
CoRE Working Group C. Amsuess
Internet-Draft Energy Harvesting Solutions
Updates: 7959 (if approved) J. Mattsson
Intended status: Standards Track G. Selander
Expires: May 3, 2018 Ericsson AB
 October 30, 2017

 Echo and Request-Tag
 draft-ietf-core-echo-request-tag-00

Abstract

 This document defines two optional extensions to the Constrained
 Application Protocol (CoAP): the Echo option and the Request-Tag
 option. Each of these options when integrity protected, such as with
 DTLS or OSCORE, protects against certain attacks on CoAP message
 exchanges.

 The Echo option enables a CoAP server to verify the freshness of a
 request by requiring the CoAP client to make another request and
 include a server-provided challenge. The Request-Tag option allows
 the CoAP server to match message fragments belonging to the same
 request message, fragmented using the CoAP Block-Wise Transfer
 mechanism. This document also specifies additional processing
 requirements on Block1 and Block2 options.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Amsuess, et al. Expires May 3, 2018 [Page 1]

Internet-Draft Echo and Request-Tag October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Request Freshness . 3
 1.2. Fragmented Message Body Integrity 3
 1.3. Terminology . 4
 2. The Echo Option . 5
 2.1. Option Format . 5
 2.2. Echo Processing . 5
 2.3. Applications . 7
 3. The Request-Tag Option 8
 3.1. Option Format . 9
 3.2. Request-Tag Processing 10
 3.3. Applications . 11
 3.3.1. Body Integrity Based on Payload Integrity 11
 3.3.2. Multiple Concurrent Blockwise Operations 12
 4. Block2 / ETag Processing 13
 5. IANA Considerations . 13
 6. Security Considerations 13
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 14
 Appendix A. Performance Impact When Using the Echo Option . . . 14
 Appendix B. Request-Tag Message Size Impact 15
 Appendix C. Change Log . 16
 Authors’ Addresses . 16

1. Introduction

 The initial CoAP suite of specifications ([RFC7252], [RFC7641],
 [RFC7959]) was designed with the assumption that security could be
 provided on a separate layer, in particular by using DTLS

Amsuess, et al. Expires May 3, 2018 [Page 2]

Internet-Draft Echo and Request-Tag October 2017

 ([RFC6347]). However, for some use cases, additional functionality
 or extra processing is needed to support secure CoAP operations.

 This document specifies two server-oriented CoAP options, the Echo
 option and the Request-Tag option, addressing the security features
 request freshness and fragmented message body integrity,
 respectively. These options in themselves do not replace the need
 for a security protocol; they specify the format and processing of
 data which, when integrity protected in a message, e.g. using DTLS
 ([RFC6347]) or OSCORE ([I-D.ietf-core-object-security]), provide
 those security features. The Request-Tag option and also the ETag
 option are mandatory to use with Block1 and Block2, respectively, to
 secure blockwise operations with multiple representations of a
 particular resource as is specified in this document.

 Additional applications of the options are introduced. For example,
 Echo can be used to mitigate amplification attacks.

1.1. Request Freshness

 A CoAP server receiving a request may not be able to verify when the
 request was sent by the CoAP client. This remains true even if the
 request was protected with a security protocol, such as DTLS. This
 makes CoAP requests vulnerable to certain delay attacks which are
 particularly incriminating in the case of actuators
 ([I-D.mattsson-core-coap-actuators]). Some attacks are possible to
 mitigate by establishing fresh session keys (e.g. performing the DTLS
 handshake) for each actuation, but in general this is not a solution
 suitable for constrained environments.

 A straightforward mitigation of potential delayed requests is that
 the CoAP server rejects a request the first time it appears and asks
 the CoAP client to prove that it intended to make the request at this
 point in time. The Echo option, defined in this document, specifies
 such a mechanism which thereby enables the CoAP server to verify the
 freshness of a request. This mechanism is not only important in the
 case of actuators, or other use cases where the CoAP operations
 require freshness of requests, but also in general for synchronizing
 state between CoAP client and server.

1.2. Fragmented Message Body Integrity

 CoAP was designed to work over unreliable transports, such as UDP,
 and include a lightweight reliability feature to handle messages
 which are lost or arrive out of order. In order for a security
 protocol to support CoAP operations over unreliable transports, it
 must allow out-of-order delivery of messages using e.g. a sliding

Amsuess, et al. Expires May 3, 2018 [Page 3]

Internet-Draft Echo and Request-Tag October 2017

 replay window such as described in Section 4.1.2.6 of DTLS
 ([RFC6347]).

 The Block-Wise Transfer mechanism [RFC7959] extends CoAP by defining
 the transfer of a large resource representation (CoAP message body)
 as a sequence of blocks (CoAP message payloads). The mechanism uses
 a pair of CoAP options, Block1 and Block2, pertaining to the request
 and response payload, respectively. The blockwise functionality does
 not support the detection of interchanged blocks between different
 message bodies to the same endpoint having the same block number.
 This remains true even when CoAP is used together with a security
 protocol such as DTLS or OSCORE, within the replay window
 ([I-D.amsuess-core-request-tag]), which is a vulnerability of CoAP
 when using RFC7959.

 A straightforward mitigation of mixing up blocks from different
 messages is to use unique identifiers for different message bodies,
 which would provide equivalent protection to the case where the
 complete body fits into a single payload. The ETag option [RFC7252],
 set by the CoAP server, identifies a response body fragmented using
 the Block2 option. This document defines the Request-Tag option for
 identifying the request body fragmented using the Block1 option,
 similar to ETag, but ephemeral and set by the CoAP client.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise specified, the terms "client" and "server" refers to
 "CoAP client" and "CoAP server", respectively, as defined in
 [RFC7252].

 The terms "payload" and "body" of a message are used as in [RFC7959].
 The complete interchange of a request and a response body is called a
 (REST) "operation". An operation fragmented using [RFC7959] is
 called a "blockwise operation". A blockwise operation which is
 fragmenting the request body is called a "blockwise request
 operation". A blockwise operation which is fragmenting the response
 body is called a "blockwise response operation".

 Two blockwise operations between the same endpoint pair on the same
 resource are said to be "concurrent" if a block of the second request
 is exchanged even though the client still intends to exchange further
 blocks in the first operation. (Concurrent blockwise request
 operations are impossible with the options of [RFC7959] because the

Amsuess, et al. Expires May 3, 2018 [Page 4]

Internet-Draft Echo and Request-Tag October 2017

 second operation’s block overwrites any state of the first
 exchange.).

 The Echo and Request-Tag options are defined in this document. The
 concept of two messages being "Request-Tag-matchable" is defined in
 Section 3.1.

2. The Echo Option

 The Echo option is a server-driven challenge-response mechanism for
 CoAP. The Echo option value is a challenge from the server to the
 client included in a CoAP response and echoed in a CoAP request.

2.1. Option Format

 The Echo Option is elective, safe-to-forward, not part of the cache-
 key, and not repeatable, see Figure 1.

 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | No. | C | U | N | R | Name | Format | Length | Default | E |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | TBD | | | | | Echo | opaque | 8-40 | (none) | x |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt and Integrity Protect (when using OSCORE)

 Figure 1: Echo Option Summary

 The value of the Echo option MUST be a (pseudo-)random bit string of
 a length of at least 64 bits. A new (pseudo-)random bit string MUST
 be generated by the server for each use of the Echo option.

2.2. Echo Processing

 It is important to identify under what conditions a CoAP request to a
 resource is required to be fresh. These conditions can for example
 include what resource is requested, the request method and other data
 in the request, and conditions in the environment such as the state
 of the server or the time of the day.

 A server MAY include the Echo option in a response. The Echo option
 MUST NOT be used with empty CoAP requests (i.e. Code=0.00). If the
 server receives a request which has freshness requirements, and the
 request does not contain the Echo option, the server SHOULD send a
 4.01 Unauthorized response with a Echo option. The server SHOULD

Amsuess, et al. Expires May 3, 2018 [Page 5]

Internet-Draft Echo and Request-Tag October 2017

 cache the transmitted Echo option value and the response transmit
 time (here denoted t0).

 Upon receiving a response with the Echo option within the
 EXCHANGE_LIFETIME ([RFC7252]) of the original request, the client
 SHOULD echo the Echo option with the same value in a new request to
 the server. Upon receiving a 4.01 Unauthorized response with the
 Echo option in response to a request within the EXCHANGE_LIFETIME of
 the original request, the client SHOULD resend the original request.
 The client MAY send a different request compared to the original
 request.

 If the server receives a request which has freshness requirements,
 and the request contains the Echo option, the server MUST verify that
 the option value equals a cached value; otherwise the request is not
 processed further. The server MUST calculate the round-trip time RTT
 = (t1 - t0), where t1 is the request receive time. The server MUST
 only accept requests with a round-trip time below a certain threshold
 T, i.e. RTT < T, otherwise the request is not processed further, and
 an error message MAY be sent. The threshold T is application
 specific, its value depends e.g. on the freshness requirements of the
 request. An example message flow is illustrated in Figure 2.

 When used to serve freshness requirements, CoAP messages containing
 the Echo option MUST be integrity protected, e.g. using DTLS or
 OSCORE ([I-D.ietf-core-object-security]).

 If the server loses time synchronization, e.g. due to reboot, it MUST
 delete all cached Echo option values and response transmission times.

Amsuess, et al. Expires May 3, 2018 [Page 6]

Internet-Draft Echo and Request-Tag October 2017

 Client Server
 | |
 +----->| Code: 0.03 (PUT)
 | PUT | Token: 0x41
 | | Uri-Path: lock
 | | Payload: 0 (Unlock)
 | |
 |<-----+ t0 Code: 4.01 (Unauthorized)
 | 4.03 | Token: 0x41
 | | Echo: 0x6c880d41167ba807
 | |
 +----->| t1 Code: 0.03 (PUT)
 | PUT | Token: 0x42
 | | Uri-Path: lock
 | | Echo: 0x6c880d41167ba807
 | | Payload: 0 (Unlock)
 | |
 |<-----+ Code: 2.04 (Changed)
 | 2.04 | Token: 0x42
 | |

 Figure 2: Echo option message flow

 Constrained server implementations can use the mechanisms outlined in
 Appendix A to minimize the memory impact of having many unanswered
 Echo responses.

 CoAP-CoAP proxies MUST relay the Echo option unmodified, and SHOULD
 NOT cache responses when a Echo option is present in request or
 response for more than the exchange. CoAP-HTTP proxies MAY request
 freshness, especially if they have reason to assume that access may
 require it (eg. because it is a PUT or POST); how this is determined
 is out of scope for this document. HTTP-CoAP-Proxies SHOULD respond
 to Echo challenges themselves if they know from the recent
 establishing of the connection that the HTTP request is fresh.
 Otherwise, they SHOULD respond with 503 Service Unavailable, Retry-
 After: 0 and terminate any underlying Keep-Alive connection. It MAY
 also use other mechanisms to establish freshness of the HTTP request
 that are not specified here.

2.3. Applications

 1. Actuation requests often require freshness guarantees to avoid
 accidental or malicious delayed actuator actions.

 2. To avoid additional roundtrips for applications with multiple
 actuator requests in rapid sequence between the same client and

Amsuess, et al. Expires May 3, 2018 [Page 7]

Internet-Draft Echo and Request-Tag October 2017

 server, the server may use the Echo option (with a new value) in
 response to a request containing the Echo option. The client
 then uses the Echo option with the new value in the next
 actuation request, and the server compares the receive time
 accordingly.

 3. If a server reboots during operation it may need to synchronize
 state with requesting clients before continuing the interaction.
 For example, with OSCORE it is possible to reuse a persistently
 stored security context by synchronizing the Partial IV (sequence
 number) using the Echo option.

 4. When a device joins a multicast/broadcast group the device may
 need to synchronize state or time with the sender to ensure that
 the received message is fresh. By synchronizing time with the
 broadcaster, time can be used for synchronizing subsequent
 broadcast messages. A server MUST NOT synchronize state or time
 with clients which are not the authority of the property being
 synchronized. E.g. if access to a server resource is dependent
 on time, then the client MUST NOT set the time of the server.

 5. A server that sends large responses to unauthenticated peers
 SHOULD mitigate amplification attacks such as described in
 Section 11.3 of [RFC7252] (where an attacker would put a victim’s
 address in the source address of a CoAP request). For this
 purpose, the server MAY ask a client to Echo its request to
 verify its source address. This needs to be done only once per
 peer, and limits the range of potential victims from the general
 Internet to endpoints that have been previously in contact with
 the server. For this application, the Echo option can be used in
 messages that are not integrity protected, for example during
 discovery.

3. The Request-Tag Option

 The Request-Tag is intended for use as a short-lived identifier for
 keeping apart distinct blockwise request operations on one resource
 from one client. It enables the receiving server to reliably
 assemble request payloads (blocks) to their message bodies, and, if
 it chooses to support it, to reliably process simultaneous blockwise
 request operations on a single resource. The requests must be
 integrity protected in order to protect against interchange of blocks
 between different message bodies.

Amsuess, et al. Expires May 3, 2018 [Page 8]

Internet-Draft Echo and Request-Tag October 2017

3.1. Option Format

 The Request-Tag option has the same properties as the Block1 option:
 it is critical, unsafe, not part of the cache-key, and not
 repeatable, see Figure 3.

 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | No. | C | U | N | R | Name | Format | Length | Default | E |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+
 | TBD | x | x | - | | Request-Tag | opaque | 0-8 | (none) | * |
 +-----+---+---+---+---+-------------+--------+--------+---------+---+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt and Integrity Protect (when using OSCORE)

 Figure 3: Request-Tag Option Summary

 [Note to RFC editor: If this document is not released together with
 OSCORE but before it, the following paragraph and the "E" column
 above need to move into OSCORE.]

 Request-Tag, like the Block1 option, is a special class E option in
 terms of OSCORE processing (see Section 4.3.1.2 of
 [I-D.ietf-core-object-security]): The Request-Tag MAY be an inner or
 outer option. The inner option is encrypted and integrity protected
 between client and server, and provides message body identification
 in case of end-to-end fragmentation of requests. The outer option is
 visible to proxies and labels message bodies in case of hop-by-hop
 fragmentation of requests.

 The Request-Tag option is only used in request messages, and only in
 conjunction with the Block1 option.

 Two messages are defined to be Request-Tag-matchable if and only if
 they are sent from and to the same end points (including security
 associations), and target the same URI, and if either neither carries
 a Request-Tag option, or both carry exactly one Request-Tag option
 and the option values are of same length and content.

 The Request-Tag mechanism is applied independently on the server and
 client sides of CoAP-CoAP proxies. CoAP-HTTP proxies and HTTP-CoAP
 proxies can use Request-Tag on their CoAP sides; it is not applicable
 to HTTP requests.

 For each separate blockwise request operation, the client can choose
 a Request-Tag value, or choose not to set a Request-Tag. Creating a
 new request operation whose messages are Request-Tag-matchable to a

Amsuess, et al. Expires May 3, 2018 [Page 9]

Internet-Draft Echo and Request-Tag October 2017

 previous operation is called request tag recycling. Clients MUST NOT
 recycle a request tag unless the first operation has concluded. What
 constitutes a concluded operation depends on the application, and is
 outlined individually in Section 3.3.

 Clients are encouraged to generate compact messages. This means
 sending messages without Request-Tag options whenever possible, and
 using short values when the absent option can not be recycled.

3.2. Request-Tag Processing

 A server MUST NOT act on any two blocks in the same blockwise request
 operation that are not Request-Tag-matchable. This rule applies
 independent of whether the request actually carries a Request-Tag
 option (in this case, the request can only be acted on together with
 other messages not carrying the option, as per matchability
 definition).

 As not all messages from the same source can be combined any more, a
 block not matchable to the first Block1 cannot overwrite context kept
 for an operation under a different tag (cf. [RFC7959] Section 2.5).
 The server is still under no obligation to keep state of more than
 one transaction. When an operation is in progress and a second one
 cannot be served at the same time, the server MUST respond to the
 second request with a 5.03 (Service Unavailable) response code and
 SHOULD indicate the time it is willing to wait for additional blocks
 in the first operation using the Max-Age option, as specified in
 Section 5.9.3.4 of [RFC7252].

 A server receiving a Request-Tag MUST treat it as opaque and make no
 assumptions about its content or structure.

 Two messages being Request-Tag-matchable is a necessary but not
 sufficient condition for being part of the same operation. They can
 still be treated as independent messages by the server (e.g. when it
 sends 2.01/2.04 responses for every block), or initiate a new
 operation (overwriting kept context) when the later message carries
 Block1 number 0.

 If a request that uses Request-Tag is rejected with 4.02 Bad Option,
 the client MAY retry the operation without it, but then it MUST
 serialize all operations that affect the same resource. Security
 requirements can forbid dropping the use of Request-Tag mechanism.

Amsuess, et al. Expires May 3, 2018 [Page 10]

Internet-Draft Echo and Request-Tag October 2017

3.3. Applications

3.3.1. Body Integrity Based on Payload Integrity

 When a client fragments a request body into multiple message
 payloads, even if the individual messages are integrity protected, it
 is still possible for a man-in-the-middle to maliciously replace
 later operation’s blocks with earlier operation’s blocks (see
 Section 3.2 of [I-D.amsuess-core-request-tag]). Therefore, the
 integrity protection of each block does not extend to the operation’s
 request body.

 In order to gain that protection, use the Request-Tag mechanism as
 follows:

 o The message payloads MUST be integrity protected end-to-end
 between client and server.

 o The client MUST NOT recycle a request tag unless the previous
 blockwise request operation that used matchable Request-Tags has
 concluded.

 o The client MUST NOT regard a blockwise request operation as
 concluded unless all of the messages the client previously sent in
 the operation have been confirmed by the message integrity
 protection mechanism, or are considered invalid by the server if
 replayed.

 Typically, in OSCORE, these confirmations can result either from
 the client receiving an OSCORE response message matching the
 request (an empty ACK is insufficient), or because the message’s
 sequence number is old enough to be outside the server’s receive
 window.

 In DTLS, this can only be confirmed if the request message was not
 retransmitted, and was responded to.

 o The client MUST NOT fall back to not using the Request-Tag
 mechanisms when receiving a 4.02 Bad Option response.

 Authors of other documents (e.g. [I-D.ietf-core-object-security])
 are invited to mandate this behavior for clients that execute
 blockwise interactions over secured transports. In this way, the
 server can rely on a conforming client to set the Request-Tag option
 when required, and thereby conclude on the integrity of the assembled
 body.

Amsuess, et al. Expires May 3, 2018 [Page 11]

Internet-Draft Echo and Request-Tag October 2017

 Note that this mechanism is implicitly implemented when the security
 layer guarantees ordered delivery (e.g. CoAP over TLS
 [I-D.tschofenig-core-coap-tcp-tls]). This is because with each
 message, any earlier operation can be regarded as concluded by the
 client, so it never needs to set the Request-Tag option unless it
 wants to perform concurrent operations.

3.3.2. Multiple Concurrent Blockwise Operations

 CoAP clients, especially CoAP proxies, may initiate a blockwise
 request operation to a resource, to which a previous one is already
 in progress, and which the new request should not cancel. One
 example is when a CoAP proxy fragments an OSCORE messages using
 blockwise (so-called "outer" blockwise, see Section 4.3.1. of
 [I-D.ietf-core-object-security])), where the Uri-Path is hidden
 inside the encrypted message, and all the proxy sees is the server’s
 "/" path.

 When a client fragments a message as part of a blockwise request
 operation, it can do so without a Request-Tag option set. For this
 application, an operation can be regarded as concluded when a final
 Block1 option has been sent and acknowledged, or when the client
 chose not to continue with the operation (e.g. by user choice, or in
 the case of a proxy when it decides not to take any further messages
 in the operation due to a timeout). When another concurrent
 blockwise request operation is made (i.e. before the operation is
 concluded), the client can not recycle the request tag, and has to
 pick a new one. The possible outcomes are:

 o The server responds with a successful code.

 The concurrent blockwise operations can then continue.

 o The server responds 4.02 Bad Option.

 This can indicate that the server does not support Request-Tag.
 The client should wait for the first operation to conclude, and
 then try the same request without a Request-Tag option.

 o The server responds 5.03 Service Unavailable with a Max-Age option
 to indicate when it is likely to be available again.

 This can indicate that the server supports Request-Tag, but still
 is not prepared to handle concurrent requests. The client should
 wait for as long as the response is valid, and then retry the
 operation, which may not need to carry a Request-Tag option by
 then any more.

Amsuess, et al. Expires May 3, 2018 [Page 12]

Internet-Draft Echo and Request-Tag October 2017

 In the cases where a CoAP proxy receives an error code, it can
 indicate the anticipated delay by sending a 5.03 Service Unavailable
 response itself. Note that this behavior is no different from what a
 CoAP proxy would need to do were it unaware of the Request-Tag
 option.

4. Block2 / ETag Processing

 The same security properties as in Section 3.3.1 can be obtained for
 blockwise response operations. The threat model here is not an
 attacker (because the response is made sure to belong to the current
 request by the security layer), but blocks in the client’s cache.

 Analogous rules to Section 3.2 are already in place for assembling a
 response body in Section 2.4 of [RFC7959].

 To gain equivalent protection to Section 3.3.1, a server MUST use the
 Block2 option in conjunction with the ETag option ([RFC7252],
 Section 5.10.6), and MUST NOT use the same ETag value for different
 representations of a resource.

5. IANA Considerations

 [TBD: Fill out the option templates for Echo and Request-Tag]

6. Security Considerations

 Servers that store a Echo challenge per client can be attacked for
 resource exhaustion, and should consider minimizing the state kept
 per client, e.g. using a mechanism as described in Appendix A.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

Amsuess, et al. Expires May 3, 2018 [Page 13]

Internet-Draft Echo and Request-Tag October 2017

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

7.2. Informative References

 [I-D.amsuess-core-request-tag]
 Amsuess, C., "Request-Tag option", draft-amsuess-core-
 request-tag-00 (work in progress), March 2017.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-06 (work in
 progress), October 2017.

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-
 mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

 [I-D.tschofenig-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Technologies, Z., and H.
 Tschofenig, "A TCP and TLS Transport for the Constrained
 Application Protocol (CoAP)", draft-tschofenig-core-coap-
 tcp-tls-05 (work in progress), November 2015.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

Appendix A. Performance Impact When Using the Echo Option

 The Echo option requires the server to keep some state in order to
 later verify the echoed request.

 Instead of caching Echo option values and response transmission
 times, the server MAY use the encryption of the response transmit
 time t0 as Echo option value. Such a scheme needs to ensure that the
 server can detect a replay of a previous encrypted response transmit
 time.

Amsuess, et al. Expires May 3, 2018 [Page 14]

Internet-Draft Echo and Request-Tag October 2017

 For example, the server MAY encrypt t0 with AES-CCM-128-64-64 using a
 (pseudo-)random secret key k generated and cached by the server. A
 unique IV MUST be used with each encryption, e.g. using a sequence
 number. If the server loses time synchronization, e.g. due to
 reboot, then k MUST be deleted and replaced by a new random secret
 key. When using encrypted response transmit times, the Echo
 processing is modified in the following way: The verification of
 cached option value in the server processing is replaced by the
 verification of the integrity of the encrypted option value using the
 cached key and IV (e.g. sequence number).

 The two methods - (a) the list of cached values, and (b) the
 encryption of transmit time - have different impact on the
 implementation:

 o size of cached data (list of cached values vs. key and IV)

 o size of message (typically larger with encrypted time)

 o computation (encryption + decryption vs. generation new nonce +
 cache + lookup)

 In general, the encryption of transmission times is most useful if
 the number of concurrent requests is high.

 A hybrid scheme is also possible: the first Echo option values are
 cached, and if the number of concurrent requests reach a certain
 threshold, then encrypted times are used until there is space for
 storing new values in the list. In that case, the server may need to
 make both verifications - either that the Echo value is in the list,
 or that it verifies in decryption - and in either case that the
 transmission time is valid.

Appendix B. Request-Tag Message Size Impact

 In absence of concurrent operations, the Request-Tag mechanism for
 body integrity (Section 3.3.1) incurs no overhead if no messages are
 lost (more precisely: in OSCORE, if no operations are aborted due to
 repeated transmission failure; in DTLS, if no packages are lost), or
 when blockwise request operations happen rarely (in OSCORE, if only
 one request operation with losses within the replay window).

 In those situations, no message has any Request-Tag option set, and
 that can be recycled indefinitely.

 When the absence of a Request-Tag option can not be recycled any more
 within a security context, the messages with a present but empty
 Request-Tag option can be used (1 Byte overhead), and when that is

Amsuess, et al. Expires May 3, 2018 [Page 15]

Internet-Draft Echo and Request-Tag October 2017

 used-up, 256 values from one byte long options (2 Bytes overhead) are
 available.

 In situations where those overheads are unacceptable (e.g. because
 the payloads are known to be at a fragmentation threshold), the
 absent Request-Tag value can be made usable again:

 o In DTLS, a new session can be established.

 o In OSCORE, the sequence number can be artificially increased so
 that all lost messages are outside of the replay window by the
 time the first request of the new operation gets processed, and
 all earlier operations can therefore be regarded as concluded.

Appendix C. Change Log

 [The editor is asked to remove this section before publication.]

 o Major changes since draft-amsuess-core-repeat-request-tag-00:

 * The option used for establishing freshness was renamed from
 "Repeat" to "Echo" to reduce confusion about repeatable
 options.

 * The response code that goes with Echo was changed from 4.03 to
 4.01 because the client needs to provide better credentials.

 * The interaction between the new option and (cross) proxies is
 now covered.

 * Two messages being "Request-Tag matchable" was introduced to
 replace the older concept of having a request tag value with
 its slightly awkward equivalence definition.

Authors’ Addresses

 Christian Amsuess
 Energy Harvesting Solutions

 Email: c.amsuess@energyharvesting.at

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

Amsuess, et al. Expires May 3, 2018 [Page 16]

Internet-Draft Echo and Request-Tag October 2017

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

Amsuess, et al. Expires May 3, 2018 [Page 17]

