
CoRE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: April 28, 2018 Ericsson AB
 L. Seitz
 SICS Swedish ICT
 October 25, 2017

 Object Security for Constrained RESTful Environments (OSCORE)
 draft-ietf-core-object-security-06

Abstract

 This document defines Object Security for Constrained RESTful
 Environments (OSCORE), a method for application-layer protection of
 the Constrained Application Protocol (CoAP), using CBOR Object
 Signing and Encryption (COSE). OSCORE provides end-to-end
 encryption, integrity and replay protection, as well as a secure
 message binding. OSCORE is designed for constrained nodes and
 networks and can be used over any layer and across intermediaries,
 and also with HTTP. OSCORE may be used to protect group
 communications as is specified in a separate draft.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 28, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Selander, et al. Expires April 28, 2018 [Page 1]

Internet-Draft OSCORE October 2017

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 5
 2. The CoAP Object-Security Option 5
 3. The Security Context . 6
 3.1. Security Context Definition 6
 3.2. Establishment of Security Context Parameters 9
 3.3. Requirements on the Security Context Parameters 11
 4. Protected Message Fields 11
 4.1. CoAP Payload . 12
 4.2. CoAP Options . 12
 4.3. CoAP Header . 18
 5. The COSE Object . 19
 5.1. Nonce . 20
 5.2. Plaintext . 20
 5.3. Additional Authenticated Data 21
 6. Sequence Numbers, Replay, Message Binding, and Freshness . . 22
 6.1. Message Binding . 22
 6.2. AEAD Nonce Uniqueness 22
 6.3. Freshness . 22
 6.4. Replay Protection . 23
 6.5. Losing Part of the Context State 23
 7. Processing . 25
 7.1. Protecting the Request 25
 7.2. Verifying the Request 25
 7.3. Protecting the Response 27
 7.4. Verifying the Response 27
 8. OSCORE Compression . 29
 8.1. Encoding of the Object-Security Value 29
 8.2. Encoding of the OSCORE Payload 30
 8.3. Context Hint . 30
 8.4. Examples of Compressed COSE Objects 30
 9. Web Linking . 32
 10. Proxy Operations . 33
 10.1. CoAP-to-CoAP Forwarding Proxy 33
 10.2. HTTP-to-CoAP Translation Proxy 33
 10.3. CoAP-to-HTTP Translation Proxy 35
 11. Security Considerations 36
 12. Privacy Considerations 37

Selander, et al. Expires April 28, 2018 [Page 2]

Internet-Draft OSCORE October 2017

 13. IANA Considerations . 38
 13.1. CoAP Option Numbers Registry 38
 13.2. Header Field Registrations 38
 14. Acknowledgments . 38
 15. References . 39
 15.1. Normative References 39
 15.2. Informative References 40
 Appendix A. Test Vectors . 41
 Appendix B. Examples . 41
 B.1. Secure Access to Sensor 42
 B.2. Secure Subscribe to Sensor 43
 Authors’ Addresses . 44

1. Introduction

 The Constrained Application Protocol (CoAP) is a web application
 protocol, designed for constrained nodes and networks [RFC7228].
 CoAP specifies the use of proxies for scalability and efficiency, and
 a mapping to HTTP is also specified [RFC8075]. CoAP [RFC7252]
 references DTLS [RFC6347] for security. CoAP and HTTP proxies
 require (D)TLS to be terminated at the proxy. The proxy therefore
 not only has access to the data required for performing the intended
 proxy functionality, but is also able to eavesdrop on, or manipulate
 any part of the message payload and metadata, in transit between the
 endpoints. The proxy can also inject, delete, or reorder packets
 since they are no longer protected by (D)TLS.

 This document defines the Object Security for Constrained RESTful
 Environments (OSCORE) security protocol, protecting CoAP and CoAP-
 mappable HTTP requests and responses end-to-end across intermediary
 nodes such as CoAP forward proxies and cross-protocol translators
 including HTTP-to-CoAP proxies [RFC8075]. In addition to the core
 CoAP features defined in [RFC7252], OSCORE supports Observe [RFC7641]
 and Blockwise [RFC7959]. An analysis of end-to-end security for CoAP
 messages through some types of intermediary nodes is performed in
 [I-D.hartke-core-e2e-security-reqs]. OSCORE protects the Request/
 Response layer only, and not the CoAP Messaging Layer (Section 2 of
 [RFC7252]). Therefore, all the CoAP messages mentioned in this
 document refer to non-Empty CON, NON, and ACK messages [RFC7252].
 Additionally, since the message formats for CoAP over unreliable
 transport [RFC7252] and for CoAP over reliable transport
 [I-D.ietf-core-coap-tcp-tls] differ only in terms of Messaging Layer,
 OSCORE can be applied to both unreliable and reliable transports.

 OSCORE is designed for constrained nodes and networks and provides an
 in-layer security protocol that does not depend on underlying layers.
 OSCORE can be used anywhere where CoAP or HTTP can be used, including
 non-IP transports (e.g., [I-D.bormann-6lo-coap-802-15-ie]). An

Selander, et al. Expires April 28, 2018 [Page 3]

Internet-Draft OSCORE October 2017

 extension of OSCORE may also be used to protect group communication
 for CoAP [I-D.tiloca-core-multicast-oscoap]. The use of OSCORE does
 not affect the URI scheme and OSCORE can therefore be used with any
 URI scheme defined for CoAP or HTTP. The application decides the
 conditions for which OSCORE is required.

 OSCORE builds on CBOR Object Signing and Encryption (COSE) [RFC8152],
 providing end-to-end encryption, integrity, replay protection, and
 secure message binding. A compressed version of COSE is used, as
 discussed in Section 8. The use of OSCORE is signaled with the
 Object-Security CoAP option or HTTP header, defined in Section 2 and
 Section 10.2. OSCORE is designed to protect as much information as
 possible, while still allowing proxy operations (Section 10). OSCORE
 provides protection of message payload, almost all CoAP options, and
 the RESTful method. The solution transforms a message into an
 "OSCORE message" before sending, and vice versa after receiving. The
 OSCORE message is related to the original message in the following
 way: the original message is translated to CoAP (if not already in
 CoAP) and the resulting message payload (if present), options not
 processed by a proxy, and the request/response method (CoAP Code) are
 protected in a COSE object. The message fields of the original
 message that are encrypted are transported in the payload of the
 OSCORE message, and the Object-Security option is included, see
 Figure 1.

 Client Server
 | OSCORE request - POST example.com: |
 | Header, Token, |
 | Options: {Object-Security, ...}, |
 | Payload: COSE ciphertext |
 +--->|
 | |
 |<---+
 | OSCORE response - 2.04 (Changed): |
 | Header, Token, |
 | Options: {Object-Security, ...}, |
 | Payload: COSE ciphertext |
 | |

 Figure 1: Sketch of CoAP with OSCORE

 OSCORE may be used in very constrained settings, thanks to its small
 message size and the restricted code and memory requirements in
 addition to what is required by CoAP. OSCORE can be combined with
 transport layer security such as DTLS or TLS, thereby enabling end-
 to-end security of e.g. CoAP Payload, Options and Code, in
 combination with hop-by-hop protection of the Messaging Layer, during

Selander, et al. Expires April 28, 2018 [Page 4]

Internet-Draft OSCORE October 2017

 transport between end-point and intermediary node. Examples of the
 use of OSCORE are given in Appendix B.

 An implementation supporting this specification MAY only implement
 the client part, MAY only implement the server part, or MAY only
 implement one of the proxy parts. OSCORE is designed to work with
 legacy CoAP-to-CoAP forward proxies [RFC7252], but an OSCORE-aware
 proxy will be more efficient. HTTP-to-CoAP proxies [RFC8075] and
 CoAP-to-HTTP proxies need to implement respective parts of this
 specification to work with OSCORE (see Section 10).

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

 Readers are expected to be familiar with the terms and concepts
 described in CoAP [RFC7252], Observe [RFC7641], Blockwise [RFC7959],
 COSE [RFC8152], CBOR [RFC7049], CDDL
 [I-D.greevenbosch-appsawg-cbor-cddl], and constrained environments
 [RFC7228].

 The terms Common/Sender/Recipient Context, Master Secret/Salt, Sender
 ID/Key, Recipient ID/Key, and Common IV are defined in Section 3.1.

2. The CoAP Object-Security Option

 The CoAP Object-Security option (see Figure 2) indicates that the
 CoAP message is an OSCORE message and that it contains a compressed
 COSE object (see Section 5 and Section 8). The Object-Security
 option is critical, safe to forward, part of the cache key, and not
 repeatable.

 +-----+---+---+---+---+-----------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+---+---+---+---+-----------------+--------+--------+---------+
 | TBD | x | | | | Object-Security | (*) | 0-255 | (none) |
 +-----+---+---+---+---+-----------------+--------+--------+---------+
 C = Critical, U = Unsafe, N = NoCacheKey, R = Repeatable
 (*) See below.

 Figure 2: The Object-Security Option

 The Object-Security option contains the OSCORE flag byte (Section 8),
 the Sender Sequence Number and the Sender ID when present

Selander, et al. Expires April 28, 2018 [Page 5]

Internet-Draft OSCORE October 2017

 (Section 3). The detailed format is specified in Section 8). If the
 OSCORE flag byte is all zero (0x00) the Option value SHALL be empty
 (Option Length = 0). An endpoint receiving a CoAP message without
 payload, that also contains an Object-Security option SHALL treat it
 as malformed and reject it.

 A successful response to a request with the Object-Security option
 SHALL contain the Object-Security option. Whether error responses
 contain the Object-Security option depends on the error type (see
 Section 7).

 Since the payload and most options are encrypted Section 4, and the
 corresponding plain text message fields of the original are not
 included in the OSCORE message, the processing of these fields does
 not expand the total message size.

 A CoAP proxy SHOULD NOT cache a response to a request with an Object-
 Security option, since the response is only applicable to the
 original client’s request, see Section 10.1. As the compressed COSE
 Object is included in the cache key, messages with the Object-
 Security option will never generate cache hits. For Max-Age
 processing, see Section 4.2.3.1.

3. The Security Context

 OSCORE requires that client and server establish a shared security
 context used to process the COSE objects. OSCORE uses COSE with an
 Authenticated Encryption with Additional Data (AEAD) algorithm for
 protecting message data between a client and a server. In this
 section, we define the security context and how it is derived in
 client and server based on a common shared master secret and a key
 derivation function (KDF).

3.1. Security Context Definition

 The security context is the set of information elements necessary to
 carry out the cryptographic operations in OSCORE. For each endpoint,
 the security context is composed of a "Common Context", a "Sender
 Context", and a "Recipient Context".

 The endpoints protect messages to send using the Sender Context and
 verify messages received using the Recipient Context, both contexts
 being derived from the Common Context and other data. Clients and
 Servers need to be able to retrieve the correct security context to
 use.

 An endpoint uses its Sender ID (SID) to derive its Sender Context,
 and the other endpoint uses the same ID, now called Recipient ID

Selander, et al. Expires April 28, 2018 [Page 6]

Internet-Draft OSCORE October 2017

 (RID), to derive its Recipient Context. In communication between two
 endpoints, the Sender Context of one endpoint matches the Recipient
 Context of the other endpoint, and vice versa. Thus, the two
 security contexts identified by the same IDs in the two endpoints are
 not the same, but they are partly mirrored. Retrieval and use of the
 security context are shown in Figure 3.

 .-------------. .-------------.
 | Common, | | Common, |
 | Sender, | | Recipient, |
 | Recipient | | Sender |
 ’-------------’ ’-------------’
 Client Server
 | |
 Retrieve context for | OSCORE request: |
 target resource | Token = Token1, |
 Protect request with | kid = SID, ... |
 Sender Context +---------------------->| Retrieve context with
 | | RID = kid
 | | Verify request with
 | | Recipient Context
 | OSCORE response: | Protect response with
 | Token = Token1, ... | Sender Context
 Retrieve context with |<----------------------+
 Token = Token1 | |
 Verify request with | |
 Recipient Context | |

 Figure 3: Retrieval and use of the Security Context

 The Common Context contains the following parameters:

 o AEAD Algorithm (alg). The COSE AEAD algorithm to use for
 encryption. Its value is immutable once the security context is
 established.

 o Key Derivation Function. The HMAC based HKDF [RFC5869] used to
 derive Sender Key, Recipient Key, and Common IV.

 o Master Secret. Variable length, uniformly random byte string
 containing the key used to derive traffic keys and IVs. Its value
 is immutable once the security context is established.

 o Master Salt (OPTIONAL). Variable length byte string containing
 the salt used to derive traffic keys and IVs. Its value is
 immutable once the security context is established.

Selander, et al. Expires April 28, 2018 [Page 7]

Internet-Draft OSCORE October 2017

 o Common IV. Byte string derived from Master Secret and Master
 Salt. Length is determined by the AEAD Algorithm. Its value is
 immutable once the security context is established.

 The Sender Context contains the following parameters:

 o Sender ID. Byte string used to identify the Sender Context and to
 assure unique nonces. Maximum length is determined by the AEAD
 Algorithm. Its value is immutable once the security context is
 established.

 o Sender Key. Byte string containing the symmetric key to protect
 messages to send. Derived from Common Context and Sender ID.
 Length is determined by the AEAD Algorithm. Its value is
 immutable once the security context is established.

 o Sender Sequence Number. Non-negative integer used by the sender
 to protect requests and Observe notifications. Used as "Partial
 IV" [RFC8152] to generate unique nonces for the AEAD. Maximum
 value is determined by the AEAD Algorithm.

 The Recipient Context contains the following parameters:

 o Recipient ID. Byte string used to identify the Recipient Context
 and to assure unique nonces. Maximum length is determined by the
 AEAD Algorithm. Its value is immutable once the security context
 is established.

 o Recipient Key. Byte string containing the symmetric key to verify
 messages received. Derived from Common Context and Recipient ID.
 Length is determined by the AEAD Algorithm. Its value is
 immutable once the security context is established.

 o Replay Window (Server only). The replay window to verify requests
 received.

 An endpoint may free up memory by not storing the Common IV, Sender
 Key, and Recipient Key, deriving them from the Master Key and Master
 Salt when needed. Alternatively, an endpoint may free up memory by
 not storing the Master Secret and Master Salt after the other
 parameters have been derived.

 Endpoints MAY operate in either or both roles as client and server
 and use the same security context for those roles. Indpendent of
 being client or server, the endpoint protects messages to send using
 its Sender Context, and verifies messages received using its
 Recipient Context. The endpoints MUST NOT change the Sender/

Selander, et al. Expires April 28, 2018 [Page 8]

Internet-Draft OSCORE October 2017

 Recipient ID when changing roles. In other words, changing the roles
 does not change the set of keys to be used.

3.2. Establishment of Security Context Parameters

 The parameters in the security context are derived from a small set
 of input parameters. The following input parameters SHALL be pre-
 established:

 o Master Secret

 o Sender ID

 o Recipient ID

 The following input parameters MAY be pre-established. In case any
 of these parameters is not pre-established, the default value
 indicated below is used:

 o AEAD Algorithm (alg)

 * Default is AES-CCM-16-64-128 (COSE algorithm encoding: 10)

 o Master Salt

 * Default is the empty string

 o Key Derivation Function (KDF)

 * Default is HKDF SHA-256

 o Replay Window Type and Size

 * Default is DTLS-type replay protection with a window size of 32
 ([RFC6347])

 All input parameters need to be known to and agreed on by both
 endpoints, but the replay window may be different in the two
 endpoints. The replay window type and size is used by the client in
 the processing of the Request-Tag
 [I-D.amsuess-core-repeat-request-tag]. How the input parameters are
 pre-established, is application specific. The ACE framework may be
 used to establish the necessary input parameters
 [I-D.ietf-ace-oauth-authz].

Selander, et al. Expires April 28, 2018 [Page 9]

Internet-Draft OSCORE October 2017

3.2.1. Derivation of Sender Key, Recipient Key, and Common IV

 The KDF MUST be one of the HMAC based HKDF [RFC5869] algorithms
 defined in COSE. HKDF SHA-256 is mandatory to implement. The
 security context parameters Sender Key, Recipient Key, and Common IV
 SHALL be derived from the input parameters using the HKDF, which
 consists of the composition of the HKDF-Extract and HKDF-Expand steps
 ([RFC5869]):

 output parameter = HKDF(salt, IKM, info, L)

 where:

 o salt is the Master Salt as defined above

 o IKM is the Master Secret is defined above

 o info is a CBOR array consisting of:

 info = [
 id : bstr / nil,
 alg : int / tstr,
 type : tstr,
 L : uint
]

 where:

 o id is the Sender ID or Recipient ID when deriving keys and nil
 when deriving the Common IV. The encoding is described in
 Section 5

 o type is "Key" or "IV"

 o L is the size of the key/IV for the AEAD algorithm used, in octets

 For example, if the algorithm AES-CCM-16-64-128 (see Section 10.2 in
 [RFC8152]) is used, the value for L is 16 for keys and 13 for the
 Common IV.

3.2.2. Initial Sequence Numbers and Replay Window

 The Sender Sequence Number is initialized to 0. The supported types
 of replay protection and replay window length is application specific
 and depends on the lower layers. The default is DTLS-type replay
 protection with a window size of 32 initiated as described in
 Section 4.1.2.6 of [RFC6347].

Selander, et al. Expires April 28, 2018 [Page 10]

Internet-Draft OSCORE October 2017

3.3. Requirements on the Security Context Parameters

 As collisions may lead to the loss of both confidentiality and
 integrity, Sender ID SHALL be unique in the set of all security
 contexts using the same Master Secret and Master Salt. When a
 trusted third party assigns identifiers (e.g., using
 [I-D.ietf-ace-oauth-authz]) or by using a protocol that allows the
 parties to negotiate locally unique identifiers in each endpoint, the
 Sender IDs can be very short. The maximum length of Sender ID is
 length of nonce - 6 bytes. For AES-CCM-16-64-128 the maximum length
 of Sender ID is 7 bytes. If Sender ID uniqueness cannot be
 guaranteed by construction, Sender IDs MUST be long uniformly random
 distributed byte strings such that the probability of collisions is
 negligible.

 To enable retrieval of the right Recipient Context, the Recipient ID
 SHOULD be unique in the sets of all Recipient Contexts used by an
 endpoint. The Client MAY provide a Context Hint Section 8.3 to help
 the Server find the right context.

 While the triple (Master Secret, Master Salt, Sender ID) MUST be
 unique, the same Master Salt MAY be used with several Master Secrets
 and the same Master Secret MAY be used with several Master Salts.

4. Protected Message Fields

 OSCORE transforms a CoAP message (which may have been generated from
 an HTTP message) into an OSCORE message, and vice versa. OSCORE
 protects as much of the original message as possible while still
 allowing certain proxy operations (see Section 10). This section
 defines how OSCORE protects the message fields and transfers them
 end-to-end between client and server (in any direction).

 The remainder of this section and later sections discuss the behavior
 in terms of CoAP messages. If HTTP is used for a particular leg in
 the end-to-end path, then this section applies to the conceptual CoAP
 message that is mappable to/from the original HTTP message as
 discussed in Section 10. That is, an HTTP message is conceptually
 transformed to a CoAP message and then to an OSCORE message, and
 similarly in the reverse direction. An actual implementation might
 translate directly from HTTP to OSCORE without the intervening CoAP
 representation.

 Message fields of the CoAP message may be protected end-to-end
 between CoAP client and CoAP server in different ways:

 o Class E: encrypted and integrity protected,

Selander, et al. Expires April 28, 2018 [Page 11]

Internet-Draft OSCORE October 2017

 o Class I: integrity protected only, or

 o Class U: unprotected.

 The sending endpoint SHALL transfer Class E message fields in the
 ciphertext of the COSE object in the OSCORE message. The sending
 endpoint SHALL include Class I message fields in the Additional
 Authenticated Data (AAD) of the AEAD algorithm, allowing the
 receiving endpoint to detect if the value has changed in transfer.
 Class U message fields SHALL NOT be protected in transfer. Class I
 and Class U message field values are transferred in the header or
 options part of the OSCORE message which is visible to proxies.

 Message fields not visible to proxies, i.e., transported in the
 ciphertext of the COSE object, are called "Inner" (Class E). Message
 fields transferred in the header or options part of the OSCORE
 message, which is visible to proxies, are called "Outer" (Class I or
 U).

 An OSCORE message may contain both an Inner and an Outer message
 field of certain CoAP message fields. Inner if the value is intended
 for the destination endpoint, Outer if the value is intended for a
 proxy. Inner and Outer message fields are processed independently.

4.1. CoAP Payload

 The CoAP Payload, if present in the original CoAP message, SHALL be
 encrypted and integrity protected and is thus an Inner message field.
 The sending endpoint writes the payload of the original CoAP message
 into the plaintext (Section 5.2) input to the COSE object. The
 receiving endpoint verifies and decrypts the COSE object, and
 recreates the payload of the original CoAP message.

4.2. CoAP Options

 A summary of how options are protected is shown in Figure 4. Options
 which require special processing, in particular those which may have
 both Inner and Outer message fields, are labelled with asterisks.

Selander, et al. Expires April 28, 2018 [Page 12]

Internet-Draft OSCORE October 2017

 +----+----------------+---+---+---+
 | No.| Name | E | I | U |
 +----+----------------+---+---+---+
 | 1 | If-Match | x | | |
 | 3 | Uri-Host | | | x |
 | 4 | ETag | x | | |
 | 5 | If-None-Match | x | | |
 | 6 | Observe | | | * |
 | 7 | Uri-Port | | | x |
 | 8 | Location-Path | x | | |
 | 11 | Uri-Path | x | | |
 | 12 | Content-Format | x | | |
 | 14 | Max-Age | * | | * |
 | 15 | Uri-Query | x | | |
 | 17 | Accept | x | | |
 | 20 | Location-Query | x | | |
 | 23 | Block2 | * | | * |
 | 27 | Block1 | * | | * |
 | 28 | Size2 | * | | * |
 | 35 | Proxy-Uri | * | | * |
 | 39 | Proxy-Scheme | | | x |
 | 60 | Size1 | * | | * |
 +----+----------------+---+---+---+

 E = Encrypt and Integrity Protect (Inner)
 I = Integrity Protect only (Outer)
 U = Unprotected (Outer)
 * = Special

 Figure 4: Protection of CoAP Options

 Options that are unknown or for which OSCORE processing is not
 defined SHALL be processed as class E (and no special processing).
 Specifications of new CoAP options SHOULD define how they are
 processed with OSCORE. A new COAP option SHOULD be of class E unless
 it requires proxy processing. New CoAP options which are repeatable
 and of class I MUST specify that proxies MUST NOT change the order of
 the option’s occurences.

4.2.1. Inner Options

 When using OSCORE, Inner option message fields (marked in column E of
 Figure 4) are sent in a way analogous to communicating in a protected
 manner directly with the other endpoint.

 The sending endpoint SHALL write the Inner option message fields
 present in the original CoAP message into the plaintext of the COSE

Selander, et al. Expires April 28, 2018 [Page 13]

Internet-Draft OSCORE October 2017

 object Section 5.2, and then remove the Inner option message fields
 from the OSCORE message.

 The processing of Inner option message fields by the receiving
 endpoint is specified in Section 7.2 and Section 7.4.

4.2.2. Outer Options

 Outer option message fields (marked in column U or I of Figure 4) are
 used to support proxy operations.

 The sending endpoint SHALL include the Outer option message field
 present in the original message in the options part of the OSCORE
 message. All Outer option message fields, including Object-Security,
 SHALL be encoded as described in Section 3.1 of [RFC7252], where the
 delta is the difference to the previously included Outer option
 message field.

 The processing of Outer options by the receiving endpoint is
 specified in Section 7.2 and Section 7.4.

 A procedure for integrity-protection-only of Class I option message
 fields is specified in Section 5.3.

 Note: There are currently no Class I option message fields defined.

4.2.3. Special Options

 Some options require special processing, marked with an asterisk ’*’
 in Figure 4. An asterisk in the columns E and U indicate that the
 option may be added as an Inner and/or Outer message by the sending
 endpoint; the processing is specified in this section.

4.2.3.1. Max-Age

 The Inner Max-Age option is used to specify the freshness (as defined
 in [RFC7252]) of the resource, end-to-end from the server to the
 client, taking into account that the option is not accessible to
 proxies. The Inner Max-Age SHALL be processed by OSCORE as specified
 in Section 4.2.1.

 The Outer Max-Age option is used to avoid unnecessary caching of
 OSCORE responses at OSCORE unaware intermediary nodes. A server MAY
 set a Class U Max-Age option with value zero to Observe responses
 (see Section 5.6.1 of [RFC7252]) which is then processed according to
 Section 4.2.2. The Outer Max-Age option value SHALL be discarded by
 the OSCORE client.

Selander, et al. Expires April 28, 2018 [Page 14]

Internet-Draft OSCORE October 2017

 Non-Observe OSCORE responses do not need to include a Max-Age option
 since the responses are non-cacheable by construction (see
 Section 4.3).

4.2.3.2. The Block Options

 Blockwise [RFC7959] is an optional feature. An implementation MAY
 support [RFC7252] and the Object-Security option without supporting
 [RFC7959]. The Block options are used to secure message
 fragmentation end-to-end (Inner options) or for proxies to fragment
 the OSCORE message for the next hop (Outer options). Inner and Outer
 block processing may have different performance properties depending
 on the underlying transport. The integrity of the message can be
 verified end-to-end both in case of Inner and Outer Blockwise
 provided all blocks are received (see Section 4.2.3.2.2).

4.2.3.2.1. Inner Block Options

 The sending CoAP endpoint MAY fragment a CoAP message as defined in
 [RFC7959] before the message is processed by OSCORE. In this case
 the Block options SHALL be processed by OSCORE as Inner options
 (Section 4.2.1). The receiving CoAP endpoint SHALL process the
 OSCORE message according to Section 4.2.1 before processing blockwise
 as defined in [RFC7959].

 For blockwise request operations using Block1, an endpoint MUST
 comply with the Request-Tag processing defined in Section 3 of
 [I-D.amsuess-core-repeat-request-tag]. In particular, the rules in
 section 3.3.1 of [I-D.amsuess-core-repeat-request-tag] MUST be
 followed, which guarantee that a specific request body is assembled
 only from the corresponding request blocks.

 For blockwise response operations using Block2, an endpoint MUST
 comply with the ETag processing defined in Section 4 of
 [I-D.amsuess-core-repeat-request-tag].

4.2.3.2.2. Outer Block Options

 Proxies MAY fragment an OSCORE message using [RFC7959], which then
 introduces Outer Block options not generated by the sending endpoint.
 Note that the Outer Block options are neither encrypted nor integrity
 protected. As a consequence, a proxy can maliciously inject block
 fragments indefinitely, since the receiving endpoint needs to receive
 the last block (see [RFC7959]) to be able to compose the OSCORE
 message and verify its integrity. Therefore, applications supporting
 OSCORE and [RFC7959] MUST specify a security policy defining a
 maximum unfragmented message size (MAX_UNFRAGMENTED_SIZE) considering
 the maximum size of message which can be handled by the endpoints.

Selander, et al. Expires April 28, 2018 [Page 15]

Internet-Draft OSCORE October 2017

 Messages exceeding this size SHOULD be fragmented by the sending
 endpoint using Inner Block options (Section 4.2.3.2.1).

 An endpoint receiving an OSCORE message with an Outer Block option
 SHALL first process this option according to [RFC7959], until all
 blocks of the OSCORE message have been received, or the cumulated
 message size of the blocks exceeds MAX_UNFRAGMENTED_SIZE. In the
 former case, the processing of the OSCORE message continues as
 defined in this document. In the latter case the message SHALL be
 discarded.

 To allow multiple concurrent request operations to the same server
 (not only same resource), a CoAP proxy SHOULD follow the Request-Tag
 processing specified in section 3.3.2 of
 [I-D.amsuess-core-repeat-request-tag].

4.2.3.3. Proxy-Uri

 Proxy-Uri, when present, is split by OSCORE into class U options and
 class E options, which are processed accordingly. When Proxy-Uri is
 used in the original CoAP message, Uri-* are not present [RFC7252].

 The sending endpoint SHALL first decompose the Proxy-Uri value of the
 original CoAP message into the Proxy-Scheme, Uri-Host, Uri-Port, Uri-
 Path, and Uri-Query options (if present) according to section 6.4 of
 [RFC7252].

 Uri-Path and Uri-Query are class E options and SHALL be protected and
 processed as Inner options (Section 4.2.1).

 The Proxy-Uri option of the OSCORE message SHALL be set to the
 composition of Proxy-Scheme, Uri-Host and Uri-Port options (if
 present) as specified in section 6.5 of [RFC7252], and processed as
 an Outer option of Class U (Section 4.2.2).

 Note that replacing the Proxy-Uri value with the Proxy-Scheme and
 Uri-* options works by design for all CoAP URIs (see Section 6 of
 [RFC7252]. OSCORE-aware HTTP servers should not use the userinfo
 component of the HTTP URI (as defined in section 3.2.1. of
 [RFC3986]), so that this type of replacement is possible in the
 presence of CoAP-to-HTTP proxies. In other documents specifying
 cross-protocol proxying behavior using different URI structures, it
 is expected that the authors will create Uri-* options that allow
 decomposing the Proxy-Uri, and specify in which OSCORE class they
 belong.

 An example of how Proxy-Uri is processed is given here. Assume that
 the original CoAP message contains:

Selander, et al. Expires April 28, 2018 [Page 16]

Internet-Draft OSCORE October 2017

 o Proxy-Uri = "coap://example.com/resource?q=1"

 During OSCORE processing, Proxy-Uri is split into:

 o Proxy-Scheme = "coap"

 o Uri-Host = "example.com"

 o Uri-Port = "5683"

 o Uri-Path = "resource"

 o Uri-Query = "q=1"

 Uri-Path and Uri-Query follow the processing defined in
 Section 4.2.1, and are thus encrypted and transported in the COSE
 object. The remaining options are composed into the Proxy-Uri
 included in the options part of the OSCORE message, which has value:

 o Proxy-Uri = "coap://example.com"

 See Section 6.1 and 12.6 of [RFC7252] for more information.

4.2.3.4. Observe

 Observe [RFC7641] is an optional feature. An implementation MAY
 support [RFC7252] and the Object-Security option without supporting
 [RFC7641]. The Observe option as used here targets the requirements
 on forwarding of [I-D.hartke-core-e2e-security-reqs]
 (Section 2.2.1.2).

 In order for an OSCORE-unaware proxy to support forwarding of Observe
 messages ([RFC7641]), there SHALL be an Outer Observe option, i.e.,
 present in the options part of the OSCORE message. The processing of
 the CoAP Code for Observe messages is described in Section 4.3.

 To secure the order of notifications, the client SHALL maintain a
 Notification Number for each Observation it registers. The
 Notification Number is a non-negative integer containing the largest
 Partial IV of the successfully received notifications for the
 associated Observe registration, see Section 6.4. The Notification
 Number is initialized to the Partial IV of the first successfully
 received notification response to the registration request. In
 contrast to [RFC7641], the received Partial IV MUST always be
 compared with the Notification Number, which thus MUST NOT be
 forgotten after 128 seconds.

Selander, et al. Expires April 28, 2018 [Page 17]

Internet-Draft OSCORE October 2017

 If the verification fails, the client SHALL stop processing the
 response, and in the case of CON respond with an empty ACK. The
 client MAY ignore the Observe option value.

 The Observe option in the CoAP request may be legitimately removed by
 a proxy. If the Observe option is removed from a CoAP request by a
 proxy, then the server can still verify the request (as a non-Observe
 request), and produce a non-Observe response. If the OSCORE client
 receives a response to an Observe request without an outer Observe
 value, then it MUST verify the response as a non-Observe response.
 (The reverse case is covered in the verification of the response, see
 Section 7.)

4.3. CoAP Header

 Most CoAP header fields (i.e. the message fields in the fixed 4-byte
 header) are required to be read and/or changed by CoAP proxies and
 thus cannot in general be protected end-to-end between the endpoints.
 As mentioned in Section 1, OSCORE protects the CoAP Request/Response
 layer only, and not the Messaging Layer (Section 2 of [RFC7252]), so
 fields such as Type and Message ID are not protected with OSCORE.

 The CoAP header field Code is protected by OSCORE. Code SHALL be
 encrypted and integrity protected (Class E) to prevent an
 intermediary from eavesdropping or manipulating the Code (e.g.,
 changing from GET to DELETE).

 The sending endpoint SHALL write the Code of the original CoAP
 message into the plaintext of the COSE object Section 5.2. After
 that, the Outer Code of the OSCORE message SHALL be set to 0.02
 (POST) for requests and to 2.04 (Changed) for responses, except for
 Observe messages. For Observe messages, the Outer Code of the OSCORE
 message SHALL be set to 0.05 (FETCH) for requests and to 2.05
 (Content) for responses. This exception allows OSCORE to be
 compliant with the Observe processing in OSCORE-unaware proxies. The
 choice of POST and FETCH ([RFC8132]) allows all OSCORE messages to
 have payload.

 The receiving endpoint SHALL discard the Code in the OSCORE message
 and write the Code of the Plaintext in the COSE object (Section 5.2)
 into the decrypted CoAP message.

 The other CoAP header fields are Unprotected (Class U). The sending
 endpoint SHALL write all other header fields of the original message
 into the header of the OSCORE message. The receiving endpoint SHALL
 write the header fields from the received OSCORE message into the
 header of the decrypted CoAP message.

Selander, et al. Expires April 28, 2018 [Page 18]

Internet-Draft OSCORE October 2017

5. The COSE Object

 This section defines how to use COSE [RFC8152] to wrap and protect
 data in the original message. OSCORE uses the untagged COSE_Encrypt0
 structure with an Authenticated Encryption with Additional Data
 (AEAD) algorithm. The key lengths, IV length, nonce length, and
 maximum Sender Sequence Number are algorithm dependent.

 The AEAD algorithm AES-CCM-16-64-128 defined in Section 10.2 of
 [RFC8152] is mandatory to implement. For AES-CCM-16-64-128 the
 length of Sender Key and Recipient Key is 128 bits, the length of
 nonce and Common IV is 13 bytes. The maximum Sender Sequence Number
 is specified in Section 11.

 We denote by Plaintext the data that is encrypted and integrity
 protected, and by Additional Authenticated Data (AAD) the data that
 is integrity protected only.

 The COSE Object SHALL be a COSE_Encrypt0 object with fields defined
 as follows

 o The "protected" field is empty.

 o The "unprotected" field includes:

 * The "Partial IV" parameter. The value is set to the Sender
 Sequence Number. All leading zeroes SHALL be removed when
 encoding the Partial IV. The value 0 encodes to the byte
 string 0x00. This parameter SHALL be present in requests. In
 case of Observe (Section 4.2.3.4) the Partial IV SHALL be
 present in responses, and otherwise the Partial IV SHOULD NOT
 be present in responses. (A non-Observe example where the
 Partial IV is included in a response is provided in
 Section 6.5.2.)

 * The "kid" parameter. The value is set to the Sender ID. This
 parameter SHALL be present in requests and SHOULD NOT be
 present in responses. (An example where the Sender ID is
 included in a response is the extension of OSCORE to group
 communication [I-D.tiloca-core-multicast-oscoap].)

 o The "ciphertext" field is computed from the secret key (Sender Key
 or Recipient Key), Nonce (see Section 5.1), Plaintext (see
 Section 5.2), and the Additional Authenticated Data (AAD) (see
 Section 5.3) following Section 5.2 of [RFC8152].

 The encryption process is described in Section 5.3 of [RFC8152].

Selander, et al. Expires April 28, 2018 [Page 19]

Internet-Draft OSCORE October 2017

5.1. Nonce

 The nonce is constructed in the following way (see Figure 5):

 1. left-padding the Partial IV (in network byte order) with zeroes
 to exactly 5 bytes,

 2. left-padding the (Sender) ID of the endpoint that generated the
 Partial IV (in network byte order) with zeroes to exactly nonce
 length - 6 bytes,

 3. concatenating the size of the ID (S) with the padded ID and the
 padded Partial IV,

 4. and then XORing with the Common IV.

 Note that in this specification only algorithms that use nonces equal
 or greater than 7 bytes are supported.

 When observe is not used, the request and the response may use the
 same nonce. In this way, the Partial IV does not have to be sent in
 responses, which reduces the size. For processing instructions, see
 Section 7.

 +---+-----------------------+--+--+--+--+--+
 | S | ID of PIV generator | Partial IV |----+
 +---+-----------------------+--+--+--+--+--+ |
 |
 +--+ |
 | Common IV |->(XOR)
 +--+ |
 |
 +--+ |
 | Nonce |<---+
 +--+

 Figure 5: AEAD Nonce Formation

5.2. Plaintext

 The Plaintext is formatted as a CoAP message without Header (see
 Figure 6) consisting of:

 o the Code of the original CoAP message as defined in Section 3 of
 [RFC7252]; and

 o all Inner option message fields (see Section 4.2.1) present in the
 original CoAP message (see Section 4.2). The options are encoded

Selander, et al. Expires April 28, 2018 [Page 20]

Internet-Draft OSCORE October 2017

 as described in Section 3.1 of [RFC7252], where the delta is the
 difference to the previously included Class E option; and

 o the Payload of original CoAP message, if present, and in that case
 prefixed by the one-byte Payload Marker (0xFF).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Class E options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+
 (only if there
 is payload)

 Figure 6: Plaintext

5.3. Additional Authenticated Data

 The external_aad SHALL be a CBOR array as defined below:

 external_aad = [
 version : uint,
 alg : int / tstr,
 request_kid : bstr,
 request_piv : bstr,
 options : bstr
]

 where:

 o version: contains the OSCORE version number. Implementations of
 this specification MUST set this field to 1. Other values are
 reserved for future versions.

 o alg: contains the AEAD Algorithm from the security context used
 for the exchange (see Section 3.1).

 o request_kid: contains the value of the ’kid’ in the COSE object of
 the request (see Section 5).

 o request_piv: contains the value of the ’Partial IV’ in the COSE
 object of the request (see Section 5).

 o options: contains the Class I options (see Section 4.2.2) present
 in the original CoAP message encoded as described in Section 3.1

Selander, et al. Expires April 28, 2018 [Page 21]

Internet-Draft OSCORE October 2017

 of [RFC7252], where the delta is the difference to the previously
 included class I option.

 NOTE: The format of the external_aad is for simplicity the same for
 requests and responses, although some parameters, e.g. request_kid
 need not be integrity protected in the requests.

6. Sequence Numbers, Replay, Message Binding, and Freshness

6.1. Message Binding

 In order to prevent response delay and mismatch attacks
 [I-D.mattsson-core-coap-actuators] from on-path attackers and
 compromised proxies, OSCORE binds responses to the requests by
 including the kid and Partial IV of the request in the AAD of the
 response. The server therefore needs to store the kid and Partial IV
 of the request until all responses have been sent.

6.2. AEAD Nonce Uniqueness

 An AEAD nonce MUST NOT be used more than once per AEAD key. In order
 to assure unique nonces, each Sender Context contains a Sender
 Sequence Number used to protect requests, and - in case of Observe -
 responses. If messages are processed concurrently, the operation of
 reading and increasing the Sender Sequence Number MUST be atomic.

 The maximum Sender Sequence Number is algorithm dependent, see
 Section 11, and no greater than 2^40 - 1. If the Sender Sequence
 Number exceeds the maximum, the endpoint MUST NOT process any more
 messages with the given Sender Context. The endpoint SHOULD acquire
 a new security context (and consequently inform the other endpoint)
 before this happens. The latter is out of scope of this document.

6.3. Freshness

 For requests, OSCORE provides weak absolute freshness as the only
 guarantee is that the request is not older than the security context.
 For applications having stronger demands on request freshness (e.g.,
 control of actuators), OSCORE needs to be augmented with mechanisms
 providing freshness [I-D.amsuess-core-repeat-request-tag].

 For responses, the message binding guarantees that a response is not
 older than its request. For responses without Observe, this gives
 strong absolute freshness. For responses with Observe, the absolute
 freshness gets weaker with time, and it is RECOMMENDED that the
 client regularly restart the observation.

Selander, et al. Expires April 28, 2018 [Page 22]

Internet-Draft OSCORE October 2017

 For requests, and responses with Observe, OSCORE also provides
 relative freshness in the sense that the received Partial IV allows a
 recipient to determine the relative order of responses.

6.4. Replay Protection

 In order to protect from replay of requests, the server’s Recipient
 Context includes a Replay Window. A server SHALL verify that a
 Partial IV received in the COSE object has not been received before.
 If this verification fails and the message received is a CON message,
 the server SHALL respond with a 5.03 Service Unavailable error
 message with the inner Max-Age option set to 0. The diagnostic
 payload MAY contain the "Replay protection failed" string. The size
 and type of the Replay Window depends on the use case and lower
 protocol layers. In case of reliable and ordered transport from
 endpoint to endpoint, the server MAY just store the last received
 Partial IV and require that newly received Partial IVs equals the
 last received Partial IV + 1.

 Responses to non-Observe requests are protected against replay as
 they are cryptographically bound to the request.

 In the case of Observe, a client receiving a notification SHALL
 verify that the Partial IV of a received notification is greater than
 the Notification Number bound to that Observe registration. If the
 verification fails, the client SHALL stop processing the response,
 and in the case of CON respond with an empty ACK. If the
 verification succeeds, the client SHALL overwrite the corresponding
 Notification Number with the received Partial IV.

 If messages are processed concurrently, the Partial IV needs to be
 validated a second time after decryption and before updating the
 replay protection data. The operation of validating the Partial IV
 and updating the replay protection data MUST be atomic.

6.5. Losing Part of the Context State

 To prevent reuse of the Nonce with the same key, or from accepting
 replayed messages, a node needs to handle the situation of losing
 rapidly changing parts of the context, such as the request Token,
 Sender Sequence Number, Replay Window, and Nofitifcation Numbers.
 These are typically stored in RAM and therefore lost in the case of
 an unplanned reboot.

 After boot, a node MAY reject to use existing security contexts from
 before it booted and MAY establish a new security context with each
 party it communicates. However, establishing a fresh security

Selander, et al. Expires April 28, 2018 [Page 23]

Internet-Draft OSCORE October 2017

 context may have a non-negligible cost in terms of, e.g., power
 consumption.

 After boot, a node MAY use a partly persistently stored security
 context, but then the node MUST NOT reuse a previous Sender Sequence
 Number and MUST NOT accept previously accepted messages. Some ways
 to achieve this is described below:

6.5.1. Sequence Number

 To prevent reuse of Sender Sequence Numbers, a node MAY perform the
 following procedure during normal operations:

 o Each time the Sender Sequence Number is evenly divisible by K,
 where K is a positive integer, store the Sender Sequence Number in
 persistent memory. After boot, the node initiates the Sender
 Sequence Number to the value stored in persistent memory + K - 1.
 Storing to persistent memory can be costly. The value K gives a
 trade-off between the number of storage operations and efficient
 use of Sender Sequence Numbers.

6.5.2. Replay Window

 To prevent accepting replay of previously received requests, the
 server MAY perform the following procedure after boot:

 o For each stored security context, the first time after boot the
 server receives an OSCORE request, the server responds with the
 Repeat option [I-D.amsuess-core-repeat-request-tag] to get a
 request with verifiable freshness. The server MUST use its
 Partial IV when generating the nonce and MUST include the Partial
 IV in the response.

 If the server using the Repeat option can verify a second request as
 fresh, then the Partial IV of the second request is set as the lower
 limit of the replay window.

6.5.3. Replay Protection of Observe Notifications

 To prevent accepting replay of previously received notification
 responses, the client MAY perform the following procedure after boot:

 o The client rejects notifications bound to the earlier
 registration, removes all Notification Numbers and re-register
 using Observe.

Selander, et al. Expires April 28, 2018 [Page 24]

Internet-Draft OSCORE October 2017

7. Processing

 This section describes the OSCORE message processing.

7.1. Protecting the Request

 Given a CoAP request, the client SHALL perform the following steps to
 create an OSCORE request:

 1. Retrieve the Sender Context associated with the target resource.

 2. Compose the Additional Authenticated Data, as described in
 Section 5.

 3. Compute the AEAD nonce from the Sender ID, Common IV, and Partial
 IV (Sender Sequence Number in network byte order) as described in
 Section 5.1. Then (in one atomic operation, see Section 6.2)
 increment the Sender Sequence Number by one.

 4. Encrypt the COSE object using the Sender Key. Compress the COSE
 Object as specified in Section 8.

 5. Format the OSCORE message according to Section 4. The Object-
 Security option is added, see Section 4.2.2.

 6. Store the association Token - Security Context. The client SHALL
 be able to find the Recipient Context from the Token in the
 response.

7.2. Verifying the Request

 A server receiving a request containing the Object-Security option
 SHALL perform the following steps:

 1. Process outer Block options according to [RFC7959], until all
 blocks of the request have been received, see Section 4.2.3.2.

 2. Discard the message Code and all non-special Inner option
 message fields (marked with ’x’ in column E of Figure 4) present
 in the received message. For example, an If-Match Outer option
 is discarded, but an Uri-Host Outer option is not discarded.

 3. Decompress the COSE Object (Section 8) and retrieve the
 Recipient Context associated with the Recipient ID in the ’kid’
 parameter. If the request is a NON message and either the
 decompression or the COSE message fails to decode, or the server
 fails to retrieve a Recipient Context with Recipient ID
 corresponding to the ’kid’ parameter received, then the server

Selander, et al. Expires April 28, 2018 [Page 25]

Internet-Draft OSCORE October 2017

 SHALL stop processing the request. If the request is a CON
 message, and:

 * either the decompression or the COSE message fails to decode,
 the server SHALL respond with a 4.02 Bad Option error
 message. The diagnostic payload SHOULD contain the string
 "Failed to decode COSE".

 * the server fails to retrieve a Recipient Context with
 Recipient ID corresponding to the ’kid’ parameter received,
 the server SHALL respond with a 4.01 Unauthorized error
 message. The diagnostic payload MAY contain the string
 "Security context not found".

 4. Verify the ’Partial IV’ parameter using the Replay Window, as
 described in Section 6.

 5. Compose the Additional Authenticated Data, as described in
 Section 5.

 6. Compute the AEAD nonce from the Recipient ID, Common IV, and the
 ’Partial IV’ parameter, received in the COSE Object.

 7. Decrypt the COSE object using the Recipient Key.

 * If decryption fails, the server MUST stop processing the
 request and, if the request is a CON message, the server MUST
 respond with a 4.00 Bad Request error message. The
 diagnostic payload MAY contain the "Decryption failed"
 string.

 * If decryption succeeds, update the Replay Window, as
 described in Section 6.

 8. For each decrypted option, check if the option is also present
 as an Outer option: if it is, discard the Outer. For example:
 the message contains a Max-Age Inner and a Max-Age Outer option.
 The Outer Max-Age is discarded.

 9. Add decrypted code, options and payload to the decrypted
 request. The Object-Security option is removed.

 10. The decrypted CoAP request is processed according to [RFC7252]

Selander, et al. Expires April 28, 2018 [Page 26]

Internet-Draft OSCORE October 2017

7.3. Protecting the Response

 Given a CoAP response, the server SHALL perform the following steps
 to create an OSCORE response. Note that CoAP error responses derived
 from CoAP processing (point 10. in Section 7.2) are protected, as
 well as successful CoAP responses, while the OSCORE errors (point 3.,
 4., 7. in Section 7.2) do not follow the processing below, but are
 sent as simple CoAP responses, without OSCORE processing.

 1. Retrieve the Sender Context in the Security Context used to
 verify the request.

 2. Compose the Additional Authenticated Data, as described in
 Section 5.

 3. Compute the AEAD nonce

 * If Observe is used, Compute the AEAD nonce from the Sender ID,
 Common IV, and Partial IV (Sender Sequence Number in network
 byte order). Then (in one atomic operation, see Section 6.2)
 increment the Sender Sequence Number by one.

 * If Observe is not used, either the nonce from the request is
 used or a new Partial IV is used.

 4. Encrypt the COSE object using the Sender Key. Compress the COSE
 Object as specified in Section 8. If in 3. the nonce was
 constructed from a new Partial IV, this Partial IV MUST be
 included in the message. If the nonce from the request was used,
 the Partial IV MUST NOT be included in the message.

 5. Format the OSCORE message according to Section 4. The Object-
 Security option is added, see Section 4.2.2.

7.4. Verifying the Response

 A client receiving a response containing the Object-Security option
 SHALL perform the following steps:

 1. Process outer Block options according to [RFC7959], until all
 blocks of the OSCORE message have been received, see
 Section 4.2.3.2.

 2. Discard the message Code and all non-special Class E options
 from the message. For example, ETag Outer option is discarded,
 Max-Age Outer option is not discarded.

Selander, et al. Expires April 28, 2018 [Page 27]

Internet-Draft OSCORE October 2017

 3. Retrieve the Recipient Context associated with the Token.
 Decompress the COSE Object (Section 8). If either the
 decompression or the COSE message fails to decode, then go to
 11.

 4. For Observe notifications, verify the received ’Partial IV’
 parameter against the corresponding Notification Number as
 described in Section 6. If the client receives a notification
 for which no Observe request was sent, then go to 11.

 5. Compose the Additional Authenticated Data, as described in
 Section 5.

 6. Compute the AEAD nonce

 1. If the Observe option and the Partial IV are not present in
 the response, the nonce from the request is used.

 2. If the Observe option is present in the response, and the
 Partial IV is not present in the response, then go to 11.

 3. If the Partial IV is present in the response, compute the
 AEAD nonce from the Recipient ID, Common IV, and the
 ’Partial IV’ parameter, received in the COSE Object.

 7. Decrypt the COSE object using the Recipient Key.

 * If decryption fails, then go to 11.

 * If decryption succeeds and Observe is used, update the
 corresponding Notification Number, as described in Section 6.

 8. For each decrypted option, check if the option is also present
 as an Outer option: if it is, discard the Outer. For example:
 the message contains a Max-Age Inner and a Max-Age Outer option.
 The Outer Max-Age is discarded.

 9. Add decrypted code, options and payload to the decrypted
 request. The Object-Security option is removed.

 10. The decrypted CoAP response is processed according to [RFC7252]

 11. (Optional) In case any of the previous erroneous conditions
 apply: if the response is a CON message, then the client SHALL
 send an empty ACK back and stop processing the response; if the
 response is a ACK or a NON message, then the client SHALL simply
 stop processing the response.

Selander, et al. Expires April 28, 2018 [Page 28]

Internet-Draft OSCORE October 2017

8. OSCORE Compression

 The Concise Binary Object Representation (CBOR) [RFC7049] combines
 very small message sizes with extensibility. The CBOR Object Signing
 and Encryption (COSE) [RFC8152] uses CBOR to create compact encoding
 of signed and encrypted data. COSE is however constructed to support
 a large number of different stateless use cases, and is not fully
 optimized for use as a stateful security protocol, leading to a
 larger than necessary message expansion. In this section, we define
 a simple stateless compression mechanism for OSCORE called the
 "compressed COSE object", which significantly reduces the per-packet
 overhead.

8.1. Encoding of the Object-Security Value

 The value of the Object-Security option SHALL contain the OSCORE flag
 byte, the Partial IV parameter, the Context Hint parameter (length
 and value), and the kid parameter as follows:

 0 1 2 3 4 5 6 7 <--------- n bytes ------------->
 +-+-+-+-+-+-+-+-+---------------------------------
 |0 0 0|h|k| n | Partial IV (if any)
 +-+-+-+-+-+-+-+-+---------------------------------

 <-- 1 byte --> <------ s bytes ------>
 +------------+-----------------------+------------------+
 | s (if any) | Context Hint (if any) | kid (if any) ... |
 +------------+-----------------------+------------------+

 Figure 7: Object-Security Value

 o The first byte (= the OSCORE flag byte) encodes a set of flags and
 the length of the Partial IV parameter.

 * The three least significant bits encode the Partial IV length
 n. If n = 0 then the Partial IV is not present in the
 compressed COSE object. The values n = 6 and n = 7 is
 reserved.

 * The fourth least significant bit is the kid flag, k: it is set
 to 1 if the kid is present in the compressed COSE object.

 * The fifth least significant bit is the Context Hint flag, h: it
 is set to 1 if the compressed COSE object contains a Context
 Hint, see Section 8.3.

 * The sixth-eighth least significant bits are reserved and SHALL
 be set to zero when not in use.

Selander, et al. Expires April 28, 2018 [Page 29]

Internet-Draft OSCORE October 2017

 o The following n bytes encode the value of the Partial IV, if the
 Partial IV is present (n > 0).

 o The following 1 byte encode the length of the Context Hint
 (Section 8.3) s, if the Context Hint flag is set (h = 1).

 o The following s bytes encode the Context Hint, if the Context Hint
 flag is set (h = 1).

 o The remaining bytes encode the value of the kid, if the kid is
 present (k = 1)

 Note that the kid MUST be the last field of the object-security
 value, even in case reserved bits are used and additional fields are
 added to it.

8.2. Encoding of the OSCORE Payload

 The payload of the OSCORE message SHALL encode the ciphertext of the
 COSE object.

8.3. Context Hint

 For certain use cases, e.g. deployments where the same Recipient ID
 is used with multiple contexts, it is necessary or favorable for the
 client to provide a Context Hint in order for the server to retrieve
 the Recipient Context. The Context Hint is implicitly integrity
 protected, as manipulation leads to the wrong or no context being
 retrieved resulting in a verification error, as described in
 Section 7.2. This parameter MAY be present in requests and SHALL NOT
 be present in responses.

 Examples:

 o If the client has an identifier in some other namespace which can
 be used by the server to retrieve or establish the security
 context, then that identifier can be used as Context Hint.

 o In case of a group communication scenario
 [I-D.tiloca-core-multicast-oscoap], if the server belongs to
 multiple groups, then a group identifier can be used as Context
 Hint to enable the server to find the right security context.

8.4. Examples of Compressed COSE Objects

Selander, et al. Expires April 28, 2018 [Page 30]

Internet-Draft OSCORE October 2017

8.4.1. Example: Requests

 Request with kid = 25 and Partial IV = 5

 Before compression (24 bytes):

 [
 h’’,
 { 4:h’25’, 6:h’05’ },
 h’aea0155667924dff8a24e4cb35b9’
]

 After compression (17 bytes):

 Flag byte: 0b00001001 = 0x09

 Option Value: 09 05 25 (3 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

 Request with kid = empty string and Partial IV = 0

 After compression (16 bytes):

 Flag byte: 0b00001001 = 0x09

 Option Value: 09 00 (2 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

 Request with kid = empty string, Partial IV = 5, and Context Hint =
 0x44616c656b

 After compression (22 bytes):

 Flag byte: 0b00011001 = 0x19

 Option Value: 19 05 01 44 61 6c 65 6b (8 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

8.4.2. Example: Response (without Observe)

 Before compression (18 bytes):

Selander, et al. Expires April 28, 2018 [Page 31]

Internet-Draft OSCORE October 2017

 [
 h’’,
 {},
 h’aea0155667924dff8a24e4cb35b9’
]

 After compression (14 bytes):

 Flag byte: 0b00000000 = 0x00

 Option Value: (0 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

8.4.3. Example: Response (with Observe)

 Before compression (21 bytes):

 [
 h’’,
 { 6:h’07’ },
 h’aea0155667924dff8a24e4cb35b9’
]

 After compression (16 bytes):

 Flag byte: 0b00000001 = 0x01

 Option Value: 01 07 (2 bytes)

 Payload: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

9. Web Linking

 The use of OSCORE MAY be indicated by a target attribute "osc" in a
 web link [RFC8288] to a resource. This attribute is a hint
 indicating that the destination of that link is to be accessed using
 OSCORE. Note that this is simply a hint, it does not include any
 security context material or any other information required to run
 OSCORE.

 A value MUST NOT be given for the "osc" attribute; any present value
 MUST be ignored by parsers. The "osc" attribute MUST NOT appear more
 than once in a given link-value; occurrences after the first MUST be
 ignored by parsers.

Selander, et al. Expires April 28, 2018 [Page 32]

Internet-Draft OSCORE October 2017

10. Proxy Operations

 RFC 7252 defines operations for a CoAP-to-CoAP proxy (see Section 5.7
 of [RFC7252]) and for proxying between CoAP and HTTP (Section 10 of
 [RFC7252]). A more detailed description of the HTTP-to-CoAP mapping
 is provided by [RFC8075]. This section describes the operations of
 OSCORE-aware proxies.

10.1. CoAP-to-CoAP Forwarding Proxy

 OSCORE is designed to work with legacy CoAP-to-CoAP forward proxies
 [RFC7252], but OSCORE-aware proxies provide certain simplifications
 as specified in this section.

 The targeted proxy operations are specified in Section 2.2.1 of
 [I-D.hartke-core-e2e-security-reqs]. In particular caching is
 disabled since the CoAP response is only applicable to the original
 client’s CoAP request. An OSCORE-aware proxy SHALL NOT cache a
 response to a request with an Object-Security option. As a
 consequence, the search for cache hits and CoAP freshness/Max-Age
 processing can be omitted.

 Proxy processing of the (Outer) Proxy-Uri option is as defined in
 [RFC7252].

 Proxy processing of the (Outer) Block options is as defined in
 [RFC7959] and [I-D.amsuess-core-repeat-request-tag].

 Proxy processing of the (Outer) Observe option is as defined in
 [RFC7641]. OSCORE-aware proxies MAY look at the Partial IV value
 instead of the Outer Observe option.

10.2. HTTP-to-CoAP Translation Proxy

 Section 10.2 of [RFC7252] and [RFC8075] specify the behavior of an
 HTTP-to-CoAP proxy. As requested in Section 1 of [RFC8075], this
 section describes the HTTP mapping for the OSCORE protocol extension
 of CoAP.

 The presence of the Object-Security option, both in requests and
 responses, is expressed in an HTTP header field named Object-Security
 in the mapped request or response. The value of the field is the
 value of the Object-Security option Section 8.1 in base64url encoding
 (Section 5 of [RFC4648]) without padding (see [RFC7515] Appendix C
 for implementation notes for this encoding). The value of the
 payload is the OSCORE payload Section 8.2, also base64url-encoded
 without padding.

Selander, et al. Expires April 28, 2018 [Page 33]

Internet-Draft OSCORE October 2017

 Example:

 Mapping and notation here is based on "Simple Form" (Section 5.4.1.1
 of [RFC8075]).

 [HTTP request -- Before object security processing]

 GET http://proxy.url/hc/?target_uri=coap://server.url/orders HTTP/1.1

 [HTTP request -- HTTP Client to Proxy]

 POST http://proxy.url/hc/?target_uri=coap://server.url/ HTTP/1.1
 Object-Security: 0b 25
 Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [CoAP request -- Proxy to CoAP Server]

 POST coap://server.url/
 Object-Security: 0b 25
 Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [CoAP response -- CoAP Server to Proxy]

 2.04 Changed
 Object-Security: [empty]
 Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [HTTP response -- Proxy to HTTP Client]

 HTTP/1.1 200 OK
 Object-Security: [empty]
 Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [HTTP response -- After object security processing]

 HTTP/1.1 200 OK
 Body: Exterminate! Exterminate!

 Note that the HTTP Status Code 200 in the next-to-last message is the
 mapping of CoAP Code 2.04 (Changed), whereas the HTTP Status Code 200
 in the last message is the mapping of the CoAP Code 2.05 (Content),
 which was encrypted within the compressed COSE object carried in the
 Body of the HTTP response.

Selander, et al. Expires April 28, 2018 [Page 34]

Internet-Draft OSCORE October 2017

10.3. CoAP-to-HTTP Translation Proxy

 Section 10.1 of [RFC7252] describes the behavior of a CoAP-to-HTTP
 proxy. RFC 8075 [RFC8075] does not cover this direction in any more
 detail and so an example instantiation of Section 10.1 of [RFC7252]
 is used below.

 Example:

 [CoAP request -- Before object security processing]

 GET coap://proxy.url/
 Proxy-Uri=http://server.url/orders

 [CoAP request -- CoAP Client to Proxy]

 POST coap://proxy.url/
 Proxy-Uri=http://server.url/
 Object-Security: 0b 25
 Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [HTTP request -- Proxy to HTTP Server]

 POST http://server.url/ HTTP/1.1
 Object-Security: 0b 25
 Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

 [HTTP response -- HTTP Server to Proxy]

 HTTP/1.1 200 OK
 Object-Security: [empty]
 Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [CoAP response -- CoAP Server to Proxy]

 2.04 Changed
 Object-Security: [empty]
 Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

 [CoAP response -- After object security processing]

 2.05 Content
 Payload: Exterminate! Exterminate!

 Note that the HTTP Code 2.04 (Changed) in the next-to-last message is
 the mapping of HTTP Status Code 200, whereas the CoAP Code 2.05
 (Content) in the last message is the value that was encrypted within
 the compressed COSE object carried in the Body of the HTTP response.

Selander, et al. Expires April 28, 2018 [Page 35]

Internet-Draft OSCORE October 2017

11. Security Considerations

 In scenarios with intermediary nodes such as proxies or brokers,
 transport layer security such as (D)TLS only protects data hop-by-
 hop. As a consequence, the intermediary nodes can read and modify
 information. The trust model where all intermediate nodes are
 considered trustworthy is problematic, not only from a privacy
 perspective, but also from a security perspective, as the
 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases, where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches make
 such an architecture brittle.

 (D)TLS protects hop-by-hop the entire message, including header,
 options, and payload. OSCORE protects end-to-end the payload, and
 all information in the options and header, that is not required for
 proxy operations (see Section 4). (D)TLS and OSCORE can be combined,
 thereby enabling end-to-end security of the message payload, in
 combination with hop-by-hop protection of the entire message, during
 transport between end-point and intermediary node. The message
 layer, however, cannot be protected end-to-end through intermediary
 devices since, even if the protocol itself isn’t translated, the
 parameters Type, Message ID, Token, and Token Length may be changed
 by a proxy.

 The use of COSE to protect messages as specified in this document
 requires an established security context. The method to establish
 the security context described in Section 3.2 is based on a common
 shared secret material in client and server, which may be obtained,
 e.g., by using the ACE framework [I-D.ietf-ace-oauth-authz]. An
 OSCORE profile of ACE is described in [I-D.seitz-ace-oscoap-profile].

 Most AEAD algorithms require a unique nonce for each message, for
 which the sender sequence numbers in the COSE message field "Partial
 IV" is used. If the recipient accepts any sequence number larger
 than the one previously received, then the problem of sequence number
 synchronization is avoided. With reliable transport, it may be
 defined that only messages with sequence number which are equal to
 previous sequence number + 1 are accepted. The alternatives to
 sequence numbers have their issues: very constrained devices may not
 be able to support accurate time, or to generate and store large
 numbers of random nonces. The requirement to change key at counter
 wrap is a complication, but it also forces the user of this
 specification to think about implementing key renewal.

 The maximum sender sequence number is dependent on the AEAD
 algorithm. The maximum sender sequence number SHALL be 2^40 - 1, or

Selander, et al. Expires April 28, 2018 [Page 36]

Internet-Draft OSCORE October 2017

 any algorithm specific lower limit, after which a new security
 context must be generated. The mechanism to build the nonce
 (Section 5.1) assumes that the nonce is at least 56 bit-long, and the
 Partial IV is at most 40 bit-long. The mandatory-to-implement AEAD
 algorithm AES-CCM-16-64-128 is selected for compatibility with CCM*.

 The inner block options enable the sender to split large messages
 into OSCORE-protected blocks such that the receiving node can verify
 blocks before having received the complete message. The outer block
 options allow for arbitrary proxy fragmentation operations that
 cannot be verified by the endpoints, but can by policy be restricted
 in size since the encrypted options allow for secure fragmentation of
 very large messages. A maximum message size (above which the sending
 endpoint fragments the message and the receiving endpoint discards
 the message, if complying to the policy) may be obtained as part of
 normal resource discovery.

12. Privacy Considerations

 Privacy threats executed through intermediate nodes are considerably
 reduced by means of OSCORE. End-to-end integrity protection and
 encryption of the message payload and all options that are not used
 for proxy operations, provide mitigation against attacks on sensor
 and actuator communication, which may have a direct impact on the
 personal sphere.

 The unprotected options (Figure 4) may reveal privacy sensitive
 information. In particular Uri-Host SHOULD NOT contain privacy
 sensitive information.

 CoAP headers sent in plaintext allow for example matching of CON and
 ACK (CoAP Message Identifier), matching of request and responses
 (Token) and traffic analysis.

 Using the mechanisms described in Section 6.5 may reveal when a
 device goes through a reboot. This can be mitigated by the device
 storing the precise state of sender sequence number and replay window
 on a clean shutdown.

 The length of message fields can reveal information about the
 message. Applications may use a padding scheme to protect against
 traffic analysis. As an example, the strings "YES" and "NO" even if
 encrypted can be distinguished from each other as there is no padding
 supplied by the current set of encryption algorithms. Some
 information can be determined even from looking at boundary
 conditions. An example of this would be returning an integer between
 0 and 100 where lengths of 1, 2 and 3 will provide information about
 where in the range things are. Three different methods to deal with

Selander, et al. Expires April 28, 2018 [Page 37]

Internet-Draft OSCORE October 2017

 this are: 1) ensure that all messages are the same length. For
 example, using 0 and 1 instead of ’yes’ and ’no’. 2) Use a character
 which is not part of the responses to pad to a fixed length. For
 example, pad with a space to three characters. 3) Use the PKCS #7
 style padding scheme where m bytes are appended each having the value
 of m. For example, appending a 0 to "YES" and two 1’s to "NO". This
 style of padding means that all values need to be padded. Similar
 arguments apply to other message fields such as resource names.

13. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

13.1. CoAP Option Numbers Registry

 The Object-Security option is added to the CoAP Option Numbers
 registry:

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Object-Security | [[this document]] |
 +--------+-----------------+-------------------+

13.2. Header Field Registrations

 The HTTP header field Object-Security is added to the Message Headers
 registry:

 +-------------------+----------+----------+-------------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+----------+-------------------+
 | Object-Security | http | standard | [[this document]] |
 +-------------------+----------+----------+-------------------+

14. Acknowledgments

 The following individuals provided input to this document: Christian
 Amsuess, Tobias Andersson, Carsten Bormann, Joakim Brorsson, Thomas
 Fossati, Martin Gunnarsson, Klaus Hartke, Jim Schaad, Dave Thaler,
 Marco Tiloca, and Malisa Vučinić.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova.

Selander, et al. Expires April 28, 2018 [Page 38]

Internet-Draft OSCORE October 2017

15. References

15.1. Normative References

 [I-D.amsuess-core-repeat-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "Repeat And
 Request-Tag", draft-amsuess-core-repeat-request-tag-00
 (work in progress), July 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017,
 <https://www.rfc-editor.org/info/rfc8075>.

Selander, et al. Expires April 28, 2018 [Page 39]

Internet-Draft OSCORE October 2017

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <https://www.rfc-editor.org/info/rfc8132>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

15.2. Informative References

 [I-D.bormann-6lo-coap-802-15-ie]
 Bormann, C., "Constrained Application Protocol (CoAP) over
 IEEE 802.15.4 Information Element for IETF", draft-
 bormann-6lo-coap-802-15-ie-00 (work in progress), April
 2016.

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-
 cbor-cddl-11 (work in progress), July 2017.

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-
 security-reqs-03 (work in progress), July 2017.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-oauth-
 authz-07 (work in progress), August 2017.

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",
 draft-ietf-core-coap-tcp-tls-09 (work in progress), May
 2017.

Selander, et al. Expires April 28, 2018 [Page 40]

Internet-Draft OSCORE October 2017

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-
 mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

 [I-D.seitz-ace-oscoap-profile]
 Seitz, L., Palombini, F., and M. Gunnarsson, "OSCOAP
 profile of the Authentication and Authorization for
 Constrained Environments Framework", draft-seitz-ace-
 oscoap-profile-05 (work in progress), October 2017.

 [I-D.tiloca-core-multicast-oscoap]
 Tiloca, M., Selander, G., and F. Palombini, "Secure group
 communication for CoAP", draft-tiloca-core-multicast-
 oscoap-03 (work in progress), July 2017.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

Appendix A. Test Vectors

 TODO: This section needs to be updated.

Appendix B. Examples

 This section gives examples of OSCORE. The message exchanges are
 made, based on the assumption that there is a security context
 established between client and server. For simplicity, these
 examples only indicate the content of the messages without going into
 detail of the (compressed) COSE message format.

Selander, et al. Expires April 28, 2018 [Page 41]

Internet-Draft OSCORE October 2017

B.1. Secure Access to Sensor

 This example targets the scenario in Section 3.1 of
 [I-D.hartke-core-e2e-security-reqs] and illustrates a client
 requesting the alarm status from a server.

 Client Proxy Server
 | | |
 +------>| | Code: 0.02 (POST)
 | POST | | Token: 0x8c
 | | | Object-Security: [kid:5f,Partial IV:42]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"alarm_status"}
 | | |
 | +------>| Code: 0.02 (POST)
 | | POST | Token: 0x7b
 | | | Object-Security: [kid:5f,Partial IV:42]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"alarm_status"}
 | | |
 | |<------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7b
 | | | Object-Security: -
 | | | Payload: {Code:2.05, "OFF"}
 | | |
 |<------+ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x8c
 | | | Object-Security: -
 | | | Payload: {Code:2.05, "OFF"}
 | | |

 Figure 8: Secure Access to Sensor. Square brackets [...] indicate
 content of compressed COSE object. Curly brackets { ... } indicate
 encrypted data.

 The request/response Codes are encrypted by OSCORE and only dummy
 Codes (POST/Changed) are visible in the header of the OSCORE message.
 The option Uri-Path ("alarm_status") and payload ("OFF") are
 encrypted.

 The COSE header of the request contains an identifier (5f),
 indicating which security context was used to protect the message and
 a Partial IV (42).

 The server verifies that the Partial IV has not been received before.
 The client verifies that the response is bound to the request.

Selander, et al. Expires April 28, 2018 [Page 42]

Internet-Draft OSCORE October 2017

B.2. Secure Subscribe to Sensor

 This example targets the scenario in Section 3.2 of
 [I-D.hartke-core-e2e-security-reqs] and illustrates a client
 requesting subscription to a blood sugar measurement resource (GET
 /glucose), first receiving the value 220 mg/dl and then a second
 value 180 mg/dl.

 Client Proxy Server
 | | |
 +------>| | Code: 0.05 (FETCH)
 | FETCH | | Token: 0x83
 | | | Observe: 0
 | | | Object-Security: [kid:ca,Partial IV:15]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"glucose"}
 | | |
 | +------>| Code: 0.05 (FETCH)
 | | FETCH | Token: 0xbe
 | | | Observe: 0
 | | | Object-Security: [kid:ca,Partial IV:15]
 | | | Payload: {Code:0.01,
 | | | Uri-Path:"glucose"}
 | | |
 | |<------+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Observe: 7
 | | | Object-Security: [Partial IV:32]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "220"}
 | | |
 |<------+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Observe: 7
 | | | Object-Security: [Partial IV:32]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "220"}

 | | |
 | |<------+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Observe: 8
 | | | Object-Security: [Partial IV:36]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "180"}
 | | |
 |<------+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83

Selander, et al. Expires April 28, 2018 [Page 43]

Internet-Draft OSCORE October 2017

 | | | Observe: 8
 | | | Object-Security: [Partial IV:36]
 | | | Payload: {Code:2.05,
 | | | Content-Format:0, "180"}
 | | |

 Figure 9: Secure Subscribe to Sensor. Square brackets [...]
 indicate content of compressed COSE header. Curly brackets { ... }
 indicate encrypted data.

 The request/response Codes are encrypted by OSCORE and only dummy
 Codes (FETCH/Content) are visible in the header of the OSCORE
 message. The options Content-Format (0) and the payload ("220" and
 "180"), are encrypted.

 The COSE header of the request contains an identifier (ca),
 indicating the security context used to protect the message and a
 Partial IV (15). The COSE headers of the responses contains Partial
 IVs (32 and 36).

 The server verifies that the Partial IV has not been received before.
 The client verifies that the responses are bound to the request and
 that the Partial IVs are greater than any Partial IV previously
 received in a response bound to the request.

Authors’ Addresses

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB

 Email: francesca.palombini@ericsson.com

Selander, et al. Expires April 28, 2018 [Page 44]

Internet-Draft OSCORE October 2017

 Ludwig Seitz
 SICS Swedish ICT

 Email: ludwig@sics.se

Selander, et al. Expires April 28, 2018 [Page 45]

