not know whether the commands coming from the
 broker are actually coming from the client application. Similarly, a
 client application requesting data does not know whether the data
 originated on the client device. For scenarios where end-to-end
 security is desirable the use of application layer security is
 unavoidable. Application layer security would then provide a
 guarantee to the client device that any request originated at the
 client application. Similarly, integrity protected sensor data from
 a client device will also provide guarantee to the client application
 that the data originated on the client device itself. The protected
 data can also be verified by the intermediate broker ensuring that it
 stores/caches correct request/response and no malicious messages/
 requests are accepted. The broker would still be able to perform
 aggregation of data/requests collected.

 Depending on the level of trust users and system designers place in
 the CoAP pubsub broker, the use of end-to-end object security is
 RECOMMENDED as described in [I-D.palombini-ace-coap-pubsub-profile].
 When only end-to-end encryption is necessary and the CoAP Broker is
 trusted, Payload Only Protection (Mode:PAYL) could be used. The
 Publisher would wrap only the payload before sending it to the broker
 and set the option Content-Format to application/smpayl. Upon

Koster, et al. Expires January 5, 2018 [Page 20]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 receival, the Broker can read the unencrypted CoAP header to forward
 it to the subscribers.

9. IANA Considerations

 This document registers one attribute value in the Resource Type
 (rt=) registry established with [RFC6690] and appends to the
 definition of one CoAP Response Code in the CoRE Parameters Registry.

9.1. Resource Type value ’core.ps’

 o Attribute Value: core.ps

 o Description: Section 4 of [[This document]]

 o Reference: [[This document]]

 o Notes: None

9.2. Resource Type value ’core.ps.discover’

 o Attribute Value: core.ps.discover

 o Description: Section 4 of [[This document]]

 o Reference: [[This document]]

 o Notes: None

9.3. Response Code value ’2.07’

 o Response Code: 2.07

 o Description: Add No Content response to GET to the existing
 definition of the 2.07 response code.

 o Reference: [[This document]]

 o Notes: The server sends this code to the client to indicate that
 the request was valid and accepted, but the responce may contain
 an empty payload. It is comparable to and may be proxied with the
 http 204 No Content status code.

9.4. Response Code value ’4.29’

 o Response Code: 4.29

Koster, et al. Expires January 5, 2018 [Page 21]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

 o Description: This error code is used by a server to indicate that
 a client is making too many requests on a resource.

 o Reference: [[This document]]

 o Notes: None

10. Acknowledgements

 The authors would like to thank Hannes Tschofenig, Zach Shelby, Mohit
 Sethi, Peter van der Stok, Tim Kellogg, Anders Eriksson, Goran
 Selander, Mikko Majanen, and Olaf Bergmann for their contributions
 and reviews.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/
 RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641, DOI 10.17487/
 RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

Koster, et al. Expires January 5, 2018 [Page 22]

Internet-Draft Publish-Subscribe Broker for CoAP July 2017

11.2. Informative References

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-10
 (work in progress), March 2017.

 [I-D.palombini-ace-coap-pubsub-profile]
 Palombini, F., "CoAP Pub-Sub Profile for Authentication
 and Authorization for Constrained Environments (ACE)",
 draft-palombini-ace-coap-pubsub-profile-00 (work in
 progress), March 2017.

 [I-D.selander-ace-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-selander-ace-
 object-security-06 (work in progress), October 2016.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/
 RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

Authors’ Addresses

 Michael Koster
 SmartThings

 Email: Michael.Koster@smartthings.com

 Ari Keranen
 Ericsson

 Email: ari.keranen@ericsson.com

 Jaime Jimenez
 Ericsson

 Email: jaime.jimenez@ericsson.com

Koster, et al. Expires January 5, 2018 [Page 23]

