
CORE C. Bormann
Internet-Draft Universitaet Bremen TZI
Updates: 7641, 7959 (if approved) S. Lemay
Intended status: Standards Track Zebra Technologies
Expires: May 3, 2018 H. Tschofenig
 ARM Ltd.
 K. Hartke
 Universitaet Bremen TZI
 B. Silverajan
 Tampere University of Technology
 B. Raymor, Ed.
 Microsoft
 October 30, 2017

 CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets
 draft-ietf-core-coap-tcp-tls-10

Abstract

 The Constrained Application Protocol (CoAP), although inspired by
 HTTP, was designed to use UDP instead of TCP. The message layer of
 the CoAP over UDP protocol includes support for reliable delivery,
 simple congestion control, and flow control.

 Some environments benefit from the availability of CoAP carried over
 reliable transports such as TCP or TLS. This document outlines the
 changes required to use CoAP over TCP, TLS, and WebSockets
 transports. It also formally updates RFC 7641 for use with these
 transports and RFC 7959 to enable the use of larger messages over a
 reliable transport.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Bormann, et al. Expires May 3, 2018 [Page 1]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Terminology 6
 3. CoAP over TCP . 7
 3.1. Messaging Model . 7
 3.2. Message Format . 8
 3.3. Message Transmission 10
 3.4. Connection Health . 11
 4. CoAP over WebSockets . 11
 4.1. Opening Handshake . 13
 4.2. Message Format . 14
 4.3. Message Transmission 15
 4.4. Connection Health . 15
 5. Signaling . 15
 5.1. Signaling Codes . 16
 5.2. Signaling Option Numbers 16
 5.3. Capabilities and Settings Messages (CSM) 16
 5.4. Ping and Pong Messages 18
 5.5. Release Messages . 20
 5.6. Abort Messages . 21
 5.7. Signaling examples 22
 6. Block-wise Transfer and Reliable Transports 22
 6.1. Example: GET with BERT Blocks 24
 6.2. Example: PUT with BERT Blocks 24
 7. Observing Resources over Reliable Transports 25
 7.1. Notifications and Reordering 25
 7.2. Transmission and Acknowledgements 25
 7.3. Freshness . 25
 7.4. Cancellation . 26
 8. CoAP over Reliable Transport URIs 26
 8.1. coap+tcp URI scheme 27
 8.2. coaps+tcp URI scheme 27

Bormann, et al. Expires May 3, 2018 [Page 2]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 8.3. coap+ws URI scheme 28
 8.4. coaps+ws URI scheme 29
 8.5. Uri-Host and Uri-Port Options 30
 8.6. Decomposing URIs into Options 30
 8.7. Composing URIs from Options 31
 9. Securing CoAP . 32
 9.1. TLS binding for CoAP over TCP 32
 9.2. TLS usage for CoAP over WebSockets 33
 10. Security Considerations 33
 10.1. Signaling Messages 34
 11. IANA Considerations . 34
 11.1. Signaling Codes . 34
 11.2. CoAP Signaling Option Numbers Registry 34
 11.3. Service Name and Port Number Registration 36
 11.4. Secure Service Name and Port Number Registration 36
 11.5. URI Scheme Registration 37
 11.6. Well-Known URI Suffix Registration 39
 11.7. ALPN Protocol Identifier 39
 11.8. WebSocket Subprotocol Registration 40
 11.9. CoAP Option Numbers Registry 40
 12. References . 40
 12.1. Normative References 40
 12.2. Informative References 42
 Appendix A. CoAP over WebSocket Examples 44
 Appendix B. Change Log . 47
 B.1. Since draft-ietf-core-coap-tcp-tls-02 47
 B.2. Since draft-ietf-core-coap-tcp-tls-03 47
 B.3. Since draft-ietf-core-coap-tcp-tls-04 47
 B.4. Since draft-ietf-core-coap-tcp-tls-05 47
 B.5. Since draft-ietf-core-coap-tcp-tls-06 48
 B.6. Since draft-ietf-core-coap-tcp-tls-07 48
 Acknowledgements . 48
 Contributors . 48
 Authors’ Addresses . 49

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] was designed
 for Internet of Things (IoT) deployments, assuming that UDP [RFC0768]
 can be used unimpeded, as can the Datagram Transport Layer Security
 protocol (DTLS [RFC6347]) over UDP. The use of CoAP over UDP is
 focused on simplicity, has a low code footprint, and a small over-
 the-wire message size.

 The primary reason for introducing CoAP over TCP [RFC0793] and TLS
 [RFC5246] is that some networks do not forward UDP packets. Complete
 blocking of UDP happens in between about 2% and 4% of terrestrial
 access networks, according to [EK2016]. UDP impairment is especially

Bormann, et al. Expires May 3, 2018 [Page 3]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 concentrated in enterprise networks and networks in geographic
 regions with otherwise challenged connectivity. Some networks also
 rate-limit UDP traffic, as reported in [BK2015] and deployment
 investigations related to the standardization of QUIC revealed
 numbers around 0.3 % [SW2016].

 The introduction of CoAP over TCP also leads to some additional
 effects that may be desirable in a specific deployment:

 o Where NATs are present along the communication path, CoAP over TCP
 leads to different NAT traversal behavior than CoAP over UDP.
 NATs often calculate expiration timers based on the transport
 layer protocol being used by application protocols. Many NATs
 maintain TCP-based NAT bindings for longer periods based on the
 assumption that a transport layer protocol, such as TCP, offers
 additional information about the session lifecycle. UDP, on the
 other hand, does not provide such information to a NAT and
 timeouts tend to be much shorter [HomeGateway]. According to
 [HomeGateway] the mean for TCP and UDP NAT binding timeouts is 386
 minutes (TCP) and 160 seconds (UDP). Shorter timeout values
 require keepalive messages to be sent more frequently. Hence, the
 use of CoAP over TCP requires less frequent transmission of keep-
 alive messages.

 o TCP utilizes more sophisticated congestion and flow control
 mechanisms than the default mechanisms provided by CoAP over UDP,
 which is useful for the transfer of larger payloads. (Work is,
 however, ongoing to add advanced congestion control to CoAP over
 UDP as well, see [I-D.ietf-core-cocoa].)

 Note that the use of CoAP over UDP (and CoAP over DTLS over UDP) is
 still the recommended transport for use in constrained node networks,
 particularly when used in concert with blockwise transfer. CoAP over
 TCP is applicable for those cases where the networking infrastructure
 leaves no other choice. The use of CoAP over TCP leads to a larger
 code size, more roundtrips, increased RAM requirements and larger
 packet sizes. Developers implementing CoAP over TCP are encouraged
 to consult [I-D.gomez-lwig-tcp-constrained-node-networks] for
 guidance on low-footprint TCP implementations for IoT devices.

 Standards based on CoAP such as Lightweight Machine to Machine
 [LWM2M] currently use CoAP over UDP as a transport; adding support
 for CoAP over TCP enables them to address the issues above for
 specific deployments and to protect investments in existing CoAP
 implementations and deployments.

 Although HTTP/2 could also potentially address the need for
 enterprise firewall traversal, there would be additional costs and

Bormann, et al. Expires May 3, 2018 [Page 4]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 delays introduced by such a transition from CoAP to HTTP/2.
 Currently, there are also fewer HTTP/2 implementations available for
 constrained devices in comparison to CoAP. Since CoAP also support
 group communication using IP layer multicast and unreliable
 communication IoT devices would have to support HTTP/2 in addition to
 CoAP.

 Furthermore, CoAP may be integrated into a Web environment where the
 front-end uses CoAP over UDP from IoT devices to a cloud
 infrastructure and then CoAP over TCP between the back-end services.
 A TCP-to-UDP gateway can be used at the cloud boundary to communicate
 with the UDP-based IoT device.

 Finally, CoAP applications running inside a web browser may be
 without access to connectivity other than HTTP. In this case, the
 WebSocket protocol [RFC6455] may be used to transport CoAP requests
 and responses, as opposed to cross-proxying them via HTTP to an HTTP-
 to-CoAP cross-proxy. This preserves the functionality of CoAP
 without translation, in particular the Observe mechanism [RFC7641].

 To address the above-mentioned deployment requirements, this document
 defines how to transport CoAP over TCP, CoAP over TLS, and CoAP over
 WebSockets. For these cases, the reliability offered by the
 transport protocol subsumes the reliability functions of the message
 layer used for CoAP over UDP. (Note that both for a reliable
 transport and the CoAP over UDP message layer, the reliability
 offered is per transport hop: where proxies -- see Sections 5.7 and
 10 of [RFC7252] -- are involved, that layer’s reliability function
 does not extend end-to-end.) Figure 1 illustrates the layering:

 +--------------------------------+
 | Application |
 +--------------------------------+
 +--------------------------------+
 | Requests/Responses/Signaling | CoAP (RFC 7252) / This Document
 |--------------------------------|
 | Message Framing | This Document
 +--------------------------------+
 | Reliable Transport |
 +--------------------------------+

 Figure 1: Layering of CoAP over Reliable Transports

 This document specifies how to access resources using CoAP requests
 and responses over the TCP, TLS and WebSocket protocols. This allows
 connectivity-limited applications to obtain end-to-end CoAP
 connectivity either by communicating CoAP directly with a CoAP server
 accessible over a TCP, TLS or WebSocket connection or via a CoAP

Bormann, et al. Expires May 3, 2018 [Page 5]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 intermediary that proxies CoAP requests and responses between
 different transports, such as between WebSockets and UDP.

 Section 7 updates the "Observing Resources in the Constrained
 Application Protocol" [RFC7641] specification for use with CoAP over
 reliable transports. [RFC7641] is an extension to the CoAP protocol
 that enables CoAP clients to "observe" a resource on a CoAP server.
 (The CoAP client retrieves a representation of a resource and
 registers to be notified by the CoAP server when the representation
 is updated.)

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document assumes that readers are familiar with the terms and
 concepts that are used in [RFC6455], [RFC7252], [RFC7641], and
 [RFC7959].

 The term "reliable transport" is used only to refer to transport
 protocols, such as TCP, which provide reliable and ordered delivery
 of a byte-stream.

 Block-wise Extension for Reliable Transport (BERT):
 BERT extends [RFC7959] to enable the use of larger messages over a
 reliable transport.

 BERT Option:
 A Block1 or Block2 option that includes an SZX value of 7.

 BERT Block:
 The payload of a CoAP message that is affected by a BERT Option in
 descriptive usage (see Section 2.1 of [RFC7959]).

 Connection Initiator:
 The peer that opens a reliable byte stream connection, i.e., the
 TCP active opener, TLS client, or WebSocket client.

 Connection Acceptor:
 The peer that accepts the reliable byte stream connection opened
 by the other peer, i.e., the TCP passive opener, TLS server, or
 WebSocket server.

Bormann, et al. Expires May 3, 2018 [Page 6]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

3. CoAP over TCP

 The request/response interaction model of CoAP over TCP is the same
 as CoAP over UDP. The primary differences are in the message layer.
 The message layer of CoAP over UDP supports optional reliability by
 defining four types of messages: Confirmable, Non-confirmable,
 Acknowledgement, and Reset. In addition, messages include a Message
 ID to relate Acknowledgments to Confirmable messages and to detect
 duplicate messages.

 The management of the connections is left to the application, i.e.,
 the present specification does not describe how an application
 decides to open a connection or to re-open another one in the
 presence of failures (or what it would deem to be a failure, see also
 Section 5.4). In particular, the Connection Initiator need not be
 the client of the first request placed on the connection.

3.1. Messaging Model

 Conceptually, CoAP over TCP replaces most of the message layer of
 CoAP over UDP with a framing mechanism on top of the byte-stream
 provided by TCP/TLS, conveying the length information for each
 message that on datagram transports is provided by the UDP/DTLS
 datagram layer.

 TCP ensures reliable message transmission, so the message layer of
 CoAP over TCP is not required to support acknowledgements or to
 detect duplicate messages. As a result, both the Type and Message ID
 fields are no longer required and are removed from the CoAP over TCP
 message format.

 Figure 2 illustrates the difference between CoAP over UDP and CoAP
 over reliable transport. The removed Type and Message ID fields are
 indicated by dashes.

Bormann, et al. Expires May 3, 2018 [Page 7]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 CoAP Client CoAP Server CoAP Client CoAP Server
 | | | |
 | CON [0xbc90] | | (-------) [------] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x71) |
 +------------------->| +------------------->|
 | | | |
 | ACK [0xbc90] | | (-------) [------] |
 | 2.05 Content | | 2.05 Content |
 | (Token 0x71) | | (Token 0x71) |
 | "22.5 C" | | "22.5 C" |
 |<-------------------+ |<-------------------+
 | | | |

 CoAP over UDP CoAP over reliable
 transport

 Figure 2: Comparison between CoAP over unreliable and reliable
 transport

3.2. Message Format

 The CoAP message format defined in [RFC7252], as shown in Figure 3,
 relies on the datagram transport (UDP, or DTLS over UDP) for keeping
 the individual messages separate and for providing length
 information.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code | Message ID |
 +-+
 | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 3: RFC 7252 defined CoAP Message Format

 The CoAP over TCP message format is very similar to the format
 specified for CoAP over UDP. The differences are as follows:

 o Since the underlying TCP connection provides retransmissions and
 deduplication, there is no need for the reliability mechanisms
 provided by CoAP over UDP. The Type (T) and Message ID fields in
 the CoAP message header are elided.

Bormann, et al. Expires May 3, 2018 [Page 8]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 o The Version (Vers) field is elided as well. In contrast to the
 message format of CoAP over UDP, the message format for CoAP over
 TCP does not include a version number. CoAP is defined in
 [RFC7252] with a version number of 1. At this time, there is no
 known reason to support version numbers different from 1. If
 version negotiation needs to be addressed in the future, then
 Capabilities and Settings Messages (CSM see Section 5.3) have been
 specifically designed to enable such a potential feature.

 o In a stream oriented transport protocol such as TCP, a form of
 message delimitation is needed. For this purpose, CoAP over TCP
 introduces a length field with variable size. Figure 4 shows the
 adjusted CoAP message format with a modified structure for the
 fixed header (first 4 bytes of the CoAP over UDP header), which
 includes the length information of variable size.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Len | TKL | Extended Length (if any, as chosen by Len) ...
 +-+
 | Code | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 4: CoAP frame for reliable transports

 Length (Len): 4-bit unsigned integer. A value between 0 and 12
 inclusive indicates the length of the message in bytes starting
 with the first bit of the Options field. Three values are
 reserved for special constructs:

 13: An 8-bit unsigned integer (Extended Length) follows the
 initial byte and indicates the length of options/payload minus
 13.

 14: A 16-bit unsigned integer (Extended Length) in network byte
 order follows the initial byte and indicates the length of
 options/payload minus 269.

 15: A 32-bit unsigned integer (Extended Length) in network byte
 order follows the initial byte and indicates the length of
 options/payload minus 65805.

Bormann, et al. Expires May 3, 2018 [Page 9]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 The encoding of the Length field is modeled after the Option Length
 field of the CoAP Options (see Section 3.1 of [RFC7252]).

 For simplicity, a Payload Marker (0xFF) is shown in Figure 4; the
 Payload Marker indicates the start of the optional payload and is
 absent for zero-length payloads (see Section 3 of [RFC7252]). (If
 present, the Payload Marker is included in the message length, which
 counts from the start of the Options field to the end of the Payload
 field.)

 For example: A CoAP message just containing a 2.03 code with the
 token 7f and no options or payload is encoded as shown in Figure 5.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | 0x01 | 0x43 | 0x7f |
 +-+

 Len = 0 ------> 0x01
 TKL = 1 ___/
 Code = 2.03 --> 0x43
 Token = 0x7f

 Figure 5: CoAP message with no options or payload

 The semantics of the other CoAP header fields are left unchanged.

3.3. Message Transmission

 Once a connection is established, each endpoint MUST send a
 Capabilities and Settings message (CSM see Section 5.3) as their
 first message on the connection. This message establishes the
 initial settings and capabilities for the endpoint, such as maximum
 message size or support for block-wise transfers. The absence of
 options in the CSM indicates that base values are assumed.

 To avoid a deadlock, the Connection Initiator MUST NOT wait for the
 Connection Acceptor to send its initial CSM message before sending
 its own initial CSM message. Conversely, the Connection Acceptor MAY
 wait for the Connection Initiator to send its initial CSM message
 before sending its own initial CSM message.

 To avoid unnecessary latency, a Connection Initiator MAY send
 additional messages after its initial CSM without waiting to receive
 the Connection Acceptor’s CSM; however, it is important to note that
 the Connection Acceptor’s CSM might indicate capabilities that impact
 how the initiator is expected to communicate with the acceptor. For

Bormann, et al. Expires May 3, 2018 [Page 10]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 example, the acceptor CSM could indicate a Max-Message-Size option
 (see Section 5.3.1) that is smaller than the base value (1152) in
 order to limit both buffering requirements and head-of-line blocking.

 Endpoints MUST treat a missing or invalid CSM as a connection error
 and abort the connection (see Section 5.6).

 CoAP requests and responses are exchanged asynchronously over the
 TCP/TLS connection. A CoAP client can send multiple requests without
 waiting for a response and the CoAP server can return responses in
 any order. Responses MUST be returned over the same connection as
 the originating request. Concurrent requests are differentiated by
 their Token, which is scoped locally to the connection.

 The connection is bi-directional, so requests can be sent both by the
 entity that established the connection (Connection Initiator) and the
 remote host (Connection Acceptor). If one side does not implement a
 CoAP server, an error response MUST be returned for all CoAP requests
 from the other side. The simplest approach is to always return 5.01
 (Not Implemented). A more elaborate mock server could also return
 4.xx responses such as 4.04 (Not Found) or 4.02 (Bad Option) where
 appropriate.

 Retransmission and deduplication of messages is provided by the TCP
 protocol.

3.4. Connection Health

 Empty messages (Code 0.00) can always be sent and MUST be ignored by
 the recipient. This provides a basic keep-alive function that can
 refresh NAT bindings.

 If a CoAP client does not receive any response for some time after
 sending a CoAP request (or, similarly, when a client observes a
 resource and it does not receive any notification for some time), it
 can send a CoAP Ping Signaling message (see Section 5.4) to test the
 connection and verify that the CoAP server is responsive.

 When the underlying TCP connection is closed or reset, the signaling
 state and any observation state (see Section 7.4) associated with the
 reliable connection are removed. In flight messages may or may not
 be lost.

4. CoAP over WebSockets

 CoAP over WebSockets is intentionally similar to CoAP over TCP;
 therefore, this section only specifies the differences between the
 transports.

Bormann, et al. Expires May 3, 2018 [Page 11]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 CoAP over WebSockets can be used in a number of configurations. The
 most basic configuration is a CoAP client retrieving or updating a
 CoAP resource located on a CoAP server that exposes a WebSocket
 endpoint (see Figure 6). The CoAP client acts as the WebSocket
 client, establishes a WebSocket connection, and sends a CoAP request,
 to which the CoAP server returns a CoAP response. The WebSocket
 connection can be used for any number of requests.

 ___________ ___________
 | | | |
 | _|___ requests ___|_ |
 | CoAP / \ \ -------------> / / \ CoAP |
 | Client __/__/ <------------- ____/ Server |
 | | responses | |
 |___________| |___________|
 WebSocket =============> WebSocket
 Client Connection Server

 Figure 6: CoAP Client (WebSocket client) accesses CoAP Server
 (WebSocket server)

 The challenge with this configuration is how to identify a resource
 in the namespace of the CoAP server. When the WebSocket protocol is
 used by a dedicated client directly (i.e., not from a web page
 through a web browser), the client can connect to any WebSocket
 endpoint. Section 8.3 and Section 8.4 define new URI schemes that
 enable the client to identify both a WebSocket endpoint and the path
 and query of the CoAP resource within that endpoint.

 Another possible configuration is to set up a CoAP forward proxy at
 the WebSocket endpoint. Depending on what transports are available
 to the proxy, it could forward the request to a CoAP server with a
 CoAP UDP endpoint (Figure 7), an SMS endpoint (a.k.a. mobile phone),
 or even another WebSocket endpoint. The CoAP client specifies the
 resource to be updated or retrieved in the Proxy-Uri Option.

 ___________ ___________ ___________
 | | | | | |
 | _|___ ___|_ _|___ ___|_ |
 | CoAP / \ \ ---> / / \ CoAP / \ \ ---> / / \ CoAP |
 | Client __/__/ <--- ____/ Proxy __/__/ <--- ____/ Server |
 | | | | | |
 |___________| |___________| |___________|
 WebSocket ===> WebSocket UDP UDP
 Client Server Client Server

 Figure 7: CoAP Client (WebSocket client) accesses CoAP Server (UDP
 server) via a CoAP proxy (WebSocket server/UDP client)

Bormann, et al. Expires May 3, 2018 [Page 12]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 A third possible configuration is a CoAP server running inside a web
 browser (Figure 8). The web browser initially connects to a
 WebSocket endpoint and is then reachable through the WebSocket
 server. When no connection exists, the CoAP server is unreachable.
 Because the WebSocket server is the only way to reach the CoAP
 server, the CoAP proxy should be a reverse-proxy.

 ___________ ___________ ___________
 | | | | | |
 | _|___ ___|_ _|___ ___|_ |
 | CoAP / \ \ ---> / / \ CoAP / / \ ---> / \ \ CoAP |
 | Client __/__/ <--- ____/ Proxy ____/ <--- __/__/ Server |
 | | | | | |
 |___________| |___________| |___________|
 UDP UDP WebSocket <=== WebSocket
 Client Server Server Client

 Figure 8: CoAP Client (UDP client) accesses CoAP Server (WebSocket
 client) via a CoAP proxy (UDP server/WebSocket server)

 Further configurations are possible, including those where a
 WebSocket connection is established through an HTTP proxy.

4.1. Opening Handshake

 Before CoAP requests and responses are exchanged, a WebSocket
 connection is established as defined in Section 4 of [RFC6455].
 Figure 9 shows an example.

 The WebSocket client MUST include the subprotocol name "coap" in the
 list of protocols, which indicates support for the protocol defined
 in this document.

 The WebSocket client includes the hostname of the WebSocket server in
 the Host header field of its handshake as per [RFC6455]. The Host
 header field also indicates the default value of the Uri-Host Option
 in requests from the WebSocket client to the WebSocket server.

Bormann, et al. Expires May 3, 2018 [Page 13]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 GET /.well-known/coap HTTP/1.1
 Host: example.org
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Protocol: coap
 Sec-WebSocket-Version: 13

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: coap

 Figure 9: Example of an Opening Handshake

4.2. Message Format

 Once a WebSocket connection is established, CoAP requests and
 responses can be exchanged as WebSocket messages. Since CoAP uses a
 binary message format, the messages are transmitted in binary data
 frames as specified in Sections 5 and 6 of [RFC6455].

 The message format shown in Figure 10 is the same as the CoAP over
 TCP message format (see Section 3.2) with one change. The Length
 (Len) field MUST be set to zero because the WebSockets frame contains
 the length.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Len=0 | TKL | Code | Token (TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 10: CoAP Message Format over WebSockets

 As with CoAP over TCP, the message format for CoAP over WebSockets
 eliminates the Version field defined in CoAP over UDP. If CoAP
 version negotiation is required in the future, CoAP over WebSockets
 can address the requirement by the definition of a new subprotocol
 identifier that is negotiated during the opening handshake.

 Requests and response messages can be fragmented as specified in
 Section 5.4 of [RFC6455], though typically they are sent unfragmented

Bormann, et al. Expires May 3, 2018 [Page 14]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 as they tend to be small and fully buffered before transmission. The
 WebSocket protocol does not provide means for multiplexing. If it is
 not desirable for a large message to monopolize the connection,
 requests and responses can be transferred in a block-wise fashion as
 defined in [RFC7959].

4.3. Message Transmission

 As with CoAP over TCP, each endpoint MUST send a Capabilities and
 Settings message (CSM see Section 5.3) as their first message on the
 WebSocket connection.

 CoAP requests and responses are exchanged asynchronously over the
 WebSocket connection. A CoAP client can send multiple requests
 without waiting for a response and the CoAP server can return
 responses in any order. Responses MUST be returned over the same
 connection as the originating request. Concurrent requests are
 differentiated by their Token, which is scoped locally to the
 connection.

 The connection is bi-directional, so requests can be sent both by the
 entity that established the connection and the remote host.

 As with CoAP over TCP, retransmission and deduplication of messages
 is provided by the WebSocket protocol. CoAP over WebSockets
 therefore does not make a distinction between Confirmable or Non-
 Confirmable messages, and does not provide Acknowledgement or Reset
 messages.

4.4. Connection Health

 As with CoAP over TCP, a CoAP client can test the health of the CoAP
 over WebSocket connection by sending a CoAP Ping Signaling message
 (Section 5.4). WebSocket Ping and unsolicited Pong frames
 (Section 5.5 of [RFC6455]) SHOULD NOT be used to ensure that
 redundant maintenance traffic is not transmitted.

5. Signaling

 Signaling messages are specifically introduced only for CoAP over
 reliable transports to allow peers to:

 o Learn related characteristics, such as maximum message size for
 the connection

 o Shut down the connection in an orderly fashion

Bormann, et al. Expires May 3, 2018 [Page 15]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 o Provide diagnostic information when terminating a connection in
 response to a serious error condition

 Signaling is a third basic kind of message in CoAP, after requests
 and responses. Signaling messages share a common structure with the
 existing CoAP messages. There is a code, a token, options, and an
 optional payload.

 (See Section 3 of [RFC7252] for the overall structure of the message
 format, option format, and option value format.)

5.1. Signaling Codes

 A code in the 7.00-7.31 range indicates a Signaling message. Values
 in this range are assigned by the "CoAP Signaling Codes" sub-registry
 (see Section 11.1).

 For each message, there is a sender and a peer receiving the message.

 Payloads in Signaling messages are diagnostic payloads as defined in
 Section 5.5.2 of [RFC7252]), unless otherwise defined by a Signaling
 message option.

5.2. Signaling Option Numbers

 Option numbers for Signaling messages are specific to the message
 code. They do not share the number space with CoAP options for
 request/response messages or with Signaling messages using other
 codes.

 Option numbers are assigned by the "CoAP Signaling Option Numbers"
 sub-registry (see Section 11.2).

 Signaling options are elective or critical as defined in
 Section 5.4.1 of [RFC7252]. If a Signaling option is critical and
 not understood by the receiver, it MUST abort the connection (see
 Section 5.6). If the option is understood but cannot be processed,
 the option documents the behavior.

5.3. Capabilities and Settings Messages (CSM)

 Capabilities and Settings messages (CSM) are used for two purposes:

 o Each capability option indicates one capability of the sender to
 the recipient.

 o Each setting option indicates a setting that will be applied by
 the sender.

Bormann, et al. Expires May 3, 2018 [Page 16]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 One CSM MUST be sent by each endpoint at the start of the connection.
 Further CSM MAY be sent at any other time by either endpoint over the
 lifetime of the connection.

 Both capability and setting options are cumulative. A CSM does not
 invalidate a previously sent capability indication or setting even if
 it is not repeated. A capability message without any option is a no-
 operation (and can be used as such). An option that is sent might
 override a previous value for the same option. The option defines
 how to handle this case if needed.

 Base values are listed below for CSM Options. These are the values
 for the capability and setting before any Capabilities and Settings
 messages send a modified value.

 These are not default values for the option, as defined in
 Section 5.4.4 in [RFC7252]. Default values apply on a per-message
 basis and thus reset when the value is not present in a given
 Capabilities and Settings message.

 Capabilities and Settings messages are indicated by the 7.01 code
 (CSM).

5.3.1. Max-Message-Size Capability Option

 The sender can use the elective Max-Message-Size Option to indicate
 the maximum size of a message in bytes that it can receive. The
 message size indicated includes the entire message, starting from the
 first byte of the message header and ending at the end of the message
 payload (there is no relationship of the message size to the overall
 request or response body size that may be achievable in block-wise
 transfer.)

 +---+---+---+---------+------------------+--------+--------+--------+
 | # | C | R | Applies | Name | Format | Length | Base |
 | | | | to | | | | Value |
 +---+---+---+---------+------------------+--------+--------+--------+
 | 2 | | | CSM | Max-Message-Size | uint | 0-4 | 1152 |
 +---+---+---+---------+------------------+--------+--------+--------+

 C=Critical, R=Repeatable

 As per Section 4.6 of [RFC7252], the base value (and the value used
 when this option is not implemented) is 1152.

 The active value of the Max-Message-Size Option is replaced each time
 the option is sent with a modified value. Its starting value is its
 base value.

Bormann, et al. Expires May 3, 2018 [Page 17]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

5.3.2. Block-wise Transfer Capability Option

 +---+---+---+---------+-----------------+--------+--------+---------+
 | # | C | R | Applies | Name | Format | Length | Base |
 | | | | to | | | | Value |
 +---+---+---+---------+-----------------+--------+--------+---------+
 | 4 | | | CSM | Block-wise | empty | 0 | (none) |
 | | | | | Transfer | | | |
 +---+---+---+---------+-----------------+--------+--------+---------+

 C=Critical, R=Repeatable

 A sender can use the elective Block-wise Transfer Option to indicate
 that it supports the block-wise transfer protocol [RFC7959].

 If the option is not given, the peer has no information about whether
 block-wise transfers are supported by the sender or not. An
 implementation wishing to offer block-wise transfers to its peer
 therefore needs to indicate the Block-wise Transfer Option.

 If a Max-Message-Size Option is indicated with a value that is
 greater than 1152 (in the same or a different CSM message), the
 Block-wise Transfer Option also indicates support for BERT (see
 Section 6). Subsequently, if the Max-Message-Size Option is
 indicated with a value equal to or less than 1152, BERT support is no
 longer indicated. (Note that indication of BERT support obliges
 neither peer to actually choose to make use of BERT.)

 Implementation note: When indicating a value of the Max-Message-Size
 option with an intention to enable BERT, the indicating
 implementation may want to choose a BERT size message it wants to
 encourage and add a delta for the header and any options that also
 need to be included in the message. Section 4.6 of [RFC7252] adds
 128 bytes to a maximum block size of 1024 to arrive at a default
 message size of 1152. A BERT-enabled implementation may want to
 indicate a BERT block size of 2048 or a higher multiple of 1024, and
 at the same time be more generous for the size of header and options
 added (say, 256 or 512). Adding 1024 or more however to the base
 BERT block size may encourage the peer implementation to vary the
 BERT block size based on the size of the options included, which can
 be harder to establish interoperability for.

5.4. Ping and Pong Messages

 In CoAP over reliable transports, Empty messages (Code 0.00) can
 always be sent and MUST be ignored by the recipient. This provides a
 basic keep-alive function. In contrast, Ping and Pong messages are a
 bidirectional exchange.

Bormann, et al. Expires May 3, 2018 [Page 18]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Upon receipt of a Ping message, the receiver MUST return a Pong
 message with an identical token in response. Unless the Ping carries
 an option with delaying semantics such as the Custody Option, it
 SHOULD respond as soon as practical. As with all Signaling messages,
 the recipient of a Ping or Pong message MUST ignore elective options
 it does not understand.

 Ping and Pong messages are indicated by the 7.02 code (Ping) and the
 7.03 code (Pong).

 Note that, as with similar mechanisms defined in [RFC6455] and
 [RFC7540], the present specification does not define any specific
 maximum time that the sender of a Ping message has to allow waiting
 for a Pong reply. Any limitations on the patience for this reply are
 a matter of the application making use of these messages, as is any
 approach to recover from a failure to respond in time.

5.4.1. Custody Option

 +---+---+---+----------+----------------+--------+--------+---------+
 | # | C | R | Applies | Name | Format | Length | Base |
 | | | | to | | | | Value |
 +---+---+---+----------+----------------+--------+--------+---------+
 | 2 | | | Ping, | Custody | empty | 0 | (none) |
 | | | | Pong | | | | |
 +---+---+---+----------+----------------+--------+--------+---------+

 C=Critical, R=Repeatable

 When responding to a Ping message, the receiver can include an
 elective Custody Option in the Pong message. This option indicates
 that the application has processed all the request/response messages
 received prior to the Ping message on the current connection. (Note
 that there is no definition of specific application semantics for
 "processed", but there is an expectation that the receiver of a Pong
 Message with a Custody Option should be able to free buffers based on
 this indication.)

 A sender can also include an elective Custody Option in a Ping
 message to explicitly request the inclusion of an elective Custody
 Option in the corresponding Pong message. In that case, the receiver
 SHOULD delay its Pong message until it finishes processing all the
 request/response messages received prior to the Ping message on the
 current connection.

Bormann, et al. Expires May 3, 2018 [Page 19]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

5.5. Release Messages

 A Release message indicates that the sender does not want to continue
 maintaining the connection and opts for an orderly shutdown. The
 details are in the options. A diagnostic payload (see Section 5.5.2
 of [RFC7252]) MAY be included. A peer will normally respond to a
 Release message by closing the TCP/TLS connection. Messages may be
 in flight or responses outstanding when the sender decides to send a
 Release message. The peer responding to the Release message SHOULD
 delay the closing of the connection until it has responded to all
 requests received by it before the Release message. It also MAY wait
 for the responses to its own requests.

 Release messages are indicated by the 7.04 code (Release).

 Release messages can indicate one or more reasons using elective
 options. The following options are defined:

 +---+---+---+---------+------------------+--------+--------+--------+
 | # | C | R | Applies | Name | Format | Length | Base |
 | | | | to | | | | Value |
 +---+---+---+---------+------------------+--------+--------+--------+
 | 2 | | x | Release | Alternative- | string | 1-255 | (none) |
 | | | | | Address | | | |
 +---+---+---+---------+------------------+--------+--------+--------+

 C=Critical, R=Repeatable

 The elective Alternative-Address Option requests the peer to instead
 open a connection of the same scheme as the present connection to the
 alternative transport address given. Its value is in the form
 "authority" as defined in Section 3.2 of [RFC3986]. (Existing state
 related to the connection is not transferred from the present
 connection to the new connection.)

 The Alternative-Address Option is a repeatable option as defined in
 Section 5.4.5 of [RFC7252]. When multiple occurrences of the option
 are included, the peer can choose any of the alternative transport
 addresses.

 +---+---+---+---------+-----------------+--------+--------+---------+
 | # | C | R | Applies | Name | Format | Length | Base |
 | | | | to | | | | Value |
 +---+---+---+---------+-----------------+--------+--------+---------+
 | 4 | | | Release | Hold-Off | uint | 0-3 | (none) |
 +---+---+---+---------+-----------------+--------+--------+---------+

 C=Critical, R=Repeatable

Bormann, et al. Expires May 3, 2018 [Page 20]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 The elective Hold-Off Option indicates that the server is requesting
 that the peer not reconnect to it for the number of seconds given in
 the value.

5.6. Abort Messages

 An Abort message indicates that the sender is unable to continue
 maintaining the connection and cannot even wait for an orderly
 release. The sender shuts down the connection immediately after the
 abort (and may or may not wait for a Release or Abort message or
 connection shutdown in the inverse direction). A diagnostic payload
 (see Section 5.5.2 of [RFC7252]) SHOULD be included in the Abort
 message. Messages may be in flight or responses outstanding when the
 sender decides to send an Abort message. The general expectation is
 that these will NOT be processed.

 Abort messages are indicated by the 7.05 code (Abort).

 Abort messages can indicate one or more reasons using elective
 options. The following option is defined:

 +---+---+---+---------+-----------------+--------+--------+---------+
 | # | C | R | Applies | Name | Format | Length | Base |
 | | | | to | | | | Value |
 +---+---+---+---------+-----------------+--------+--------+---------+
 | 2 | | | Abort | Bad-CSM-Option | uint | 0-2 | (none) |
 +---+---+---+---------+-----------------+--------+--------+---------+

 C=Critical, R=Repeatable

 The elective Bad-CSM-Option Option indicates that the sender is
 unable to process the CSM option identified by its option number,
 e.g. when it is critical and the option number is unknown by the
 sender, or when there is parameter problem with the value of an
 elective option. More detailed information SHOULD be included as a
 diagnostic payload.

 For CoAP over UDP, messages which contain syntax violations are
 processed as message format errors. As described in Sections 4.2 and
 4.3 of [RFC7252], such messages are rejected by sending a matching
 Reset message and otherwise ignoring the message.

 For CoAP over reliable transports, the recipient rejects such
 messages by sending an Abort message and otherwise ignoring (not
 processing) the message. No specific option has been defined for the
 Abort message in this case, as the details are best left to a
 diagnostic payload.

Bormann, et al. Expires May 3, 2018 [Page 21]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

5.7. Signaling examples

 An encoded example of a Ping message with a non-empty token is shown
 in Figure 11.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | 0x01 | 0xe2 | 0x42 |
 +-+

 Len = 0 -------> 0x01
 TKL = 1 ___/
 Code = 7.02 Ping --> 0xe2
 Token = 0x42

 Figure 11: Ping Message Example

 An encoded example of the corresponding Pong message is shown in
 Figure 12.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | 0x01 | 0xe3 | 0x42 |
 +-+

 Len = 0 -------> 0x01
 TKL = 1 ___/
 Code = 7.03 Pong --> 0xe3
 Token = 0x42

 Figure 12: Pong Message Example

6. Block-wise Transfer and Reliable Transports

 The message size restrictions defined in Section 4.6 of CoAP
 [RFC7252] to avoid IP fragmentation are not necessary when CoAP is
 used over a reliable transport. While this suggests that the Block-
 wise transfer protocol [RFC7959] is also no longer needed, it remains
 applicable for a number of cases:

 o large messages, such as firmware downloads, may cause undesired
 head-of-line blocking when a single TCP connection is used

 o a UDP-to-TCP gateway may simply not have the context to convert a
 message with a Block Option into the equivalent exchange without

Bormann, et al. Expires May 3, 2018 [Page 22]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 any use of a Block Option (it would need to convert the entire
 blockwise exchange from start to end into a single exchange)

 The ’Block-wise Extension for Reliable Transport (BERT)’ extends the
 Block protocol to enable the use of larger messages over a reliable
 transport.

 The use of this new extension is signaled by sending Block1 or Block2
 Options with SZX == 7 (a "BERT option"). SZX == 7 is a reserved
 value in [RFC7959].

 In control usage, a BERT option is interpreted in the same way as the
 equivalent Option with SZX == 6, except that it also indicates the
 capability to process BERT blocks. As with the basic Block protocol,
 the recipient of a CoAP request with a BERT option in control usage
 is allowed to respond with a different SZX value, e.g. to send a non-
 BERT block instead.

 In descriptive usage, a BERT Option is interpreted in the same way as
 the equivalent Option with SZX == 6, except that the payload is also
 allowed to contain multiple blocks. For non-final BERT blocks, the
 payload is always a multiple of 1024 bytes. For final BERT blocks,
 the payload is a multiple (possibly 0) of 1024 bytes plus a partial
 block of less than 1024 bytes.

 The recipient of a non-final BERT block (M=1) conceptually partitions
 the payload into a sequence of 1024-byte blocks and acts exactly as
 if it had received this sequence in conjunction with block numbers
 starting at, and sequentially increasing from, the block number given
 in the Block Option. In other words, the entire BERT block is
 positioned at the byte position that results from multiplying the
 block number with 1024. The position of further blocks to be
 transferred is indicated by incrementing the block number by the
 number of elements in this sequence (i.e., the size of the payload
 divided by 1024 bytes).

 As with SZX == 6, the recipient of a final BERT block (M=0) simply
 appends the payload at the byte position that is indicated by the
 block number multiplied with 1024.

 The following examples illustrate BERT options. A value of SZX == 7
 is labeled as "BERT" or as "BERT(nnn)" to indicate a payload of size
 nnn.

 In all these examples, a Block Option is decomposed to indicate the
 kind of Block Option (1 or 2) followed by a colon, the block number
 (NUM), more bit (M), and block size (2**(SZX+4)) separated by
 slashes. E.g., a Block2 Option value of 33 would be shown as

Bormann, et al. Expires May 3, 2018 [Page 23]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 2:2/0/32), or a Block1 Option value of 59 would be shown as
 1:3/1/128.

6.1. Example: GET with BERT Blocks

 Figure 13 shows a GET request with a response that is split into
 three BERT blocks. The first response contains 3072 bytes of
 payload; the second, 5120; and the third, 4711. Note how the block
 number increments to move the position inside the response body
 forward.

 CoAP Client CoAP Server
 | |
 | GET, /status ------> |
 | |
 | <------ 2.05 Content, 2:0/1/BERT(3072) |
 | |
 | GET, /status, 2:3/0/BERT ------> |
 | |
 | <------ 2.05 Content, 2:3/1/BERT(5120) |
 | |
 | GET, /status, 2:8/0/BERT ------> |
 | |
 | <------ 2.05 Content, 2:8/0/BERT(4711) |

 Figure 13: GET with BERT blocks

6.2. Example: PUT with BERT Blocks

 Figure 14 demonstrates a PUT exchange with BERT blocks.

 CoAP Client CoAP Server
 | |
 | PUT, /options, 1:0/1/BERT(8192) ------> |
 | |
 | <------ 2.31 Continue, 1:0/1/BERT |
 | |
 | PUT, /options, 1:8/1/BERT(16384) ------> |
 | |
 | <------ 2.31 Continue, 1:8/1/BERT |
 | |
 | PUT, /options, 1:24/0/BERT(5683) ------> |
 | |
 | <------ 2.04 Changed, 1:24/0/BERT |
 | |

 Figure 14: PUT with BERT blocks

Bormann, et al. Expires May 3, 2018 [Page 24]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

7. Observing Resources over Reliable Transports

 This section describes how the procedures defined in [RFC7641] for
 observing resources over CoAP are applied (and modified, as needed)
 for reliable transports. In this section, "client" and "server"
 refer to the CoAP client and CoAP server.

7.1. Notifications and Reordering

 When using the Observe Option with CoAP over UDP, notifications from
 the server set the option value to an increasing sequence number for
 reordering detection on the client since messages can arrive in a
 different order than they were sent. This sequence number is not
 required for CoAP over reliable transports since the TCP protocol
 ensures reliable and ordered delivery of messages. The value of the
 Observe Option in 2.xx notifications MAY be empty on transmission and
 MUST be ignored on reception.

 Implementation note: This means that a proxy from a reordering
 transport to a reliable (in-order) transport (such as a UDP-to-TCP
 proxy) needs to process the Observe Option in notifications according
 to the rules in Section 3.4 of [RFC7641].

7.2. Transmission and Acknowledgements

 For CoAP over UDP, server notifications to the client can be
 confirmable or non-confirmable. A confirmable message requires the
 client to either respond with an acknowledgement message or a reset
 message. An acknowledgement message indicates that the client is
 alive and wishes to receive further notifications. A reset message
 indicates that the client does not recognize the token which causes
 the server to remove the associated entry from the list of observers.

 Since TCP eliminates the need for the message layer to support
 reliability, CoAP over reliable transports does not support
 confirmable or non-confirmable message types. All notifications are
 delivered reliably to the client with positive acknowledgement of
 receipt occurring at the TCP level. If the client does not recognize
 the token in a notification, it MAY immediately abort the connection
 (see Section 5.6).

7.3. Freshness

 For CoAP over UDP, if a client does not receive a notification for
 some time, it MAY send a new GET request with the same token as the
 original request to re-register its interest in a resource and verify
 that the server is still responsive. For CoAP over reliable
 transports, it is more efficient to check the health of the

Bormann, et al. Expires May 3, 2018 [Page 25]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 connection (and all its active observations) by sending a single CoAP
 Ping Signaling message (Section 5.4) rather than individual requests
 to confirm each active observation. (Note that such a Ping/Pong only
 confirms a single hop: there is no obligation, and no expectation, of
 a proxy to react to a Ping by checking all its onward observations or
 all the connections, if any, underlying them. A proxy MAY maintain
 its own schedule for confirming the onward observations it relies on;
 it is however generally inadvisable for a proxy to generate a large
 number of outgoing checks based on a single incoming check.)

7.4. Cancellation

 For CoAP over UDP, a client that is no longer interested in receiving
 notifications can "forget" the observation and respond to the next
 notification from the server with a reset message to cancel the
 observation.

 For CoAP over reliable transports, a client MUST explicitly
 deregister by issuing a GET request that has the Token field set to
 the token of the observation to be cancelled and includes an Observe
 Option with the value set to 1 (deregister).

 If the client observes one or more resources over a reliable
 transport, then the CoAP server (or intermediary in the role of the
 CoAP server) MUST remove all entries associated with the client
 endpoint from the lists of observers when the connection is either
 closed or times out.

8. CoAP over Reliable Transport URIs

 CoAP over UDP [RFC7252] defines the "coap" and "coaps" URI schemes.
 This document introduces four additional URI schemes for identifying
 CoAP resources and providing a means of locating the resource:

 o the "coap+tcp" URI scheme for CoAP over TCP

 o the "coaps+tcp" URI scheme for CoAP over TCP secured by TLS

 o the "coap+ws" URI scheme for CoAP over WebSockets

 o the "coaps+ws" URI scheme for CoAP over WebSockets secured by TLS

 Resources made available via these schemes have no shared identity
 even if their resource identifiers indicate the same authority (the
 same host listening to the same TCP port). They are hosted in
 distinct namespaces because each URI scheme implies a distinct origin
 server.

Bormann, et al. Expires May 3, 2018 [Page 26]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 The syntax for the URI schemes in this section are specified using
 Augmented Backus-Naur Form (ABNF) [RFC5234]. The definitions of
 "host", "port", "path-abempty", and "query" are adopted from
 [RFC3986].

 Section 8 (Multicast CoAP) in [RFC7252] is not applicable to these
 schemes.

 As with the "coap" and "coaps" schemes defined in [RFC7252], all URI
 schemes defined in this section also support the path prefix "/.well-
 known/" defined by [RFC5785] for "well-known locations" in the
 namespace of a host. This enables discovery as per Section 7 of
 [RFC7252].

8.1. coap+tcp URI scheme

 The "coap+tcp" URI scheme identifies CoAP resources that are intended
 to be accessible using CoAP over TCP.

 coap-tcp-URI = "coap+tcp:" "//" host [":" port]
 path-abempty ["?" query]

 The syntax defined in Section 6.1 of [RFC7252] applies to this URI
 scheme with the following changes:

 o The port subcomponent indicates the TCP port at which the CoAP
 Connection Acceptor is located. (If it is empty or not given,
 then the default port 5683 is assumed, as with UDP.)

 Encoding considerations: The scheme encoding conforms to the
 encoding rules established for URIs in [RFC3986].

 Interoperability considerations: None.

 Security considerations: See Section 11.1 of [RFC7252].

8.2. coaps+tcp URI scheme

 The "coaps+tcp" URI scheme identifies CoAP resources that are
 intended to be accessible using CoAP over TCP secured with TLS.

 coaps-tcp-URI = "coaps+tcp:" "//" host [":" port]
 path-abempty ["?" query]

 The syntax defined in Section 6.2 of [RFC7252] applies to this URI
 scheme, with the following changes:

Bormann, et al. Expires May 3, 2018 [Page 27]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 o The port subcomponent indicates the TCP port at which the TLS
 server for the CoAP Connection Acceptor is located. If it is
 empty or not given, then the default port 5684 is assumed.

 o If a TLS server does not support the Application-Layer Protocol
 Negotiation Extension (ALPN) [RFC7301] or wishes to accommodate
 TLS clients that do not support ALPN, it MAY offer a coaps+tcp
 endpoint on TCP port 5684. This endpoint MAY also be ALPN
 enabled. A TLS server MAY offer coaps+tcp endpoints on ports
 other than TCP port 5684, which MUST be ALPN enabled.

 o For TCP ports other than port 5684, the TLS client MUST use the
 ALPN extension to advertise the "coap" protocol identifier (see
 Section 11.7) in the list of protocols in its ClientHello. If the
 TCP server selects and returns the "coap" protocol identifier
 using the ALPN extension in its ServerHello, then the connection
 succeeds. If the TLS server either does not negotiate the ALPN
 extension or returns a no_application_protocol alert, the TLS
 client MUST close the connection.

 o For TCP port 5684, a TLS client MAY use the ALPN extension to
 advertise the "coap" protocol identifier in the list of protocols
 in its ClientHello. If the TLS server selects and returns the
 "coap" protocol identifier using the ALPN extension in its
 ServerHello, then the connection succeeds. If the TLS server
 returns a no_application_protocol alert, then the TLS client MUST
 close the connection. If the TLS server does not negotiate the
 ALPN extension, then coaps+tcp is implicitly selected.

 o For TCP port 5684, if the TLS client does not use the ALPN
 extension to negotiate the protocol, then coaps+tcp is implicitly
 selected.

 Encoding considerations: The scheme encoding conforms to the
 encoding rules established for URIs in [RFC3986].

 Interoperability considerations: None.

 Security considerations: See Section 11.1 of [RFC7252].

8.3. coap+ws URI scheme

 The "coap+ws" URI scheme identifies CoAP resources that are intended
 to be accessible using CoAP over WebSockets.

 coap-ws-URI = "coap+ws:" "//" host [":" port]
 path-abempty ["?" query]

Bormann, et al. Expires May 3, 2018 [Page 28]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 The port subcomponent is OPTIONAL. The default is port 80.

 The WebSocket endpoint is identified by a "ws" URI that is composed
 of the authority part of the "coap+ws" URI and the well-known path
 "/.well-known/coap" [RFC5785] [I-D.bormann-hybi-ws-wk]. The path and
 query parts of a "coap+ws" URI identify a resource within the
 specified endpoint which can be operated on by the methods defined by
 CoAP:

 coap+ws://example.org/sensors/temperature?u=Cel
 ______ ______/___________ ___________/
 \/ \/
 Uri-Path: "sensors"
 ws://example.org/.well-known/coap Uri-Path: "temperature"
 Uri-Query: "u=Cel"

 Figure 15: The "coap+ws" URI Scheme

 Encoding considerations: The scheme encoding conforms to the
 encoding rules established for URIs in [RFC3986].

 Interoperability considerations: None.

 Security considerations: See Section 11.1 of [RFC7252].

8.4. coaps+ws URI scheme

 The "coaps+ws" URI scheme identifies CoAP resources that are intended
 to be accessible using CoAP over WebSockets secured by TLS.

 coaps-ws-URI = "coaps+ws:" "//" host [":" port]
 path-abempty ["?" query]

 The port subcomponent is OPTIONAL. The default is port 443.

 The WebSocket endpoint is identified by a "wss" URI that is composed
 of the authority part of the "coaps+ws" URI and the well-known path
 "/.well-known/coap" [RFC5785] [I-D.bormann-hybi-ws-wk]. The path and
 query parts of a "coaps+ws" URI identify a resource within the
 specified endpoint which can be operated on by the methods defined by
 CoAP.

Bormann, et al. Expires May 3, 2018 [Page 29]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 coaps+ws://example.org/sensors/temperature?u=Cel
 ______ ______/___________ ___________/
 \/ \/
 Uri-Path: "sensors"
 wss://example.org/.well-known/coap Uri-Path: "temperature"
 Uri-Query: "u=Cel"

 Figure 16: The "coaps+ws" URI Scheme

 Encoding considerations: The scheme encoding conforms to the
 encoding rules established for URIs in [RFC3986].

 Interoperability considerations: None.

 Security considerations: See Section 11.1 of [RFC7252].

8.5. Uri-Host and Uri-Port Options

 CoAP over reliable transports maintains the property from
 Section 5.10.1 of [RFC7252]:

 The default values for the Uri-Host and Uri-Port Options are
 sufficient for requests to most servers.

 Unless otherwise noted, the default value of the Uri-Host Option is
 the IP literal representing the destination IP address of the request
 message. The default value of the Uri-Port Option is the destination
 TCP port.

 For CoAP over TLS, these default values are the same unless Server
 Name Indication (SNI) [RFC6066] is negotiated. In this case, the
 default value of the Uri-Host Option in requests from the TLS client
 to the TLS server is the SNI host.

 For CoAP over WebSockets, the default value of the Uri-Host Option in
 requests from the WebSocket client to the WebSocket server is
 indicated by the Host header field from the WebSocket handshake.

8.6. Decomposing URIs into Options

 The steps are the same as specified in Section 6.4 of [RFC7252] with
 minor changes.

 This step from [RFC7252]:

 3. If |url| does not have a <scheme> component whose value, when
 converted to ASCII lowercase, is "coap" or "coaps", then fail
 this algorithm.

Bormann, et al. Expires May 3, 2018 [Page 30]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 is updated to:

 3. If |url| does not have a <scheme> component whose value, when
 converted to ASCII lowercase, is "coap+tcp", "coaps+tcp",
 "coap+ws", or "coaps+ws", then fail this algorithm.

 This step from [RFC7252]:

 7. If |port| does not equal the request’s destination UDP port,
 include a Uri-Port Option and let that option’s value be |port|.

 is updated to:

 7. If |port| does not equal the request’s destination TCP port,
 include a Uri-Port Option and let that option’s value be |port|.

8.7. Composing URIs from Options

 The steps are the same as specified in Section 6.5 of [RFC7252] with
 minor changes.

 This step from [RFC7252]:

 1. If the request is secured using DTLS, let |url| be the string
 "coaps://". Otherwise, let |url| be the string "coap://".

 is updated to:

 1. For CoAP over TCP, if the request is secured using TLS, let |url|
 be the string "coaps+tcp://". Otherwise, let |url| be the string
 "coap+tcp://". For CoAP over WebSockets, if the request is
 secured using TLS, let |url| be the string "coaps+ws://".
 Otherwise, let |url| be the string "coap+ws://".

 This step from [RFC7252]:

 4. If the request includes a Uri-Port Option, let |port| be that
 option’s value. Otherwise, let |port| be the request’s
 destination UDP port.

 is updated to:

 4. If the request includes a Uri-Port Option, let |port| be that
 option’s value. Otherwise, let |port| be the request’s
 destination TCP port.

Bormann, et al. Expires May 3, 2018 [Page 31]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

9. Securing CoAP

 Security Challenges for the Internet of Things [SecurityChallenges]
 recommends:

 ... it is essential that IoT protocol suites specify a mandatory
 to implement but optional to use security solution. This will
 ensure security is available in all implementations, but
 configurable to use when not necessary (e.g., in closed
 environment). ... even if those features stretch the capabilities
 of such devices.

 A security solution MUST be implemented to protect CoAP over reliable
 transports and MUST be enabled by default. This document defines the
 TLS binding, but alternative solutions at different layers in the
 protocol stack MAY be used to protect CoAP over reliable transports
 when appropriate. Note that there is ongoing work to support a data
 object-based security model for CoAP that is independent of transport
 (see [I-D.ietf-core-object-security]).

9.1. TLS binding for CoAP over TCP

 The TLS usage guidance in [RFC7925] applies, including the guidance
 about cipher suites in that document that are derived from the
 mandatory-to-implement (MTI) cipher suites defined in [RFC7252].

 This guidance assumes implementation in a constrained device or for
 communication with a constrained device. CoAP over TCP/TLS has,
 however, a wider applicability. It may, for example, be implemented
 on a gateway or on a device that is less constrained (such as a smart
 phone or a tablet), for communication with a peer that is likewise
 less constrained, or within a backend environment that only
 communicates with constrained devices via proxies. As an exception
 to the previous paragraph, in this case, the recommendations in
 [RFC7525] are more appropriate.

 Since the guidance offered in [RFC7925] and [RFC7525] differs in
 terms of algorithms and credential types, it is assumed that a CoAP
 over TCP/TLS implementation that needs to support both cases
 implements the recommendations offered by both specifications.

 During the provisioning phase, a CoAP device is provided with the
 security information that it needs, including keying materials,
 access control lists, and authorization servers. At the end of the
 provisioning phase, the device will be in one of four security modes:

 NoSec: TLS is disabled.

Bormann, et al. Expires May 3, 2018 [Page 32]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 PreSharedKey: TLS is enabled. The guidance in Section 4.2 of
 [RFC7925] applies.

 RawPublicKey: TLS is enabled. The guidance in Section 4.3 of
 [RFC7925] applies.

 Certificate: TLS is enabled. The guidance in Section 4.4 of
 [RFC7925] applies.

 The "NoSec" mode is optional-to-implement. The system simply sends
 the packets over normal TCP which is indicated by the "coap+tcp"
 scheme and the TCP CoAP default port. The system is secured only by
 keeping attackers from being able to send or receive packets from the
 network with the CoAP nodes.

 "PreSharedKey", "RawPublicKey", or "Certificate" is mandatory-to-
 implement for the TLS binding depending on the credential type used
 with the device. These security modes are achieved using TLS and are
 indicated by the "coaps+tcp" scheme and TLS-secured CoAP default
 port.

9.2. TLS usage for CoAP over WebSockets

 A CoAP client requesting a resource identified by a "coaps+ws" URI
 negotiates a secure WebSocket connection to a WebSocket server
 endpoint with a "wss" URI. This is described in Section 8.4.

 The client MUST perform a TLS handshake after opening the connection
 to the server. The guidance in Section 4.1 of [RFC6455] applies.
 When a CoAP server exposes resources identified by a "coaps+ws" URI,
 the guidance in Section 4.4 of [RFC7925] applies towards mandatory-
 to-implement TLS functionality for certificates. For the server-side
 requirements in accepting incoming connections over a HTTPS (HTTP-
 over-TLS) port, the guidance in Section 4.2 of [RFC6455] applies.

 Note that this formally inherits the mandatory-to-implement cipher
 suites defined in [RFC5246]. However, usually modern browsers
 implement more recent cipher suites that then are automatically
 picked up via the JavaScript WebSocket API. WebSocket Servers that
 provide Secure CoAP over WebSockets for the browser use case will
 need to follow the browser preferences and MUST follow [RFC7525].

10. Security Considerations

 The security considerations of [RFC7252] apply. For CoAP over
 WebSockets and CoAP over TLS-secured WebSockets, the security
 considerations of [RFC6455] also apply.

Bormann, et al. Expires May 3, 2018 [Page 33]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

10.1. Signaling Messages

 The guidance given by an Alternative-Address Option cannot be
 followed blindly. In particular, a peer MUST NOT assume that a
 successful connection to the Alternative-Address inherits all the
 security properties of the current connection.

11. IANA Considerations

11.1. Signaling Codes

 IANA is requested to create a third sub-registry for values of the
 Code field in the CoAP header (Section 12.1 of [RFC7252]). The name
 of this sub-registry is "CoAP Signaling Codes".

 Each entry in the sub-registry must include the Signaling Code in the
 range 7.00-7.31, its name, and a reference to its documentation.

 Initial entries in this sub-registry are as follows:

 +------+---------+-----------+
 | Code | Name | Reference |
 +------+---------+-----------+
 | 7.01 | CSM | [RFCthis] |
 | | | |
 | 7.02 | Ping | [RFCthis] |
 | | | |
 | 7.03 | Pong | [RFCthis] |
 | | | |
 | 7.04 | Release | [RFCthis] |
 | | | |
 | 7.05 | Abort | [RFCthis] |
 +------+---------+-----------+

 Table 1: CoAP Signal Codes

 All other Signaling Codes are Unassigned.

 The IANA policy for future additions to this sub-registry is "IETF
 Review or IESG Approval" as described in [RFC8126].

11.2. CoAP Signaling Option Numbers Registry

 IANA is requested to create a sub-registry for Options Numbers used
 in CoAP signaling options within the "CoRE Parameters" registry. The
 name of this sub-registry is "CoAP Signaling Option Numbers".

Bormann, et al. Expires May 3, 2018 [Page 34]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Each entry in the sub-registry must include one or more of the codes
 in the Signaling Codes subregistry (Section 11.1), the option number,
 the name of the option, and a reference to the option’s
 documentation.

 Initial entries in this sub-registry are as follows:

 +------------+--------+---------------------+-----------+
 | Applies to | Number | Name | Reference |
 +------------+--------+---------------------+-----------+
 | 7.01 | 2 | Max-Message-Size | [RFCthis] |
 | | | | |
 | 7.01 | 4 | Block-wise-Transfer | [RFCthis] |
 | | | | |
 | 7.02, 7.03 | 2 | Custody | [RFCthis] |
 | | | | |
 | 7.04 | 2 | Alternative-Address | [RFCthis] |
 | | | | |
 | 7.04 | 4 | Hold-Off | [RFCthis] |
 | | | | |
 | 7.05 | 2 | Bad-CSM-Option | [RFCthis] |
 +------------+--------+---------------------+-----------+

 Table 2: CoAP Signal Option Codes

 The IANA policy for future additions to this sub-registry is based on
 number ranges for the option numbers, analogous to the policy defined
 in Section 12.2 of [RFC7252]. (The policy is analogous rather than
 identical because the structure of the subregistry includes an
 additional column; however, the value of this column has no influence
 on the policy.)

 The documentation for a Signaling Option Number should specify the
 semantics of an option with that number, including the following
 properties:

 o Whether the option is critical or elective, as determined by the
 Option Number.

 o Whether the option is repeatable.

 o The format and length of the option’s value.

 o The base value for the option, if any.

Bormann, et al. Expires May 3, 2018 [Page 35]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

11.3. Service Name and Port Number Registration

 IANA is requested to assign the port number 5683 and the service name
 "coap+tcp", in accordance with [RFC6335].

 Service Name.
 coap+tcp

 Transport Protocol.
 tcp

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.
 Constrained Application Protocol (CoAP)

 Reference.
 [RFCthis]

 Port Number.
 5683

11.4. Secure Service Name and Port Number Registration

 IANA is requested to assign the port number 5684 and the service name
 "coaps+tcp", in accordance with [RFC6335]. The port number is
 requested to address the exceptional case of TLS implementations that
 do not support the "Application-Layer Protocol Negotiation Extension"
 [RFC7301].

 Service Name.
 coaps+tcp

 Transport Protocol.
 tcp

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.
 Constrained Application Protocol (CoAP)

Bormann, et al. Expires May 3, 2018 [Page 36]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Reference.
 [RFC7301], [RFCthis]

 Port Number.
 5684

11.5. URI Scheme Registration

 URI schemes are registered within the "Uniform Resource Identifier
 (URI) Schemes" registry maintained at [IANA.uri-schemes].

11.5.1. coap+tcp

 IANA is requested to register the Uniform Resource Identifier (URI)
 scheme "coap+tcp". This registration request complies with
 [RFC7595].

 Scheme name:
 coap+tcp

 Status:
 Permanent

 Applications/protocols that use this scheme name:
 The scheme is used by CoAP endpoints to access CoAP resources
 using TCP.

 Contact:
 IETF chair <chair@ietf.org>

 Change controller:
 IESG <iesg@ietf.org>

 Reference:
 Section 8.1 in [RFCthis]

11.5.2. coaps+tcp

 IANA is requested to register the Uniform Resource Identifier (URI)
 scheme "coaps+tcp". This registration request complies with
 [RFC7595].

 Scheme name:
 coaps+tcp

 Status:
 Permanent

Bormann, et al. Expires May 3, 2018 [Page 37]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Applications/protocols that use this scheme name:
 The scheme is used by CoAP endpoints to access CoAP resources
 using TLS.

 Contact:
 IETF chair <chair@ietf.org>

 Change controller:
 IESG <iesg@ietf.org>

 Reference:
 Section 8.2 in [RFCthis]

11.5.3. coap+ws

 IANA is requested to register the Uniform Resource Identifier (URI)
 scheme "coap+ws". This registration request complies with [RFC7595].

 Scheme name:
 coap+ws

 Status:
 Permanent

 Applications/protocols that use this scheme name:
 The scheme is used by CoAP endpoints to access CoAP resources
 using the WebSocket protocol.

 Contact:
 IETF chair <chair@ietf.org>

 Change controller:
 IESG <iesg@ietf.org>

 Reference:
 Section 8.3 in [RFCthis]

11.5.4. coaps+ws

 IANA is requested to register the Uniform Resource Identifier (URI)
 scheme "coaps+ws". This registration request complies with
 [RFC7595].

 Scheme name:
 coaps+ws

 Status:
 Permanent

Bormann, et al. Expires May 3, 2018 [Page 38]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Applications/protocols that use this scheme name:
 The scheme is used by CoAP endpoints to access CoAP resources
 using the WebSocket protocol secured with TLS.

 Contact:
 IETF chair <chair@ietf.org>

 Change controller:
 IESG <iesg@ietf.org>

 References:
 Section 8.4 in [RFCthis]

11.6. Well-Known URI Suffix Registration

 IANA is requested to register the ’coap’ well-known URI in the "Well-
 Known URIs" registry. This registration request complies with
 [RFC5785]:

 URI Suffix.
 coap

 Change controller.
 IETF

 Specification document(s).
 [RFCthis]

 Related information.
 None.

11.7. ALPN Protocol Identifier

 IANA is requested to assign the following value in the registry
 "Application Layer Protocol Negotiation (ALPN) Protocol IDs" created
 by [RFC7301]. The "coap" string identifies CoAP when used over TLS.

 Protocol.
 CoAP

 Identification Sequence.
 0x63 0x6f 0x61 0x70 ("coap")

 Reference.
 [RFCthis]

Bormann, et al. Expires May 3, 2018 [Page 39]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

11.8. WebSocket Subprotocol Registration

 IANA is requested to register the WebSocket CoAP subprotocol under
 the "WebSocket Subprotocol Name Registry":

 Subprotocol Identifier.
 coap

 Subprotocol Common Name.
 Constrained Application Protocol (CoAP)

 Subprotocol Definition.
 [RFCthis]

11.9. CoAP Option Numbers Registry

 IANA is requested to add [RFCthis] to the references for the
 following entries registered by [RFC7959] in the "CoAP Option
 Numbers" sub-registry defined by [RFC7252]:

 +--------+--------+---------------------+
 | Number | Name | Reference |
 +--------+--------+---------------------+
 | 23 | Block2 | RFC 7959, [RFCthis] |
 | | | |
 | 27 | Block1 | RFC 7959, [RFCthis] |
 +--------+--------+---------------------+

 Table 3: CoAP Option Numbers

12. References

12.1. Normative References

 [I-D.bormann-hybi-ws-wk]
 Bormann, C., "Well-known URIs for the WebSocket Protocol",
 draft-bormann-hybi-ws-wk-00 (work in progress), May 2017.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Bormann, et al. Expires May 3, 2018 [Page 40]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

Bormann, et al. Expires May 3, 2018 [Page 41]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,
 RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <https://www.rfc-editor.org/info/rfc7595>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

12.2. Informative References

 [BK2015] Byrne, C. and J. Kleberg, "Advisory Guidelines for UDP
 Deployment", Proceedings draft-byrne-opsec-udp-advisory-00
 (expired), 2015.

 [EK2016] Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and
 B. Donnet, "Using UDP for Internet Transport Evolution",
 Proceedings arXiv preprint 1612.07816, 2016.

 [HomeGateway]
 Eggert, L., "An experimental study of home gateway
 characteristics", Proceedings of the 10th annual
 conference on Internet measurement , 2010.

 [I-D.gomez-lwig-tcp-constrained-node-networks]
 Gomez, C., Crowcroft, J., and M. Scharf, "TCP over
 Constrained-Node Networks", draft-gomez-lwig-tcp-
 constrained-node-networks-03 (work in progress), June
 2017.

Bormann, et al. Expires May 3, 2018 [Page 42]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 [I-D.ietf-core-cocoa]
 Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
 "CoAP Simple Congestion Control/Advanced", draft-ietf-
 core-cocoa-01 (work in progress), March 2017.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-06 (work in
 progress), October 2017.

 [IANA.uri-schemes]
 IANA, "Uniform Resource Identifier (URI) Schemes",
 <http://www.iana.org/assignments/uri-schemes>.

 [LWM2M] Open Mobile Alliance, "Lightweight Machine to Machine
 Technical Specification Version 1.0", February 2017,
 <http://www.openmobilealliance.org/release/LightweightM2M/
 V1_0-20170208-A/
 OMA-TS-LightweightM2M-V1_0-20170208-A.pdf>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [SecurityChallenges]
 Polk, T. and S. Turner, "Security Challenges for the
 Internet of Things", Interconnecting Smart Objects with
 the Internet / IAB Workshop , February 2011,
 <http://www.iab.org/wp-content/IAB-uploads/2011/03/
 Turner.pdf>.

Bormann, et al. Expires May 3, 2018 [Page 43]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 [SW2016] Swett, I., "QUIC Deployment Experience @Google",
 Proceedings
 https://www.ietf.org/proceedings/96/slides/slides-96-quic-
 3.pdf, 2016.

Appendix A. CoAP over WebSocket Examples

 This section gives examples for the first two configurations
 discussed in Section 4.

 An example of the process followed by a CoAP client to retrieve the
 representation of a resource identified by a "coap+ws" URI might be
 as follows. Figure 17 below illustrates the WebSocket and CoAP
 messages exchanged in detail.

 1. The CoAP client obtains the URI <coap+ws://example.org/sensors/
 temperature?u=Cel>, for example, from a resource representation
 that it retrieved previously.

 2. It establishes a WebSocket connection to the endpoint URI
 composed of the authority "example.org" and the well-known path
 "/.well-known/coap", <ws://example.org/.well-known/coap>.

 3. It sends a single-frame, masked, binary message containing a CoAP
 request. The request indicates the target resource with the Uri-
 Path ("sensors", "temperature") and Uri-Query ("u=Cel") options.

 4. It waits for the server to return a response.

 5. The CoAP client uses the connection for further requests, or the
 connection is closed.

Bormann, et al. Expires May 3, 2018 [Page 44]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 CoAP CoAP
 Client Server
 (WebSocket (WebSocket
 Client) Server)

 | |
 | |
 +=========>| GET /.well-known/coap HTTP/1.1
 | | Host: example.org
 | | Upgrade: websocket
 | | Connection: Upgrade
 | | Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 | | Sec-WebSocket-Protocol: coap
 | | Sec-WebSocket-Version: 13
 | |
 |<=========+ HTTP/1.1 101 Switching Protocols
 | | Upgrade: websocket
 | | Connection: Upgrade
 | | Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 | | Sec-WebSocket-Protocol: coap
 | |
 | |
 +--------->| Binary frame (opcode=%x2, FIN=1, MASK=1)
 | | +-------------------------+
 | | | GET |
 | | | Token: 0x53 |
 | | | Uri-Path: "sensors" |
 | | | Uri-Path: "temperature" |
 | | | Uri-Query: "u=Cel" |
 | | +-------------------------+
 | |
 |<---------+ Binary frame (opcode=%x2, FIN=1, MASK=0)
 | | +-------------------------+
 | | | 2.05 Content |
 | | | Token: 0x53 |
 | | | Payload: "22.3 Cel" |
 | | +-------------------------+
 : :
 : :
 | |
 +--------->| Close frame (opcode=%x8, FIN=1, MASK=1)
 | |
 |<---------+ Close frame (opcode=%x8, FIN=1, MASK=0)
 | |

 Figure 17: A CoAP client retrieves the representation of a resource
 identified by a "coap+ws" URI

Bormann, et al. Expires May 3, 2018 [Page 45]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Figure 18 shows how a CoAP client uses a CoAP forward proxy with a
 WebSocket endpoint to retrieve the representation of the resource
 "coap://[2001:db8::1]/". The use of the forward proxy and the
 address of the WebSocket endpoint are determined by the client from
 local configuration rules. The request URI is specified in the
 Proxy-Uri Option. Since the request URI uses the "coap" URI scheme,
 the proxy fulfills the request by issuing a Confirmable GET request
 over UDP to the CoAP server and returning the response over the
 WebSocket connection to the client.

 CoAP CoAP CoAP
 Client Proxy Server
 (WebSocket (WebSocket (UDP
 Client) Server) Endpoint)

 | | |
 +--------->| | Binary frame (opcode=%x2, FIN=1, MASK=1)
 | | | +------------------------------------+
 | | | | GET |
 | | | | Token: 0x7d |
 | | | | Proxy-Uri: "coap://[2001:db8::1]/" |
 | | | +------------------------------------+
 | | |
 | +--------->| CoAP message (Ver=1, T=Con, MID=0x8f54)
 | | | +------------------------------------+
 | | | | GET |
 | | | | Token: 0x0a15 |
 | | | +------------------------------------+
 | | |
 | |<---------+ CoAP message (Ver=1, T=Ack, MID=0x8f54)
 | | | +------------------------------------+
 | | | | 2.05 Content |
 | | | | Token: 0x0a15 |
 | | | | Payload: "ready" |
 | | | +------------------------------------+
 | | |
 |<---------+ | Binary frame (opcode=%x2, FIN=1, MASK=0)
 | | | +------------------------------------+
 | | | | 2.05 Content |
 | | | | Token: 0x7d |
 | | | | Payload: "ready" |
 | | | +------------------------------------+
 | | |

 Figure 18: A CoAP client retrieves the representation of a resource
 identified by a "coap" URI via a WebSocket-enabled CoAP proxy

Bormann, et al. Expires May 3, 2018 [Page 46]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

Appendix B. Change Log

 The RFC Editor is requested to remove this section at publication.

B.1. Since draft-ietf-core-coap-tcp-tls-02

 Merged draft-savolainen-core-coap-websockets-07 Merged draft-bormann-
 core-block-bert-01 Merged draft-bormann-core-coap-sig-02

B.2. Since draft-ietf-core-coap-tcp-tls-03

 Editorial updates

 Added mandatory exchange of Capabilities and Settings messages after
 connecting

 Added support for coaps+tcp port 5684 and more details on
 Application-Layer Protocol Negotiation (ALPN)

 Added guidance on CoAP Signaling Ping-Pong versus WebSocket Ping-Pong

 Updated references and requirements for TLS security considerations

B.3. Since draft-ietf-core-coap-tcp-tls-04

 Updated references

 Added Appendix: Updates to RFC7641 Observing Resources in the
 Constrained Application Protocol (CoAP)

 Updated Capability and Settings Message (CSM) exchange in the Opening
 Handshake to allow initiator to send messages before receiving
 acceptor CSM

B.4. Since draft-ietf-core-coap-tcp-tls-05

 Addressed feedback from Working Group Last Call

 Added Securing CoAP section and informative reference to OSCOAP

 Removed the Server-Name and Bad-Server-Name Options

 Clarified the Capability and Settings Message (CSM) exchange

 Updated Pong response requirements

 Added Connection Initiator and Connection Acceptor terminology where
 appropriate

Bormann, et al. Expires May 3, 2018 [Page 47]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Updated LWM2M 1.0 informative reference

B.5. Since draft-ietf-core-coap-tcp-tls-06

 Addressed feedback from second Working Group Last Call

B.6. Since draft-ietf-core-coap-tcp-tls-07

 Addressed feedback from IETF Last Call

 Addressed feedback from ARTART review

 Addressed feedback from GENART review

 Addressed feedback from TSVART review

 Added fragment identifiers to URI schemes

 Added "Updates RFC7959" for BERT

 Added "Updates RFC6455" to extend well-known URI mechanism to ws and
 wss

 Clarified well-known URI mechanism use for all URI schemes

 Changed NoSec to optional-to-implement

Acknowledgements

 We would like to thank Stephen Berard, Geoffrey Cristallo, Olivier
 Delaby, Esko Dijk, Christian Groves, Nadir Javed, Michael Koster,
 Matthias Kovatsch, Achim Kraus, David Navarro, Szymon Sasin, Goran
 Selander, Zach Shelby, Andrew Summers, Julien Vermillard, and Gengyu
 Wei for their feedback.

 Last-call reviews from Yoshifumi Nishida, Mark Nottingham, and Meral
 Shirazipour as well as several IESG reviewers provided extensive
 comments; from the IESG, we would like to specifically call out Ben
 Campbell, Mirja Kuehlewind, Eric Rescorla, Adam Roach, and the
 responsible AD Alexey Melnikov.

Contributors

Bormann, et al. Expires May 3, 2018 [Page 48]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Matthias Kovatsch
 Siemens AG
 Otto-Hahn-Ring 6
 Munich D-81739

 Phone: +49-173-5288856
 EMail: matthias.kovatsch@siemens.com

 Teemu Savolainen
 Nokia Technologies
 Hatanpaan valtatie 30
 Tampere FI-33100
 Finland

 Email: teemu.savolainen@nokia.com

 Valik Solorzano Barboza
 Zebra Technologies
 820 W. Jackson Blvd. Suite 700
 Chicago 60607
 United States of America

 Phone: +1-847-634-6700
 Email: vsolorzanobarboza@zebra.com

Authors’ Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Simon Lemay
 Zebra Technologies
 820 W. Jackson Blvd. Suite 700
 Chicago 60607
 United States of America

 Phone: +1-847-634-6700
 Email: slemay@zebra.com

Bormann, et al. Expires May 3, 2018 [Page 49]

Internet-Draft TCP/TLS/WebSockets Transports for CoAP October 2017

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

 Bilhanan Silverajan
 Tampere University of Technology
 Korkeakoulunkatu 10
 Tampere FI-33720
 Finland

 Email: bilhanan.silverajan@tut.fi

 Brian Raymor (editor)
 Microsoft
 One Microsoft Way
 Redmond 98052
 United States of America

 Email: brian.raymor@microsoft.com

Bormann, et al. Expires May 3, 2018 [Page 50]

