
CoRE M. Veillette, Ed.
Internet-Draft Trilliant Networks Inc.
Intended status: Standards Track P. van der Stok, Ed.
Expires: January 18, 2018 consultant
 A. Pelov
 Acklio
 A. Bierman
 YumaWorks
 July 17, 2017

 CoAP Management Interface
 draft-ietf-core-comi-01

Abstract

 This document describes a network management interface for
 constrained devices and networks, called CoAP Management Interface
 (CoMI). The Constrained Application Protocol (CoAP) is used to
 access datastore and data node resources specified in YANG, or SMIv2
 converted to YANG. CoMI uses the YANG to CBOR mapping and converts
 YANG identifier strings to numeric identifiers for payload size
 reduction. CoMI extends the set of YANG based protocols, NETCONF and
 RESTCONF, with the capability to manage constrained devices and
 networks.

Note

 Discussion and suggestions for improvement are requested, and should
 be sent to core@ietf.org.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 18, 2018.

Veillette, et al. Expires January 18, 2018 [Page 1]

Internet-Draft CoMI July 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. CoMI Architecture . 5
 2.1. Major differences between RESTCONF and CoMI 6
 2.2. Compression of YANG identifiers 7
 2.3. Instance identifier 8
 2.4. CBOR ordered map schematic 8
 2.5. Content-Formats . 8
 3. Example syntax . 11
 4. CoAP Interface . 12
 5. CoMI Collection Interface 13
 5.1. Using the ’k’ Uri-Query option 14
 5.2. Data Retrieval . 15
 5.2.1. Using the ’c’ Uri-Query option 16
 5.2.2. Using the ’d’ Uri-Query option 16
 5.2.3. GET . 17
 5.2.4. FETCH . 19
 5.3. Data Editing . 20
 5.3.1. Data Ordering . 20
 5.3.2. POST . 20
 5.3.3. PUT . 21
 5.3.4. iPATCH . 22
 5.3.5. DELETE . 23
 5.4. Full datastore access 23
 5.4.1. Full datastore examples 24
 5.5. Event stream . 25
 5.5.1. Notify Examples 26
 5.6. RPC statements . 26
 5.6.1. RPC Example . 27
 6. Access to MIB Data . 27
 7. Use of Block . 29

Veillette, et al. Expires January 18, 2018 [Page 2]

Internet-Draft CoMI July 2017

 8. Resource Discovery . 29
 9. Error Handling . 31
 10. Security Considerations 34
 11. IANA Considerations . 34
 11.1. Resource Type (rt=) Link Target Attribute Values
 Registry . 34
 11.2. CoAP Content-Formats Registry 35
 11.3. Media Types Registry 35
 11.4. Concise Binary Object Representation (CBOR) Tags
 Registry . 37
 12. Acknowledgements . 37
 13. References . 38
 13.1. Normative References 38
 13.2. Informative References 39
 Appendix A. ietf-comi YANG module 40
 Appendix B. ietf-comi .sid file 45
 Appendix C. YANG example specifications 49
 C.1. ietf-system . 49
 C.2. server list . 50
 C.3. interfaces . 51
 C.4. Example-port . 52
 C.5. IP-MIB . 53
 Appendix D. Comparison with LWM2M 55
 Authors’ Addresses . 55

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is designed for
 Machine to Machine (M2M) applications such as smart energy, smart
 city and building control. Constrained devices need to be managed in
 an automatic fashion to handle the large quantities of devices that
 are expected in future installations. Messages between devices need
 to be as small and infrequent as possible. The implementation
 complexity and runtime resources need to be as small as possible.

 This draft describes the CoAP Management Interface which uses CoAP
 methods to access structured data defined in YANG [RFC7950]. This
 draft is complementary to [RFC8040] which describes a REST-like
 interface called RESTCONF, which uses HTTP methods to access
 structured data defined in YANG.

 The use of standardized data models specified in a standardized
 language, such as YANG, promotes interoperability between devices and
 applications from different manufacturers.

 CoMI and RESTCONF are intended to work in a stateless client-server
 fashion. They use a single round-trip to complete a single editing
 transaction, where NETCONF needs up to 10 round trips.

Veillette, et al. Expires January 18, 2018 [Page 3]

Internet-Draft CoMI July 2017

 To promote small messges, CoMI uses a YANG to CBOR mapping
 [I-D.ietf-core-yang-cbor] and numeric identifiers [I-D.ietf-core-sid]
 to minimize CBOR payloads and URI length.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in the YANG data modelling language
 [RFC7950]: action, anydata, anyxml, client, configuration data,
 container, data model, data node, datastore, identity, instance
 identifier, key, key leaf, leaf, leaf-list, list, module, RPC, schema
 node, server, state data, submodule.

 The following term is defined in [I-D.ietf-core-yang-cbor]: YANG
 schema item identifier (SID).

 The following terms are defined in the CoAP protocol [RFC7252]:
 Confirmable Message, Content-Format.

 The following terms are defined in this document:

 data node resource: a CoAP resource that models a YANG data node.

 datastore resource: a CoAP resource that models a YANG datastore.

 event stream resource: a CoAP resource used by clients to observe
 YANG notifications.

 target resource: the resource that is associated with a particular
 CoAP request, identified by the request URI.

 data node instance: An instance of a data node specified in a YANG
 module and stored in the server.

 notification instance: An instance of a schema node of type
 notification, specified in a YANG module implemented by the
 server. The instance is generated in the server at the occurrence
 of the corresponding event and reported by an event stream.

 list instance identifier: Handle used to identify a YANG data node
 that is an instance of a YANG "list" specified with the values of
 the key leaves of the list.

 single instance identifier: Handle used to identify a specific data
 node which can be instantiated only once. This includes data

Veillette, et al. Expires January 18, 2018 [Page 4]

Internet-Draft CoMI July 2017

 nodes defined at the root of a YANG module or data nodes defined
 within a container. This excludes data nodes defined within a
 list or any children of these data nodes.

 instance identifier: List instance identifier or single instance
 identifier.

 data node value: The value assigned to a data node instance. Data
 node values are serialized into the payload according to the rules
 defined in section 4 of [I-D.ietf-core-yang-cbor].

2. CoMI Architecture

 This section describes the CoMI architecture to use CoAP for reading
 and modifying the content of datastore(s) used for the management of
 the instrumented node.

 +--+
 | SMIv2 specification (2) |
 +--+
 |
 V
 +--+
 | YANG specification (1) |
 +--+
 | |
 Client V Server V
 +----------------+ +-------------------+
Request	--> CoAP request(3) -->	Indication
Confirm	<-- CoAP response(3)<--	Response (4)
	<==== Security (7) ===>	+-----------------+
 +----------------+ || Datastore (5) ||
 |+-----------------+|
 |+-----------------+|
 || Event stream (6)||
 |+-----------------+|
 +-------------------+

 Figure 1: Abstract CoMI architecture

 Figure 1 is a high-level representation of the main elements of the
 CoMI management architecture. The different numbered components of
 Figure 1 are discussed according to component number.

 (1) YANG specification: contains a set of named and versioned
 modules.

Veillette, et al. Expires January 18, 2018 [Page 5]

Internet-Draft CoMI July 2017

 (2) SMIv2 specification: A named module specifies a set of variables
 and "conceptual tables". There is an algorithm to translate SMIv2
 specifications to YANG specifications.

 (3) CoAP request/response messages: The CoMI client sends request
 messages to and receives response messages from the CoMI server.

 (4) Request, Indication, Response, Confirm: The processes performed
 by the CoMI clients and servers.

 (5) Datastore: A resource used to access configuration data, state
 data, RPCs and actions. A CoMI server may support multiple
 datastores to support more complex operations such as
 configuration rollback, scheduled update.

 (6) Event stream: An observable resource used to get real time
 notifications. A CoMI server may support multiple Event streams
 serving different purposes such as normal monitoring, diagnostic,
 syslog, security monitoring.

 (7) Security: The server MUST prevent unauthorized users from
 reading or writing any CoMI resources. CoMI relies on security
 protocols such as DTLS [RFC6347] to secure CoAP communication.

2.1. Major differences between RESTCONF and CoMI

 CoMI is a RESTful protocol for small devices where saving bytes to
 transport counts. Contrary to RESTCONF, many design decisions are
 motivated by the saving of bytes. Consequently, CoMI is not a
 RESTCONF over CoAP protocol, but differs more significantly from
 RESTCONF. Some major differences are cited below:

 o CoMI uses CoAP/UDP as transport protocol and CBOR as payload
 format [I-D.ietf-core-yang-cbor]. RESTCONF uses HTTP/TCP as
 transport protocol and JSON [RFC7159] or XML [XML] as payload
 formats.

 o CoMI encodes YANG identifier strings as numbers, where RESTCONF
 does not.

 o CoMI uses the methods FETCH and iPATCH, not used by RESTCONF.
 RESTCONF uses the HTTP methods HEAD, and OPTIONS, which are not
 used by CoMI.

 o CoMI does not support "insert" query parameter (first, last,
 before, after) and the "point" query parameter which are supported
 by RESTCONF.

Veillette, et al. Expires January 18, 2018 [Page 6]

Internet-Draft CoMI July 2017

 o CoMI does not support the "start-time" and "stop-time" query
 parameters to retrieve past notifications.

 o CoMI and RESTCONF also differ in the handling of:

 * notifications.

 * default values.

2.2. Compression of YANG identifiers

 In the YANG specification, items are identified with a name string.
 In order to significantly reduce the size of identifiers used in
 CoMI, numeric identifiers are used instead of these strings. YANG
 Schema Item iDentifier (SID) is defined in [I-D.ietf-core-yang-cbor]
 section 2.1.

 When used in a URI, SIDs are encoded in based64 using the URL and
 Filename safe alphabet as defined by [RFC4648] section 5. The last 6
 bits encoded is always aligned with the least significant 6 bits of
 the SID represented using an unsigned integer. ’A’ characters (value
 0) at the start of the resulting string are removed.

 SID in basae64 = URLsafeChar[SID >> 60 & 0x3F] |
 URLsafeChar[SID >> 54 & 0x3F] |
 URLsafeChar[SID >> 48 & 0x3F] |
 URLsafeChar[SID >> 42 & 0x3F] |
 URLsafeChar[SID >> 36 & 0x3F] |
 URLsafeChar[SID >> 30 & 0x3F] |
 URLsafeChar[SID >> 24 & 0x3F] |
 URLsafeChar[SID >> 18 & 0x3F] |
 URLsafeChar[SID >> 12 & 0x3F] |
 URLsafeChar[SID >> 6 & 0x3F] |
 URLsafeChar[SID & 0x3F]

 For example, SID 1717 is encoded as follow.

 URLsafeChar[1717 >> 60 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 54 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 48 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 42 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 36 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 30 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 24 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 18 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 12 & 0x3F] = URLsafeChar[0] = ’A’
 URLsafeChar[1717 >> 6 & 0x3F] = URLsafeChar[26] = ’a’
 URLsafeChar[1717 & 0x3F] = URLsafeChar[53] = ’1’

Veillette, et al. Expires January 18, 2018 [Page 7]

Internet-Draft CoMI July 2017

 The resulting base64 representation of SID 1717 is "a1"

2.3. Instance identifier

 Instance identifiers are used to uniquely identify data node
 instances within a datastore. This YANG built-in type is defined in
 [RFC7950] section 9.13. An instance identifier is composed of the
 data node identifier (i.e. a SID) and for data nodes within list(s)
 the keys used to index within these list(s).

 When part of a payload, instance identifiers are encoded in CBOR
 based on the rules defined in [I-D.ietf-core-yang-cbor] section
 5.13.1. When part of a URI, the SID is appended to the URI of the
 targeted datastore, the keys are specified using the ’k’ URI-Query as
 defined in Section 5.1.

2.4. CBOR ordered map schematic

 An ordered map is used as a root container of the application/yang-
 tree+cbor Content-Format. This datatype share the same
 functionalities as a CBOR map without the following limitations:

 o The ordering of the pairs of data items is preserved from
 serialization to deserialization.

 o Duplicate keys are allowed

 This schematic is constructed using a CBOR array comprising pairs of
 data items, each pair consisting of a key that is immediately
 followed by a value. Unlike a CBOR map for which the length denotes
 the number of pairs, the length of the ordered map denotes the number
 of items (i.e. number of keys plus number of values).

 The use of this schematic can be inferred from its context or by the
 presence of a preceding tag. The tag assigned to the Ordered map is
 defined in Section 11.4.

 In the case of CoMI, the use of the ordered map as the root container
 of the application/yang-tree+cbor Content-Format is inferred, the
 Ordered map tag is not used.

2.5. Content-Formats

 ComI uses Content-Formats based on the YANG to CBOR mapping specified
 in [I-D.ietf-core-yang-cbor]. All Content-Formats defined hereafter
 are constructed using one or both of these constructs:

Veillette, et al. Expires January 18, 2018 [Page 8]

Internet-Draft CoMI July 2017

 o YANG data node value, encoded based on the rules defined in
 [I-D.ietf-core-yang-cbor] section 4.

 o YANG instance identifier, encoded based on the rules defined in
 [I-D.ietf-core-yang-cbor] section 5.13.1.

 The following Content-formats are defined:

 application/yang-value+cbor: represents a CBOR YANG document
 containing one YANG data node value. The YANG data node instance
 can be a leaf, a container, a list, a list instance, a RPC input,
 a RPC output, an action input, an action output, a leaf-list, an
 anydata or an anyxml. The CBOR encoding for each of these YANG
 data node instances are defined in [I-D.ietf-core-yang-cbor]
 section 4.

 FORMAT: data-node-value

 DELTA ENCODING: SIDs included in a YANG container, a list
 instance, a RPC input, a RPC output, an action input, an actions
 output and an anydata are encoded using a delta value equal to the
 SID of the current schema node minus the SID of the parent. The
 parent SID of root data nodes is defined by the URI carried in the
 associated request (i.e. GET, PUT, POST).

 application/yang-values+cbor: represents a YANG document containing
 a list of data node values.

 FORMAT: CBOR array of data-node-value

 DELTA ENCODING: SIDs included in a YANG container, a list instance
 and an anydata are encoded using a delta value equal to the SID of
 the current schema node minus the SID of the parent. The parent
 SID of root data nodes is defined by the corresponding instance-
 identifier carried in the FETCH request.

 application/yang-tree+cbor: represents a CBOR YANG document
 containing a YANG data tree.

 FORMAT: ordered map of single-instance-identifier, data-node-value

 DELTA ENCODING: The SID part of the first instance-identifier
 within the ordered map is encoded using its absolute value.
 Subsequent instance-identifiers are encoded using a delta value
 equal to the SID of the current instance-identifiers minus the SID
 of the previous instance-identifier.

Veillette, et al. Expires January 18, 2018 [Page 9]

Internet-Draft CoMI July 2017

 application/yang-selectors+cbor: represents a CBOR YANG document
 containing a list of data node selectors (i.e. instance
 identifier).

 FORMAT: CBOR array of instance-identifier

 DELTA ENCODING: The SID part of the first instance-identifier
 within the CBOR array is encoded using its absolute value.
 Subsequent instance-identifiers are encoded using a delta value
 equal to the SID of the current instance-identifiers minus the SID
 of the previous instance-identifier.

 application/yang-patch+cbor: represents a CBOR YANG document
 containing a list of data nodes to be replaced, created, or
 deleted.

 For each data node instance, D, for which the instance identifier
 is the same as for a data node instance, I, in the targeted
 resource: the data node value of D replaces the data node value of
 I. When the data node value of D is null, the data node instance
 I is removed. When the targeted resource does not contain a data
 node instance with the same instance identifier as D, a new data
 node instance is created in the targeted resource with the same
 instance identifier and data node value as D.

 FORMAT: CBOR array of instance-identifier, data-node-value

 DELTA ENCODING: Same as Content-Format application/yang-tree+cbor

 The different Content-formats usage is summarized in the table below:

Veillette, et al. Expires January 18, 2018 [Page 10]

Internet-Draft CoMI July 2017

 +----------------+--------------+----------------------------------+
 | Method | Resource | Content-Format |
 +----------------+--------------+----------------------------------+
GET response	data node	/application/yang-value+cbor
PUT request	data node	/application/yang-value+cbor
POST request	data node	/application/yang-value+cbor
DELETE	data node	n/a
GET response	datastore	/application/yang-tree+cbor
PUT request	datastore	/application/yang-tree+cbor
POST request	datastore	/application/yang-tree+cbor
FETCH request	datastore	/application/yang-selectors+cbor
FETCH response	datastore	/application/yang-values+cbor
iPATCH request	datastore	/application/yang-patch+cbor
GET response	event stream	/application/yang-tree+cbor
POST request	rpc, action	/application/yang-value+cbor
POST response	rpc, action	/application/yang-value+cbor
 +----------------+--------------+----------------------------------+

3. Example syntax

 This section presents the notation used for the examples. The YANG
 modules that are used throughout this document are shown in
 Appendix C. The example modules are copied from existing modules and
 annotated with SIDs. The values of the SIDs are taken over from
 [yang-cbor].

 CBOR is used to encode CoMI request and response payloads. The CBOR
 syntax of the YANG payloads is specified in [RFC7049]. The payload
 examples are notated in Diagnostic notation (defined in section 6 of
 [RFC7049]) that can be automatically converted to CBOR.

 SIDs in URIs are represented as a base64 number, SIDs in the payload
 are represented as decimal numbers.

Veillette, et al. Expires January 18, 2018 [Page 11]

Internet-Draft CoMI July 2017

4. CoAP Interface

 The format of the links is specified in [I-D.ietf-core-interfaces].
 This note specifies a Management Collection Interface. CoMI end-
 points that implement the CoMI management protocol, support at least
 one discoverable management resource of resource type (rt):
 core.c.datastore, with example path: /c, where c is short-hand for
 CoMI. The path /c is recommended but not compulsory (see Section 8).

 Three CoMI resources are accessible with the following three example
 paths:

 /c: Datastore resource with path "/c" and using CBOR content
 encoding format. Sub-resouces of format /c/instance-identifier
 may be available to access directly each data node resource for
 this datastore.

 /mod.uri: URI identifying the location of the YANG module library
 used by this server, with path "/mod.uri" and Content-Format
 "text/plain; charset=utf-8". An ETag MUST be maintained for this
 resource by the server, which MUST be changed to a new value when
 the set of YANG modules in use by the server changes.

 /s: Event stream resource to which YANG notification instances are
 reported. Notification support is optional, so this resource will
 not exist if the server does not support any notifications.

 The mapping of YANG data node instances to CoMI resources is as
 follows. Every data node of the YANG modules loaded in the CoMI
 server represents a sub-resource of the datastore resource (e.g. /c/
 instance-identifier).

 When multiple instances of a list exist, instance selection is
 possible as described in Section 5.1, Section 5.2.4, and
 Section 5.2.3.1.

 The description of the management collection interface, with
 if=core.c, is shown in the table below, following the guidelines of
 [I-D.ietf-core-interfaces]:

Veillette, et al. Expires January 18, 2018 [Page 12]

Internet-Draft CoMI July 2017

 +---------------------+------------------------+--------------------+
 | Function | Recommended path | rt |
 +---------------------+------------------------+--------------------+
Datastore	/c	core.c.datastore
Data node	/c/instance-identifier	core.c.datanode
YANG module library	/mod.uri	core.c.moduri
Event steam	/s	core.c.eventstream
 +---------------------+------------------------+--------------------+

 The path values are example values. On discovery, the server makes
 the actual path values known for these four resources.

5. CoMI Collection Interface

 The CoMI Collection Interface provides a CoAP interface to manage
 YANG servers.

 The methods used by CoMI are:

 +-----------+---+
 | Operation | Description |
 +-----------+---+
GET	Retrieve the datastore resource or a data node
	resource
FETCH	Retrieve specific data nodes within a datastore
	resource
POST	Create a datastore resource or a data node resource,
	invoke an RPC or action
PUT	Create or replace a datastore resource or a data node
	resource
iPATCH	Idem-potently create, replace, and delete data node
	resource(s) within a datastore resource
DELETE	Delete a datastore resource or a data node resource
 +-----------+---+

 There is one Uri-Query option for the GET, PUT, POST, and DELETE
 methods.

Veillette, et al. Expires January 18, 2018 [Page 13]

Internet-Draft CoMI July 2017

 +------------------+--+
 | Uri-Query option | Description |
 +------------------+--+
 | k | Select an instance within YANG list(s) |
 +------------------+--+

 This parameter is not used for FETCH and iPATCH, because their
 request payloads support list instance selection.

5.1. Using the ’k’ Uri-Query option

 The "k" (key) parameter specifies a specific instance of a data node.
 The SID in the URI is followed by the (?k=key1, key2,..). Where SID
 identifies a data node, and key1, key2 are the values of the key
 leaves that specify an instance. Lists can have multiple keys, and
 lists can be part of lists. The order of key value generation is
 given recursively by:

 o For a given list, if a parent data node is a list, generate the
 keys for the parent list first.

 o For a given list, generate key values in the order specified in
 the YANG module.

 Key values are encoded using the rules defined in the following
 table.

Veillette, et al. Expires January 18, 2018 [Page 14]

Internet-Draft CoMI July 2017

 +-----------------------------+--------------------------------+
 | YANG datatype | Uri-Query text content |
 +-----------------------------+--------------------------------+
uint8,uint16,unit32, uint64	int2str(key)
int8, int16,int32, int64	urlSafeBase64(CBORencode(key))
decimal64	urlSafeBase64(CBOR key)
string	key
boolean	"0" or "1"
enumeration	int2str(key)
bits	urlSafeBase64(CBORencode(key))
binary	urlSafeBase64(key)
identityref	int2str(key)
union	urlSafeBase64(CBORencode(key))
instance-identifier	urlSafeBase64(CBORencode(key))
 +-----------------------------+--------------------------------+

 In this table:

 o The method int2str() is used to convert an integer value to a
 string. For example, int2str(0x0123) return the string "291".

 o The method urlSafeBase64() is used to convert a binary string to
 base64 using the URL and Filename safe alphabet as defined by
 [RFC4648] section 5. For example, urlSafeBase64(\xF9\x56\xA1\x3C)
 return the string "-VahPA".

 o The method CBORencode() is used to convert a YANG value to CBOR as
 specified in [I-D.ietf-core-yang-cbor] section 5, item 8.

 The resulting key string is encoded in a Uri-Query as specified in
 [RFC7252] section 6.5.

5.2. Data Retrieval

 One or more data nodes can be retrieved by the client. The operation
 is mapped to the GET method defined in section 5.8.1 of [RFC7252] and
 to the FETCH method defined in section 2 of [RFC8132].

Veillette, et al. Expires January 18, 2018 [Page 15]

Internet-Draft CoMI July 2017

 It is possible that the size of the payload is too large to fit in a
 single message. In the case that management data is bigger than the
 maximum supported payload size, the Block mechanism from [RFC7959]
 may be used, as explained in more detail in Section 7.

 There are two additional Uri-Query options for the GET and FETCH
 methods.

 +-------------+---+
 | Uri-Query | Description |
 | option | |
 +-------------+---+
c	Control selection of configuration and non-
	configuration data nodes (GET and FETCH)
d	Control retrieval of default values.
 +-------------+---+

5.2.1. Using the ’c’ Uri-Query option

 The ’c’ (content) parameter controls how descendant nodes of the
 requested data nodes will be processed in the reply.

 The allowed values are:

 +-------+---+
 | Value | Description |
 +-------+---+
c	Return only configuration descendant data nodes
n	Return only non-configuration descendant data nodes
a	Return all descendant data nodes
 +-------+---+

 This parameter is only allowed for GET and FETCH methods on datastore
 and data node resources. A 4.02 (Bad Option) error is returned if
 used for other methods or resource types.

 If this Uri-Query option is not present, the default value is "a".

5.2.2. Using the ’d’ Uri-Query option

 The "d" (with-defaults) parameter controls how the default values of
 the descendant nodes of the requested data nodes will be processed.

 The allowed values are:

Veillette, et al. Expires January 18, 2018 [Page 16]

Internet-Draft CoMI July 2017

 +-------+---+
 | Value | Description |
 +-------+---+
a	All data nodes are reported. Defined as ’report-all’ in
	section 3.1 of [RFC6243].
t	Data nodes set to the YANG default are not reported.
	Defined as ’trim’ in section 3.2 of [RFC6243].
 +-------+---+

 If the target of a GET or FETCH method is a data node that represents
 a leaf that has a default value, and the leaf has not been given a
 value by any client yet, the server MUST return the default value of
 the leaf.

 If the target of a GET method is a data node that represents a
 container or list that has child resources with default values, and
 these have not been given value yet,

 The server MUST not return the child resource if d= ’t’

 The server MUST return the child resource if d= ’a’.

 If this Uri-Query option is not present, the default value is ’t’.

5.2.3. GET

 A request to read the values of a data node instance is sent with a
 confirmable CoAP GET message. An instance identifier is specified in
 the URI path prefixed with the example path /c.

 FORMAT:
 GET /c/instance-identifier

 2.05 Content (Content-Format: application/yang-value+cbor)
 data-node-value

 The returned payload contains the CBOR encoding of the specified data
 node instance value.

5.2.3.1. GET Examples

 Using for example the current-datetime leaf from Appendix C.1, a
 request is sent to retrieve the value of system-state/clock/current-
 datetime specified in container system-state. The SID of system-
 state/clock/current-datetime is 1719, encoded in octal 3267, yields
 two 6 bit decimal numbers 26 and 55, encoded in base64, (according to
 table 2 of [RFC4648]) yields a3. The response to the request returns

Veillette, et al. Expires January 18, 2018 [Page 17]

Internet-Draft CoMI July 2017

 the CBOR encoding of this leaf of type ’string’ as defined in
 [I-D.ietf-core-yang-cbor] section 5.4.

 REQ: GET example.com/c/a3

 RES: 2.05 Content (Content-Format: application/yang-value+cbor)
 "2014-10-26T12:16:31Z"

 The next example represents the retrieval of a YANG container. In
 this case, the CoMI client performs a GET request on the clock
 container (SID = 1717; base64: a1). The container returned is
 encoded using a CBOR map as specified by [I-D.ietf-core-yang-cbor]
 section 4.2.

 REQ: GET example.com/c/a1

 RES: 2.05 Content (Content-Format: application/yang-value+cbor)
 {
 +2 : "2014-10-26T12:16:51Z", / SID 1719 /
 +1 : "2014-10-21T03:00:00Z" / SID 1718 /
 }

 This example shows the retrieval of the /interfaces/interface YANG
 list accessed using SID 1533 (base64: X9). The return payload is
 encoded using a CBOR array as specified by [I-D.ietf-core-yang-cbor]
 section 4.4.1 containing 2 instances.

 REQ: GET example.com/c/X9

 RES: 2.05 Content (Content-Format: application/yang-value+cbor)
 [
 {
 +4 : "eth0", / name (SID 1537) /
 +1 : "Ethernet adaptor", / description (SID 1534) /
 +5 : 1179, / type, (SID 1538) identity /
 / ethernetCsmacd (SID 1179) /
 +2 : true / enabled (SID 1535) /
 },
 {
 +4 : "eth1", / name (SID 1537) /
 +1 : "Ethernet adaptor", / description (SID 1534) /
 +5 : 1179, / type, (SID 1538) identity /
 / ethernetCsmacd (SID 1179) /
 +2 : false / enabled /
 }
]

Veillette, et al. Expires January 18, 2018 [Page 18]

Internet-Draft CoMI July 2017

 It is equally possible to select a leaf of a specific instance of a
 list. The example below requests the description leaf (SID=1534,
 base64: X-) within the interface list corresponding to the list key
 "eth0". The returned value is encoded in CBOR based on the rules
 specified by [I-D.ietf-core-yang-cbor] section 5.4.

 REQ: GET example.com/c/X-?k="eth0"

 RES: 2.05 Content (Content-Format: application/yang-value+cbor)
 "Ethernet adaptor"

5.2.4. FETCH

 The FETCH is used to retrieve multiple data node values. The FETCH
 request payload contains a list of instance-identifier encoded based
 on the rules defined by Content-Format application/yang-
 selectors+cbor in Section 2.5. The return response payload contains
 a list of values encoded based on the rules defined by Content-Format
 application/yang-values+cbor in Section 2.5. A value MUST be
 returned for each instance-identifier specified in the request. A
 CBOR null is returned for each data node requested by the client, not
 supported by the server or not currently instantiated.

 FORMAT:
 FETCH /c (Content-Format :application/yang-selectors+cbor)
 CBOR array of instance-identifier

 2.05 Content (Content-Format: application/yang-values+cbor)
 CBOR array of data-node-value

5.2.4.1. FETCH examples

 The example uses the current-datetime leaf and the interface list
 from Appendix C.1. In the following example the value of current-
 datetime (SID 1719 and the interface list (SID 1533) instance
 identified with name="eth0" are queried.

Veillette, et al. Expires January 18, 2018 [Page 19]

Internet-Draft CoMI July 2017

 REQ: FETCH /c (Content-Format :application/yang-selectors+cbor)
 [
 1719, / SID 1719 /
 [-186, "eth0"] / SID 1533 with name = "eth0" /
]

 RES: 2.05 Content (Content-Format :application/yang-value+cbor)
 [
 "2014-10-26T12:16:31Z",
 {
 +4 : "eth0", / name (SID 1537) /
 +1 : "Ethernet adaptor", / description (SID 1534) /
 +5 : 1179, / type (SID 1538), identity /
 / ethernetCsmacd (SID 1179) /
 +2 : true / enabled (SID 1535) /
 }
]

5.3. Data Editing

 CoMI allows datastore contents to be created, modified and deleted
 using CoAP methods.

5.3.1. Data Ordering

 A CoMI server SHOULD preserve the relative order of all user-ordered
 list and leaf-list entries that are received in a single edit
 request. These YANG data node types are encoded as CBOR arrays so
 messages will preserve their order.

5.3.2. POST

 The CoAP POST operation is used in CoMI for creation of data node
 resources and the invocation of "ACTION" and "RPC" resources. Refer
 to Section 5.6 for details on "ACTION" and "RPC" resources.

 A request to create a data node resource is sent with a confirmable
 CoAP POST message. The URI specifies the data node to be
 instantiated at the exception of list intances. In this case, for
 compactness, the URI specifies the list for which an instance is
 created.

 FORMAT:
 POST /c/<instance identifier>
 (Content-Format :application/yang-value+cbor)
 data-node-value

 2.01 Created

Veillette, et al. Expires January 18, 2018 [Page 20]

Internet-Draft CoMI July 2017

 If the data node resource already exists, then the POST request MUST
 fail and a "4.09 Conflict" response code MUST be returned

5.3.2.1. Post example

 The example uses the interface list from Appendix C.1. Example is
 creating a new list instance within the interface list (SID = 1533):

 REQ: POST /c/X9 (Content-Format :application/yang-value+cbor)
 {
 +4 : "eth5", / name (SID 1537) /
 +1 : "Ethernet adaptor", / description (SID 1534) /
 +5 : 1179, / type (SID 1538), identity /
 / ethernetCsmacd (SID 1179) /
 +2 : true / enabled (SID 1535) /
 }

 RES: 2.01 Created

5.3.3. PUT

 A data node resource instance is created or replaced with the PUT
 method. A request to set the value of a data node instance is sent
 with a confirmable CoAP PUT message.

 FORMAT:
 PUT /c/<instanceidentifier>
 (Content-Format :application/yang-value+cbor)
 data-node-value

 2.01 Created

5.3.3.1. PUT example

 The example uses the interface list from Appendix C.1. Example is
 renewing an instance of the list interface (SID = 1533) with key
 name="eth0":

Veillette, et al. Expires January 18, 2018 [Page 21]

Internet-Draft CoMI July 2017

 REQ: PUT /c/X9?k="eth0"
 (Content-Format :application/yang-value+cbor)
 {
 +4 : "eth0", / name (SID 1537) /
 +1 : "Ethernet adaptor", / description (SID 1534) /
 +5 : 1179, / type (SID 1538), identity /
 / ethernetCsmacd (SID 1179) /
 +2 : true / enabled (SID 1535) /
 }

 RES: 2.04 Changed

5.3.4. iPATCH

 One or multiple data node instances are replaced with the idempotent
 iPATCH method [RFC8132]. A request is sent with a confirmable CoAP
 iPATCH message.

 There are no Uri-Query options for the iPATCH method.

 The processing of the iPATCH command is specified by Content-Format
 application/yang-patch+cbor. In summary, if the CBOR patch payload
 contains a data node instance that is not present in the target, this
 instance is added. If the target contains the specified instance,
 the content of this instance is replaced with the value of the
 payload. A null value indicates the removal of an existing data node
 instance.

 FORMAT:
 iPATCH /c (Content-Format :application/yang-patch+cbor)
 ordered map of instance-identifier, data-node-value

 2.04 Changed

5.3.4.1. iPATCH example

 In this example, a CoMI client requests the following operations:

 o Set "/system/ntp/enabled" (SID 1751) to true.

 o Remove the server "tac.nrc.ca" from the"/system/ntp/server" (SID
 1752) list.

 o Add the server "NTP Pool server 2" to the list "/system/ntp/
 server" (SID 1752).

Veillette, et al. Expires January 18, 2018 [Page 22]

Internet-Draft CoMI July 2017

 REQ: iPATCH /c (Content-Format :application/yang-patch+cbor)
 [
 1751 , true, / enabled (1751) /
 [+1, "tac.nrc.ca"], null, / server (SID 1752) /
 +0, / server (SID 1752) /
 {
 +3 : "tic.nrc.ca", / name (SID 1755) /
 +4 : true, / prefer (SID 1756) /
 +5 : { / udp (SID 1757) /
 +1 : "132.246.11.231" / address (SID 1758) /
 }
 }
]

 RES: 2.04 Changed

5.3.5. DELETE

 A data node resource is deleted with the DELETE method.

 FORMAT:
 Delete /c/<instance identifier>

 2.02 Deleted

5.3.5.1. DELETE example

 The example uses the interface list from Appendix C.3. Example is
 deleting an instance of the interface list (SID = 1533):

 REQ: DELETE /c/X9?k="eth0"

 RES: 2.02 Deleted

5.4. Full datastore access

 The methods GET, PUT, POST, and DELETE can be used to request,
 replace, create, and delete a whole datastore respectively.

 FORMAT:
 GET /c

 2.05 Content (Content-Format: application/yang-tree+cbor)
 ordered map of single-instance-identifier, data-node-value

Veillette, et al. Expires January 18, 2018 [Page 23]

Internet-Draft CoMI July 2017

 FORMAT:
 PUT /c (Content-Format: application/yang-tree+cbor)
 ordered map of single-instance-identifier, data-node-value

 2.04 Changed

 FORMAT:
 POST /c (Content-Format: application/yang-tree+cbor)
 ordered map of single-instance-identifier, data-node-value

 2.01 Created

 FORMAT:
 DELETE /c

 2.02 Deleted

 The content of the ordered map represents the complete datastore of
 the server at the GET indication of after a successful processing of
 a PUT or POST request. When an Ordered map is used to carry a whole
 datastore, all data nodes MUST be identified using single instance
 identifiers (i.e. a SID), list instance identifiers are not allowed.

5.4.1. Full datastore examples

 The example uses the interface list and the clock container from
 Appendix C.3. Assume that the datastore contains two modules ietf-
 system (SID 1700) and ietf-interfaces (SID 1500); they contain the
 list interface (SID 1533) with one instance and the container Clock
 (SID 1717). After invocation of GET, a map with these two modules is
 returned:

Veillette, et al. Expires January 18, 2018 [Page 24]

Internet-Draft CoMI July 2017

 REQ: GET /c

 RES: 2.05 Content (Content-Format :application/yang-tree+cbor)
 [
 1717, / Clock (SID 1717) /
 {
 +2: "2016-10-26T12:16:31Z", / current-datetime (SID 1719) /
 +1: "2014-10-05T09:00:00Z" / boot-datetime (SID 1718) /
 },
 -186, / clock (SID 1533) /
 {
 +4 : "eth0", / name (SID 1537) /
 +1 : "Ethernet adaptor", / description (SID 1534) /
 +5 : 1179, / type (SID 1538), identity: /
 / ethernetCsmacd (SID 1179) /
 +2 : true / enabled (SID 1535) /
 }
]

5.5. Event stream

 Event notification is an essential function for the management of
 servers. CoMI allows notifications specified in YANG [RFC5277] to be
 reported to a list of clients. The recommended path of the default
 event stream is /s. The server MAY support additional event stream
 resources to address different notification needs.

 Reception of notification instances is enabled with the CoAP Observe
 [RFC7641] function. Clients subscribe to the notifications by
 sending a GET request with an "Observe" option, specifying the /s
 resource when the default stream is selected.

 Each response payload carries one or multiple notifications. The
 number of notification reported and the conditions used to remove
 notifications from the reported list is left to the implementers.
 When multiple notifications are reported, they MUST be ordered
 starting from the newest notification at index zero.

 An example implementation is:

 Every time an event is generated, the generated notification
 instance is appended to the chosen stream(s). After appending the
 instance, the content of the instance is sent to all clients
 observing the modified stream.

 Dependending on the storage space allocated to the notification
 stream, the oldest notifications that do not fit inside the
 notification stream storage space are removed.

Veillette, et al. Expires January 18, 2018 [Page 25]

Internet-Draft CoMI July 2017

 FORMAT:
 Get /<stream-resource> Observe(0)

 2.05 Content (Content-Format :application/yang-tree+cbor)
 ordered map of instance-identifier, data-node-value

 The array of data node instances may contain identical entries which
 have been generated at different times.

5.5.1. Notify Examples

 Suppose the server generates the event specified in Appendix C.4. By
 executing a GET on the /s resource the client receives the following
 response:

 REQ: GET /s Observe(0) Token(0x93)

 RES: 2.05 Content (Content-Format :application/yang-tree+cbor)
 Observe(12) Token(0x93)
 [
 60010, / example-port-fault (SID 60010) /
 {
 +1 : "0/4/21", / port-name (SID 60011) /
 +2 : "Open pin 2" / port-fault (SID 60012) /
 },
 +0, / example-port-fault (SID 60010) /
 {
 +1 : "1/4/21", / port-name (SID 60011) /
 +2 : "Open pin 5" / port-fault (SID 60012) /
 }
]

 In the example, the request returns a success response with the
 contents of the last two generated events. Consecutively the server
 will regularly notify the client when a new event is generated.

 To check that the client is still alive, the server MUST send
 confirmable notifications periodically. When the client does not
 confirm the notification from the server, the server will remove the
 client from the list of observers [RFC7641].

5.6. RPC statements

 The YANG "action" and "RPC" statements specify the execution of a
 Remote procedure Call (RPC) in the server. It is invoked using a
 POST method to an "Action" or "RPC" resource instance. The request
 payload contains the values assigned to the input container when

Veillette, et al. Expires January 18, 2018 [Page 26]

Internet-Draft CoMI July 2017

 specified. The response payload contains the values of the output
 container when specified. Both the input and output containers are
 encoded in CBOR using the rules defined in [I-D.ietf-core-yang-cbor]
 section 4.2.1. Root data nodes are encoded using the delta between
 the current SID and the SID of the invoked instance identifier a
 specified by the URI.

 The returned success response code is 2.05 Content.

 FORMAT:
 POST /c/<instance identifier>
 (Content-Format :application/yang-value+cbor)
 data-node-value

 2.05 Content (Content-Format :application/yang-value+cbor)
 data-node-value

5.6.1. RPC Example

 The example is based on the YANG action specification of
 Appendix C.2. A server list is specified and the action "reset" (SID
 60002, base64: Opq), that is part of a "server instance" with key
 value "myserver", is invoked.

 REQ: POST /c/Opq?k="myserver"
 (Content-Format :application/yang-value+cbor)
 {
 +1 : "2016-02-08T14:10:08Z09:00" / reset-at (SID 60003) /
 }

 RES: 2.05 Content (Content-Format :application/yang-value+cbor)
 {
 +2 : "2016-02-08T14:10:08Z09:18" / reset-finished-at (SID 60004)/
 }

6. Access to MIB Data

 Appendix C.5 shows a YANG module mapped from the SMI specification
 "IP-MIB" [RFC4293]. The following example shows the
 "ipNetToPhysicalEntry" list with 2 instances, using diagnostic
 notation without delta encoding.

Veillette, et al. Expires January 18, 2018 [Page 27]

Internet-Draft CoMI July 2017

 {
 60021 : / list ipNetToPhysicalEntry /
 [
 {
 60022 : 1, / ipNetToPhysicalIfIndex /
 60023 : 1, / ipNetToPhysicalNetAddressType /
 60024 : h’0A000033’, / ipNetToPhysicalNetAddress /
 60025 : h’00000A01172D’,/ ipNetToPhysicalPhysAddress /
 60026 : 2333943, / ipNetToPhysicalLastUpdated /
 60027 : 4, / ipNetToPhysicalType /
 60028 : 1, / ipNetToPhysicalState /
 60029 : 1 / ipNetToPhysicalRowStatus /
 },
 {
 60022 : 1, / ipNetToPhysicalIfIndex /
 60023 : 1, / ipNetToPhysicalNetAddressType /
 60024 : h’09020304’, / ipNetToPhysicalNetAddress /
 60025 : h’00000A36200A’,/ ipNetToPhysicalPhysAddress /
 60026 : 2329836, / ipNetToPhysicalLastUpdated /
 60027 : 3, / ipNetToPhysicalType /
 60028 : 6, / ipNetToPhysicalState /
 60029 : 1 / ipNetToPhysicalRowStatus /
 }
]
 }

 In this example one instance of /ip/ipNetToPhysicalEntry (SID 60021,
 base64: Oz1) that matches the keys ipNetToPhysicalIfIndex = 1,
 ipNetToPhysicalNetAddressType = ipv4 and ipNetToPhysicalNetAddress =
 9.2.3.4 (h’09020304’, base64: CQIDBA) is requested.

 REQ: GET example.com/c/Oz1?k="1,1,CQIDBA"

 RES: 2.05 Content (Content-Format: application/yang-value+cbor)
 {
 +1 : 1, / (SID 60022) /
 +2 : 1, / (SID 60023) /
 +3 : h’09020304’, / (SID 60024) /
 +4 : h’00000A36200A’, / (SID 60025) /
 +5 : 2329836, / (SID 60026) /
 +6 : 3, / (SID 60027) /
 +7 : 6, / (SID 60028) /
 +8 : 1 / (SID 60029) /
 }

Veillette, et al. Expires January 18, 2018 [Page 28]

Internet-Draft CoMI July 2017

7. Use of Block

 The CoAP protocol provides reliability by acknowledging the UDP
 datagrams. However, when large pieces of data need to be
 transported, datagrams get fragmented, thus creating constraints on
 the resources in the client, server and intermediate routers. The
 block option [RFC7959] allows the transport of the total payload in
 individual blocks of which the size can be adapted to the underlying
 transport sizes such as: (UDP datagram size ˜64KiB, IPv6 MTU of 1280,
 IEEE 802.15.4 payload of 60-80 bytes). Each block is individually
 acknowledged to guarantee reliability.

 Notice that the Block mechanism splits the data at fixed positions,
 such that individual data fields may become fragmented. Therefore,
 assembly of multiple blocks may be required to process the complete
 data field.

 Beware of race conditions. Blocks are filled one at a time and care
 should be taken that the whole data representation is sent in
 multiple blocks sequentially without interruption. On the server,
 values are changed, lists are re-ordered, extended or reduced. When
 these actions happen during the serialization of the contents of the
 resource, the transported results do not correspond with a state
 having occurred in the server; or worse the returned values are
 inconsistent. For example: array length does not correspond with the
 actual number of items. It may be advisable to use CBOR maps or CBOR
 arrays of undefined length, which are foreseen for data streaming
 purposes.

8. Resource Discovery

 The presence and location of (path to) the management data are
 discovered by sending a GET request to "/.well-known/core" including
 a resource type (RT) parameter with the value "core.c.datastore"
 [RFC6690]. Upon success, the return payload will contain the root
 resource of the management data. It is up to the implementation to
 choose its root resource, the value "/c" is used as an example. The
 example below shows the discovery of the presence and location of
 management data.

 REQ: GET /.well-known/core?rt=core.c.datastore

 RES: 2.05 Content
 </c>; rt="core.c.datastore"

 Implemented data nodes MAY be discovered using the standard CoAP
 resource discovery. The implementation can add the data node
 identifiers (SID) supported to /.well-known/core with

Veillette, et al. Expires January 18, 2018 [Page 29]

Internet-Draft CoMI July 2017

 rt="core.c.datanode". The available SIDs can be discovered by
 sending a GET request to "/.well-known/core" including a resource
 type (rt) parameter with the value "core.c.datanode". Upon success,
 the return payload will contain the registered SIDs and their
 location.

 The example below shows the discovery of the presence and location of
 data nodes.

 REQ: GET /.well-known/core?rt=core.c.datanode

 RES: 2.05 Content
 </c/BaAiN>; rt="core.c.datanode",
 </c/CF_fA>; rt="core.c.datanode"

 The list of data nodes may become prohibitively long. Therefore, it
 is recommended to discover the details about the YANG modules
 implemented by reading a YANG module library (e.g. "ietf-comi-yang-
 library" ad defined by [I-D.veillette-core-yang-library]).

 The resource "/mod.uri" is used to retrieve the location of the YANG
 module library. This library can be stored locally on each server,
 or remotely on a different server. The latter is advised when the
 deployment of many servers are identical.

 The following example shows the URI of a local instance of container
 modules-state (SID=1802) as defined in
 [I-D.veillette-core-yang-library].

 REQ: GET example.com/mod.uri

 RES: 2.05 Content (Content-Format: text/plain; charset=utf-8)
 example.com/c/cK

 The following example shows the URI of a remote instance of same
 container.

 REQ: GET example.com/mod.uri

 RES: 2.05 Content (Content-Format: text/plain; charset=utf-8)
 example-remote-server.com/group17/cK

 Within the YANG module library all information about the module is
 stored such as: module identifier, identifier hierarchy, grouping,
 features and revision numbers.

Veillette, et al. Expires January 18, 2018 [Page 30]

Internet-Draft CoMI July 2017

9. Error Handling

 In case a request is received which cannot be processed properly, the
 CoMI server MUST return an error message. This error message MUST
 contain a CoAP 4.xx or 5.xx response code.

 Errors returned by a CoMI server can be broken into two categories,
 those associated to the CoAP protocol itself and those generated
 during the validation of the YANG data model constrains as described
 in [RFC7950] section 8.

 The following list of common CoAP errors should be implemented by
 CoMI servers. This list is not exhaustive, other errors defined by
 CoAP and associated RFCs may be applicable.

 o Error 4.01 (Unauthorized) is returned by the CoMI server when the
 CoMI client is not authorized to perform the requested action on
 the targeted resource (i.e. data node, datastore, rpc, action or
 event stream).

 o Error 4.02 (Bad Option) is returned by the CoMI server when one or
 more CoAP options are unknown or malformed.

 o Error 4.04 (Not Found) is returned by the CoMI server when the
 CoMI client is requesting a non-instantiated resource (i.e. data
 node, datastore, rpc, action or event stream).

 o Error 4.05 (Method Not Allowed) is returned by the CoMI server
 when the CoMI client is requesting a method not supported on the
 targeted resource. (e.g. GET on an rpc, PUT or POST on a data
 node with "config" set to false).

 o Error 4.08 (Request Entity Incomplete) is returned by the CoMI
 server if one or multiple blocks of a block transfer request is
 missing, see [RFC7959] for more details.

 o Error 4.13 (Request Entity Too Large) may be returned by the CoMI
 server during a block transfer request, see [RFC7959] for more
 details.

 o Error 4.15 (Unsupported Content-Format) is returned by the CoMI
 server when the Content-Format used in the request don’t match
 those specified in section 2.3.

 CoMI server MUST also enforce the different constraints associated to
 the YANG data models implemented. These constraints are described in
 [RFC7950] section 8. These errors are reported using the CoAP error
 code 4.00 (Bad Request) and may have the following error container as

Veillette, et al. Expires January 18, 2018 [Page 31]

Internet-Draft CoMI July 2017

 payload. The YANG definition and associated .sid file are available
 in Appendix A and Appendix B. The error container is encoded using
 delta value equal to the SID of the current schema node minus the SID
 of the parent container (i.e 1024).

 +--rw error!
 +--rw error-tag identityref
 +--rw error-app-tag? identityref
 +--rw data-node-in-error? instance-identifier
 +--rw error-message? string

 The following error-tag and error-app-tag are defined by the ietf-
 comi YANG module, these tags are implemented as YANG identity and can
 be extended as needed.

 o error-tag operation-failed is returned by the CoMI server when the
 operation request cannot be processed successfully.

 * error-app-tag malformed-message is returned by the CoMI server
 when the payload received from the CoMI client don’t contain a
 well-formed CBOR content as defined in [RFC7049] section 3.3 or
 don’t comply with the CBOR structure defined within this
 document.

 * error-app-tag data-not-unique is returned by the CoMI server
 when the validation of the ’unique’ constraint of a list or
 leaf-list fails.

 * error-app-tag too-many-elements is returned by the CoMI server
 when the validation of the ’max-elements’ constraint of a list
 or leaf-list fails.

 * error-app-tag too-few-elements is returned by the CoMI server
 when the validation of the ’min-elements’ constraint of a list
 or leaf-list fails.

 * error-app-tag must-violation is returned by the CoMI server
 when the restrictions imposed by a ’must’ statement are
 violated.

 * error-app-tag duplicate is returned by the CoMI server when a
 client tries to create a duplicate list or leaf-list entry.

 o error-tag invalid-value is returned by the CoMI server when the
 CoMI client tries to update or create a leaf with a value encoded
 using an invalid CBOR datatype or if the ’range’, ’length’,
 ’pattern’ or ’require-instance’ constrain is not fulfilled.

Veillette, et al. Expires January 18, 2018 [Page 32]

Internet-Draft CoMI July 2017

 * error-app-tag invalid-datatype is returned by the CoMI server
 when CBOR encoding don’t follow the rules set by or when the
 value is incompatible with the YANG Built-In type. (e.g. a
 value greater than 127 for an int8, undefined enumeration)

 * error-app-tag not-in-range is returned by the CoMI server when
 the validation of the ’range’ property fails.

 * error-app-tag invalid-length is returned by the CoMI server
 when the validation of the ’length’ property fails.

 * error-app-tag pattern-test-failed is returned by the CoMI
 server when the validation of the ’pattern’ property fails.

 o error-tag missing-element is returned by the CoMI server when the
 operation requested by a CoMI client fail to comply with the
 ’mandatory’ constraint defined. The ’mandatory’ constraint is
 enforced for leafs and choices, unless the node or any of its
 ancestors have a ’when’ condition or ’if-feature’ expression that
 evaluates to ’false’.

 * error-app-tag missing-key is returned by the CoMI server to
 further qualify an missing-element error. This error is
 returned when the CoMI client tries to create or list instance,
 without all the ’key’ specified or when the CoMI client tries
 to delete a leaf listed as a ’key’.

 * error-app-tag missing-input-parameter is returned by the CoMI
 server when the input parameters of an RPC or action are
 incomplete.

 o error-tag unknown-element is returned by the CoMI server when the
 CoMI client tries to access a data node of a YANG module not
 supported, of a data node associated to an ’if-feature’ expression
 evaluated to ’false’ or to a ’when’ condition evaluated to
 ’false’.

 o error-tag bad-element is returned by the CoMI server when the CoMI
 client tries to create data nodes for more than one case in a
 choice.

 o error-tag data-missing is returned by the CoMI server when a data
 node required to accept the request is not present.

 * error-app-tag instance-required is returned by the CoMI server
 when a leaf of type ’instance-identifier’ or ’leafref’ marked
 with require-instance set to ’true’ refers to an instance that
 does not exist.

Veillette, et al. Expires January 18, 2018 [Page 33]

Internet-Draft CoMI July 2017

 * error-app-tag missing-choice is returned by the CoMI server
 when no nodes exist in a mandatory choice.

 o error-tag error is returned by the CoMI server when an unspecified
 error has occurred.

 For example, the CoMI server might return the following error.

 RES: 4.00 Bad Request (Content-Format :application/yang-value+cbor)
 {
 +4 : 1020, / error-tag = invalid-value /
 +2 : 1012, / error-app-tag = not-in-range /
 +1 : 1736, / data-node-in-error = timezone-utc-offset /
 +3 : "maximum value exceeded" / error-message /
 }

10. Security Considerations

 For secure network management, it is important to restrict access to
 configuration variables only to authorized parties. CoMI re-uses the
 security mechanisms already available to CoAP, this includes DTLS
 [RFC6347] for protected access to resources, as well suitable
 authentication and authorization mechanisms.

 Among the security decisions that need to be made are selecting
 security modes and encryption mechanisms (see [RFC7252]). This
 requires a trade-off, as the NoKey mode gives no protection at all,
 but is easy to implement, whereas the X.509 mode is quite secure, but
 may be too complex for constrained devices.

 In addition, mechanisms for authentication and authorization may need
 to be selected.

 CoMI avoids defining new security mechanisms as much as possible.
 However, some adaptations may still be required, to cater for CoMI’s
 specific requirements.

11. IANA Considerations

11.1. Resource Type (rt=) Link Target Attribute Values Registry

 This document adds the following resource type to the "Resource Type
 (rt=) Link Target Attribute Values", within the "Constrained RESTful
 Environments (CoRE) Parameters" registry.

Veillette, et al. Expires January 18, 2018 [Page 34]

Internet-Draft CoMI July 2017

 +--------------------+---------------------+-----------+
 | Value | Description | Reference |
 +--------------------+---------------------+-----------+
core.c.datastore	YANG datastore	RFC XXXX
core.c.datanode	YANG data node	RFC XXXX
core.c.liburi	YANG module library	RFC XXXX
core.c.eventstream	YANG event stream	RFC XXXX
 +--------------------+---------------------+-----------+

 // RFC Ed.: replace RFC XXXX with this RFC number and remove this
 note.

11.2. CoAP Content-Formats Registry

 This document adds the following Content-Format to the "CoAP Content-
 Formats", within the "Constrained RESTful Environments (CoRE)
 Parameters" registry.

 +---------------------------------+-------------+-----------+
 | Media Type | Excoding ID | Reference |
 +---------------------------------+-------------+-----------+
application/yang-value+cbor	XXX	RFC XXXX
application/yang-values+cbor	XXX	RFC XXXX
application/yang-selectors+cbor	XXX	RFC XXXX
application/yang-tree+cbor	XXX	RFC XXXX
application/yang-ipatch+cbor	XXX	RFC XXXX
 +---------------------------------+-------------+-----------+

 // RFC Ed.: replace XXX with assigned IDs and remove this note. //
 RFC Ed.: replace RFC XXXX with this RFC number and remove this note.

11.3. Media Types Registry

 This document adds the following media types to the "Media Types"
 registry.

Veillette, et al. Expires January 18, 2018 [Page 35]

Internet-Draft CoMI July 2017

 +---------------------+---------------------------------+-----------+
 | Name | Template | Reference |
 +---------------------+---------------------------------+-----------+
yang-value+cbor	application/yang-value+cbor	RFC XXXX
yang-values+cbor	application/yang-values+cbor	RFC XXXX
yang-selectors+cbor	application/yang-selectors+cbor	RFC XXXX
yang-tree+cbor	application/yang-tree+cbor	RFC XXXX
yang-ipatch+cbor	application/yang-ipatch+cbor	RFC XXXX
 +---------------------+---------------------------------+-----------+

 Each of these media types share the following information:

 o Subtype name: <as listed in table>

 o Required parameters: N/A

 o Optional parameters: N/A

 o Encoding considerations: binary

 o Security considerations: See the Security Considerations section
 of RFC XXXX

 o Interoperability considerations: N/A

 o Published specification: RFC XXXX

 o Applications that use this media type: CoMI

 o Fragment identifier considerations: N/A

 o Additional information:

 * Deprecated alias names for this type: N/A

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 o Person & email address to contact for further information:
 iesg&ietf.org

Veillette, et al. Expires January 18, 2018 [Page 36]

Internet-Draft CoMI July 2017

 o Intended usage: COMMON

 o Restrictions on usage: N/A

 o Author: Michel Veillette, ietf&augustcellars.com

 o Change Controller: IESG

 o Provisional registration? No

 // RFC Ed.: replace RFC XXXX with this RFC number and remove this
 note.

11.4. Concise Binary Object Representation (CBOR) Tags Registry

 This document adds the following tags to the "Concise Binary Object
 Representation (CBOR) Tags" registry.

 +-----+-----------+-------------+-----------+
 | Tag | Data Item | Semantics | Reference |
 +-----+-----------+-------------+-----------+
 | xxx | array | Oedered map | RFC XXXX |
 +-----+-----------+-------------+-----------+

 // RFC Ed.: replace xxx by the assigned Tag and remove this note. //
 RFC Ed.: replace RFC XXXX with this RFC number and remove this note.

12. Acknowledgements

 We are very grateful to Bert Greevenbosch who was one of the original
 authors of the CoMI specification and specified CBOR encoding and use
 of hashes.

 Mehmet Ersue and Bert Wijnen explained the encoding aspects of PDUs
 transported under SNMP. Carsten Bormann has given feedback on the
 use of CBOR.

 Timothy Carey has provided the text for Appendix D.

 The draft has benefited from comments (alphabetical order) by Rodney
 Cummings, Dee Denteneer, Esko Dijk, Michael van Hartskamp, Tanguy
 Ropitault, Juergen Schoenwaelder, Anuj Sehgal, Zach Shelby, Hannes
 Tschofenig, Michael Verschoor, and Thomas Watteyne.

Veillette, et al. Expires January 18, 2018 [Page 37]

Internet-Draft CoMI July 2017

13. References

13.1. Normative References

 [I-D.ietf-core-sid]
 Veillette, M., Pelov, A., Turner, R., Minaburo, A., and A.
 Somaraju, "YANG Schema Item iDentifier (SID)", draft-ietf-
 core-sid-01 (work in progress), May 2017.

 [I-D.ietf-core-yang-cbor]
 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",
 draft-ietf-core-yang-cbor-04 (work in progress), February
 2017.

 [I-D.veillette-core-yang-library]
 Veillette, M., "Constrained YANG Module Library", draft-
 veillette-core-yang-library-00 (work in progress), January
 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
 <http://www.rfc-editor.org/info/rfc6243>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Veillette, et al. Expires January 18, 2018 [Page 38]

Internet-Draft CoMI July 2017

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <http://www.rfc-editor.org/info/rfc8132>.

13.2. Informative References

 [I-D.ietf-core-interfaces]
 Shelby, Z., Vial, M., Koster, M., and C. Groves, "Reusable
 Interface Definitions for Constrained RESTful
 Environments", draft-ietf-core-interfaces-09 (work in
 progress), March 2017.

 [netconfcentral]
 YUMAworks, "NETCONF Central: library of YANG modules",
 Web http://www.netconfcentral.org/modulelist.

 [RFC4293] Routhier, S., Ed., "Management Information Base for the
 Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
 April 2006, <http://www.rfc-editor.org/info/rfc4293>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

Veillette, et al. Expires January 18, 2018 [Page 39]

Internet-Draft CoMI July 2017

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

 [XML] W3C, "Extensible Markup Language (XML)",
 Web http://www.w3.org/xml.

 [yang-cbor]
 Veillette, M., "yang-cbor Registry", Web
 https://github.com/core-wg/yang-
 cbor/tree/master/registry/.

Appendix A. ietf-comi YANG module

 <CODE BEGINS> file "ietf-comi@2017-07-01.yang"
 module ietf-comi {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-comi";
 prefix comi;

 organization
 "IETF Core Working Group";

 contact
 "Michel Veillette
 <mailto:michel.veillette@trilliantinc.com>

 Alexander Pelov
 <mailto:alexander@ackl.io>

 Peter van der Stok
 <mailto:consultancy@vanderstok.org>

 Andy Bierman
 <mailto:andy@yumaworks.com>";

 description
 "This module contains the different definitions required
 by the CoMI protocol.";

Veillette, et al. Expires January 18, 2018 [Page 40]

Internet-Draft CoMI July 2017

 revision 2017-07-01 {
 description
 "Initial revision.";
 reference
 "draft-ietf-core-comi";
 }

 identity error-tag {
 description
 "Base identity for error-tag.";
 }

 identity operation-failed {
 base error-tag;
 description
 "Returned by the CoMI server when the operation request
 can’t be processed successfully.";
 }

 identity invalid-value {
 base error-tag;
 description
 "Returned by the CoMI server when the CoMI client tries to
 update or create a leaf with a value encoded using an
 invalid CBOR datatype or if the ’range’, ’length’,
 ’pattern’ or ’require-instance’ constrain is not
 fulfilled.";
 }

 identity missing-element {
 base error-tag;
 description
 "Returned by the CoMI server when the operation requested
 by a CoMI client fails to comply with the ’mandatory’
 constraint defined. The ’mandatory’ constraint is
 enforced for leafs and choices, unless the node or any of
 its ancestors have a ’when’ condition or ’if-feature’
 expression that evaluates to ’false’.";
 }

 identity unknown-element {
 base error-tag;
 description
 "Returned by the CoMI server when the CoMI client tries to
 access a data node of a YANG module not supported, of a
 data node associated with an ’if-feature’ expression
 evaluated to ’false’ or to a ’when’ condition evaluated
 to ’false’.";

Veillette, et al. Expires January 18, 2018 [Page 41]

Internet-Draft CoMI July 2017

 }

 identity bad-element {
 base error-tag;
 description
 "Returned by the CoMI server when the CoMI client tries to
 create data nodes for more than one case in a choice.";
 }

 identity data-missing {
 base error-tag;
 description
 "Returned by the CoMI server when a data node required to
 accept the request is not present.";
 }

 identity error {
 base error-tag;
 description
 "Returned by the CoMI server when an unspecified error has
 occurred.";
 }

 identity error-app-tag {
 description
 "Base identity for error-app-tag.";
 }

 identity malformed-message {
 base error-app-tag;
 description
 "Returned by the CoMI server when the payload received
 from the CoMI client don’t contain a well-formed CBOR
 content as defined in [RFC7049] section 3.3 or don’t
 comply with the CBOR structure defined within this
 document.";
 }

 identity data-not-unique {
 base error-app-tag;
 description
 "Returned by the CoMI server when the validation of the
 ’unique’ constraint of a list or leaf-list fails.";
 }

 identity too-many-elements {
 base error-app-tag;

Veillette, et al. Expires January 18, 2018 [Page 42]

Internet-Draft CoMI July 2017

 description
 "Returned by the CoMI server when the validation of the
 ’max-elements’ constraint of a list or leaf-list fails.";
 }

 identity too-few-elements {
 base error-app-tag;
 description
 "Returned by the CoMI server when the validation of the
 ’min-elements’ constraint of a list or leaf-list fails.";
 }

 identity must-violation {
 base error-app-tag;
 description
 "Returned by the CoMI server when the restrictions
 imposed by a ’must’ statement are violated.";
 }

 identity duplicate {
 base error-app-tag;
 description
 "Returned by the CoMI server when a client tries to create
 a duplicate list or leaf-list entry.";
 }

 identity invalid-datatype {
 base error-app-tag;
 description
 "Returned by the CoMI server when CBOR encoding is
 incorect or when the value encoded is incompatible with
 the YANG Built-In type. (e.g. value greater than 127
 for an int8, undefined enumeration).";
 }

 identity not-in-range {
 base error-app-tag;
 description
 "Returned by the CoMI server when the validation of the
 ’range’ property fails.";
 }

 identity invalid-length {
 base error-app-tag;
 description
 "Returned by the CoMI server when the validation of the
 ’length’ property fails.";
 }

Veillette, et al. Expires January 18, 2018 [Page 43]

Internet-Draft CoMI July 2017

 identity pattern-test-failed {
 base error-app-tag;
 description
 "Returned by the CoMI server when the validation of the
 ’pattern’ property fails.";
 }

 identity missing-key {
 base error-app-tag;
 description
 "Returned by the CoMI server to further qualify a
 missing-element error. This error is returned when the
 CoMI client tries to create or list instance, without all
 the ’key’ specified or when the CoMI client tries to
 delete a leaf listed as a ’key’.";
 }

 identity missing-input-parameter {
 base error-app-tag;
 description
 "Returned by the CoMI server when the input parameters
 of a RPC or action are incomplete.";
 }

 identity instance-required {
 base error-app-tag;
 description
 "Returned by the CoMI server when a leaf of type
 ’instance-identifier’ or ’leafref’ marked with
 require-instance set to ’true’ refers to an instance
 that does not exist.";
 }

 identity missing-choice {
 base error-app-tag;
 description
 "Returned by the CoMI server when no nodes exist in a
 mandatory choice.";
 }

 container error {
 presence "Error paylaod";

 description
 "Optional payload of a 4.00 Bad Request CoAP error.";

 leaf error-tag {
 type identityref {

Veillette, et al. Expires January 18, 2018 [Page 44]

Internet-Draft CoMI July 2017

 base error-tag;
 }
 mandatory true;
 description
 "The enumerated error-tag.";
 }

 leaf error-app-tag {
 type identityref {
 base error-app-tag;
 }
 description
 "The application-specific error-tag.";
 }

 leaf data-node-in-error {
 type instance-identifier;
 description
 "When the error reported is caused by a specific data node,
 this leaf identifies the data node in error.";
 }

 leaf error-message {
 type string;
 description
 "A message describing the error.";
 }
 }
 }
 <CODE ENDS>

Appendix B. ietf-comi .sid file

 {
 "assignment-ranges": [
 {
 "entry-point": 1000,
 "size": 100
 }
],
 "module-name": "ietf-comi",
 "module-revision": "2017-07-01",
 "items": [
 {
 "type": "Module",
 "label": "ietf-comi",
 "sid": 1000
 },

Veillette, et al. Expires January 18, 2018 [Page 45]

Internet-Draft CoMI July 2017

 {
 "type": "identity",
 "label": "/error-app-tag",
 "sid": 1001
 },
 {
 "type": "identity",
 "label": "/error-app-tag/data-not-unique",
 "sid": 1002
 },
 {
 "type": "identity",
 "label": "/error-app-tag/duplicate",
 "sid": 1003
 },
 {
 "type": "identity",
 "label": "/error-app-tag/instance-required",
 "sid": 1004
 },
 {
 "type": "identity",
 "label": "/error-app-tag/invalid-datatype",
 "sid": 1005
 },
 {
 "type": "identity",
 "label": "/error-app-tag/invalid-length",
 "sid": 1006
 },
 {
 "type": "identity",
 "label": "/error-app-tag/malformed-message",
 "sid": 1007
 },
 {
 "type": "identity",
 "label": "/error-app-tag/missing-choice",
 "sid": 1008
 },
 {
 "type": "identity",
 "label": "/error-app-tag/missing-input-parameter",
 "sid": 1009
 },
 {
 "type": "identity",
 "label": "/error-app-tag/missing-key",

Veillette, et al. Expires January 18, 2018 [Page 46]

Internet-Draft CoMI July 2017

 "sid": 1010
 },
 {
 "type": "identity",
 "label": "/error-app-tag/must-violation",
 "sid": 1011
 },
 {
 "type": "identity",
 "label": "/error-app-tag/not-in-range",
 "sid": 1012
 },
 {
 "type": "identity",
 "label": "/error-app-tag/pattern-test-failed",
 "sid": 1013
 },
 {
 "type": "identity",
 "label": "/error-app-tag/too-few-elements",
 "sid": 1014
 },
 {
 "type": "identity",
 "label": "/error-app-tag/too-many-elements",
 "sid": 1015
 },
 {
 "type": "identity",
 "label": "/error-tag",
 "sid": 1016
 },
 {
 "type": "identity",
 "label": "/error-tag/bad-element",
 "sid": 1017
 },
 {
 "type": "identity",
 "label": "/error-tag/data-missing",
 "sid": 1018
 },
 {
 "type": "identity",
 "label": "/error-tag/error",
 "sid": 1019
 },
 {

Veillette, et al. Expires January 18, 2018 [Page 47]

Internet-Draft CoMI July 2017

 "type": "identity",
 "label": "/error-tag/invalid-value",
 "sid": 1020
 },
 {
 "type": "identity",
 "label": "/error-tag/missing-element",
 "sid": 1021
 },
 {
 "type": "identity",
 "label": "/error-tag/operation-failed",
 "sid": 1022
 },
 {
 "type": "identity",
 "label": "/error-tag/unknown-element",
 "sid": 1023
 },
 {
 "type": "node",
 "label": "/error",
 "sid": 1024
 },
 {
 "type": "node",
 "label": "/error/data-node-in-error",
 "sid": 1025
 },
 {
 "type": "node",
 "label": "/error/error-app-tag",
 "sid": 1026
 },
 {
 "type": "node",
 "label": "/error/error-message",
 "sid": 1027
 },
 {
 "type": "node",
 "label": "/error/error-tag",
 "sid": 1028
 }
]
 }

Veillette, et al. Expires January 18, 2018 [Page 48]

Internet-Draft CoMI July 2017

Appendix C. YANG example specifications

 This appendix shows five YANG example specifications taken over from
 as many existing YANG modules. The YANG modules are available from
 [netconfcentral]. Each YANG item identifier is accompanied by its
 SID shown after the "//" comment sign.

C.1. ietf-system

 Excerpt of the YANG module ietf-system [RFC7317].

 module ietf-system { // SID 1700
 container system { // SID 1715
 container clock { // SID 1734
 choice timezone {
 case timezone-name {
 leaf timezone-name { // SID 1735
 type timezone-name;
 }
 }
 case timezone-utc-offset {
 leaf timezone-utc-offset { // SID 1736
 type int16 {
 }
 }
 }
 }
 }
 container ntp { // SID 1750
 leaf enabled { // SID 1751
 type boolean;
 default true;
 }
 list server { // SID 1752
 key name;
 leaf name { // SID 1755
 type string;
 }
 choice transport {
 case udp {
 container udp { // SID 1757
 leaf address { // SID 1758
 type inet:host;
 }
 leaf port { // SID 1759
 type inet:port-number;
 }
 }

Veillette, et al. Expires January 18, 2018 [Page 49]

Internet-Draft CoMI July 2017

 }
 }
 leaf association-type { // SID 1753
 type enumeration {
 enum server {
 }
 enum peer {
 }
 enum pool {
 }
 }
 }
 leaf iburst { // SID 1754
 type boolean;
 }
 leaf prefer { // SID 1756
 type boolean;
 default false;
 }
 }
 }
 container system-state { // SID 1716
 container clock { // SID 1717
 leaf current-datetime { // SID 1719
 type yang:date-and-time;
 }
 leaf boot-datetime { // SID 1718
 type yang:date-and-time;
 }
 }
 }
 }

C.2. server list

 Taken over from [RFC7950] section 7.15.3.

Veillette, et al. Expires January 18, 2018 [Page 50]

Internet-Draft CoMI July 2017

 module example-server-farm {
 yang-version 1.1;
 namespace "urn:example:server-farm";
 prefix "sfarm";

 import ietf-yang-types {
 prefix "yang";
 }

 list server { // SID 60000
 key name;
 leaf name { // SID 60001
 type string;
 }
 action reset { // SID 60002
 input {
 leaf reset-at { // SID 60003
 type yang:date-and-time;
 mandatory true;
 }
 }
 output {
 leaf reset-finished-at { // SID 60004
 type yang:date-and-time;
 mandatory true;
 }
 }
 }
 }
 }

C.3. interfaces

 Excerpt of the YANG module ietf-interfaces [RFC7223].

Veillette, et al. Expires January 18, 2018 [Page 51]

Internet-Draft CoMI July 2017

 module ietf-interfaces { // SID 1500
 container interfaces { // SID 1505
 list interface { // SID 1533
 key "name";
 leaf name { // SID 1537
 type string;
 }
 leaf description { // SID 1534
 type string;
 }
 leaf type { // SID 1538
 type identityref {
 base interface-type;
 }
 mandatory true;
 }

 leaf enabled { // SID 1535
 type boolean;
 default "true";
 }

 leaf link-up-down-trap-enable { // SID 1536
 if-feature if-mib;
 type enumeration {
 enum enabled {
 value 1;
 }
 enum disabled {
 value 2;
 }
 }
 }
 }
 }
 }

C.4. Example-port

 Notification example defined within this document.

Veillette, et al. Expires January 18, 2018 [Page 52]

Internet-Draft CoMI July 2017

 module example-port {
 ...
 notification example-port-fault { // SID 60010
 description
 "Event generated if a hardware fault on a
 line card port is detected";
 leaf port-name { // SID 60011
 type string;
 description "Port name";
 }
 leaf port-fault { // SID 60012
 type string;
 description "Error condition detected";
 }
 }
 }

C.5. IP-MIB

 The YANG translation of the SMI specifying the IP-MIB [RFC4293],
 extended with example SID numbers, yields:

 module IP-MIB {
 import IF-MIB {
 prefix if-mib;
 }
 import INET-ADDRESS-MIB {
 prefix inet-address;
 }
 import SNMPv2-TC {
 prefix smiv2;
 }
 import ietf-inet-types {
 prefix inet;
 }
 import yang-smi {
 prefix smi;
 }
 import ietf-yang-types {
 prefix yang;
 }

 container ip { // SID 60020
 list ipNetToPhysicalEntry { // SID 60021
 key "ipNetToPhysicalIfIndex
 ipNetToPhysicalNetAddressType
 ipNetToPhysicalNetAddress";
 leaf ipNetToPhysicalIfIndex { // SID 60022

Veillette, et al. Expires January 18, 2018 [Page 53]

Internet-Draft CoMI July 2017

 type if-mib:InterfaceIndex;
 }
 leaf ipNetToPhysicalNetAddressType { // SID 60023
 type inet-address:InetAddressType;
 }
 leaf ipNetToPhysicalNetAddress { // SID 60024
 type inet-address:InetAddress;
 }
 leaf ipNetToPhysicalPhysAddress { // SID 60025
 type yang:phys-address {
 length "0..65535";
 }
 }
 leaf ipNetToPhysicalLastUpdated { // SID 60026
 type yang:timestamp;
 }
 leaf ipNetToPhysicalType { // SID 60027
 type enumeration {
 enum "other" {
 value 1;
 }
 enum "invalid" {
 value 2;
 }
 enum "dynamic" {
 value 3;
 }
 enum "static" {
 value 4;
 }
 enum "local" {
 value 5;
 }
 }
 }
 leaf ipNetToPhysicalState { // SID 60028
 type enumeration {
 enum "reachable" {
 value 1;
 }
 enum "stale" {
 value 2;
 }
 enum "delay" {
 value 3;
 }
 enum "probe" {
 value 4;

Veillette, et al. Expires January 18, 2018 [Page 54]

Internet-Draft CoMI July 2017

 }
 enum "invalid" {
 value 5;
 }
 enum "unknown" {
 value 6;
 }
 enum "incomplete" {
 value 7;
 }
 }
 }
 leaf ipNetToPhysicalRowStatus { // SID 60029
 type smiv2:RowStatus;
 } // list ipNetToPhysicalEntry
 } // container ip
 } // module IP-MIB

Appendix D. Comparison with LWM2M

 TO DO Need updated text based on the current version of CoMI.
 Multiple assumptions used in the original text are no more valid.

Authors’ Addresses

 Michel Veillette (editor)
 Trilliant Networks Inc.
 610 Rue du Luxembourg
 Granby, Quebec J2J 2V2
 Canada

 Email: michel.veillette@trilliantinc.com

 Peter van der Stok (editor)
 consultant

 Phone: +31-492474673 (Netherlands), +33-966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

Veillette, et al. Expires January 18, 2018 [Page 55]

Internet-Draft CoMI July 2017

 Alexander Pelov
 Acklio
 2bis rue de la Chataigneraie
 Cesson-Sevigne, Bretagne 35510
 France

 Email: a@ackl.io

 Andy Bierman
 YumaWorks
 685 Cochran St.
 Suite #160
 Simi Valley, CA 93065
 USA

 Email: andy@yumaworks.com

Veillette, et al. Expires January 18, 2018 [Page 56]

