
Internet Engineering Task Force M. Veillette, Ed.
Internet-Draft Trilliant Networks Inc.
Intended status: Standards Track A. Pelov, Ed.
Expires: February 9, 2018 Acklio
 A. Somaraju
 Tridonic GmbH & Co KG
 R. Turner
 Landis+Gyr
 A. Minaburo
 Acklio
 August 08, 2017

 CBOR Encoding of Data Modeled with YANG
 draft-ietf-core-yang-cbor-05

Abstract

 This document defines encoding rules for serializing configuration
 data, state data, RPC input and RPC output, Action input, Action
 output and notifications defined within YANG modules using the
 Concise Binary Object Representation (CBOR) [RFC7049].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 9, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Veillette, et al. Expires February 9, 2018 [Page 1]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology and Notation 3
 2.1. YANG Schema Item iDentifier (SID) 4
 2.2. CBOR diagnostic notation 5
 3. Properties of the CBOR Encoding 6
 4. Encoding of YANG Data Node Instances 7
 4.1. The ’leaf’ Data Node 7
 4.2. The ’container’ Data Node 7
 4.2.1. SIDs as keys . 8
 4.2.2. Member names as keys 10
 4.3. The ’leaf-list’ Data Node 10
 4.4. The ’list’ Data Node 11
 4.4.1. SIDs as keys . 11
 4.4.2. Member names as keys 14
 4.5. The ’anydata’ Data Node 15
 4.6. The ’anyxml’ Data Node 17
 5. Representing YANG Data Types in CBOR 17
 5.1. The unsigned integer Types 17
 5.2. The integer Types . 18
 5.3. The ’decimal64’ Type 18
 5.4. The ’string’ Type . 18
 5.5. The ’boolean’ Type 19
 5.6. The ’enumeration’ Type 19
 5.7. The ’bits’ Type . 20
 5.8. The ’binary’ Type . 21
 5.9. The ’leafref’ Type 21
 5.10. The ’identityref’ Type 22
 5.10.1. SIDs as identityref 22
 5.10.2. Name as identityref 23
 5.11. The ’empty’ Type . 23
 5.12. The ’union’ Type . 24
 5.13. The ’instance-identifier’ Type 25
 5.13.1. SIDs as instance-identifier 25
 5.13.2. Names as instance-identifier 28
 6. Security Considerations 29
 7. IANA Considerations . 29
 7.1. Tags Registry . 29
 8. Acknowledgments . 29
 9. References . 30

Veillette, et al. Expires February 9, 2018 [Page 2]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 9.1. Normative References 30
 9.2. Informative References 30
 Authors’ Addresses . 31

1. Introduction

 The specification of the YANG 1.1 data modelling language [RFC7950]
 defines an XML encoding for data instances, i.e. contents of
 configuration datastores, state data, RPC inputs and outputs, action
 inputs and outputs, and event notifications.

 A new set of encoding rules has been defined to allow the use of the
 same data models in environments based on the JavaScript Object
 Notation (JSON) Data Interchange Format [RFC7159]. This is
 accomplished in the JSON Encoding of Data Modeled with YANG
 specification [RFC7951].

 The aim of this document is to define a set of encoding rules for the
 Concise Binary Object Representation (CBOR) [RFC7049]. The resulting
 encoding is more compact compared to XML and JSON and more suitable
 for Constrained Nodes and/or Constrained Networks as defined by
 [RFC7228].

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC7950]:

 o action

 o anydata

 o anyxml

 o data node

 o data tree

 o feature

 o identity

 o module

 o notification

Veillette, et al. Expires February 9, 2018 [Page 3]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 o RPC

 o schema node

 o schema tree

 o submodule

 The following terms are defined in [RFC7951]:

 o member name

 o name of an identity

 o namespace-qualified

 This specification also makes use of the following terminology:

 o child: A schema node defined within a collection such as a
 container, a list, a case, a notification, an RPC input, an RPC
 output, an action input, an action output.

 o delta: Difference between the current SID and a reference SID. A
 reference SID is defined for each context for which deltas are
 used.

 o item: A schema node, an identity, a module, a submodule or a
 feature defined using the YANG modeling language.

 o parent: The collection in which a schema node is defined.

 o YANG Schema Item iDentifier (SID): Unsigned integer used to
 identify different YANG items.

2.1. YANG Schema Item iDentifier (SID)

 Some of the items defined in YANG [RFC7950] require the use of a
 unique identifier. In both NETCONF [RFC6241] and RESTCONF [RFC8040],
 these identifiers are implemented using names. To allow the
 implementation of data models defined in YANG in constrained devices
 and constrained networks, a more compact method to identify YANG
 items is required. This compact identifier, called YANG Schema Item
 iDentifier (SID), is encoded using an unsigned integer. The
 following items are identified using SIDs:

 o identities

 o data nodes

Veillette, et al. Expires February 9, 2018 [Page 4]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 o RPCs and associated input(s) and output(s)

 o actions and associated input(s) and output(s)

 o notifications and associated information

 o YANG modules, submodules and features

 To minimize its size, in certain positions, SIDs are represented
 using a (signed) delta from a reference SID and the current SID.
 Conversion from SIDs to deltas and back to SIDs are stateless
 processes solely based on the data serialized or deserialized.

 Mechanisms and processes used to assign SIDs to YANG items and to
 guarantee their uniqueness is outside the scope of the present
 specification. If SIDs are to be used, the present specification is
 used in conjunction with a specification defining this management.
 One example for such a specification is under development as
 [I-D.ietf-core-sid].

2.2. CBOR diagnostic notation

 Within this document, CBOR binary contents are represented using an
 equivalent textual form called CBOR diagnostic notation as defined in
 [RFC7049] section 6. This notation is used strictly for
 documentation purposes and is never used in the data serialization.
 Table 1 below provides a summary of this notation.

Veillette, et al. Expires February 9, 2018 [Page 5]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 +----------+------+--------------------------+-----------+----------+
 | CBOR | CBOR | Diagnostic notation | Example | CBOR |
 | content | type | | | encoding |
 +----------+------+--------------------------+-----------+----------+
Unsigned	0	Decimal digits	123	18 7b
integer				
Negative	1	Decimal digits prefixed	-123	38 7a
integer		by a minus sign		
Byte	2	Hexadecimal value	h’f15c’	42 f15c
string		enclosed between single		
		quotes and prefixed by		
		an ’h’		
Text	3	String of Unicode	"txt"	63
string		characters enclosed		747874
		between double quotes		
Array	4	Comma-separated list of	[1, 2]	82 01 02
		values within square		
		brackets		
Map	5	Comma-separated list of	{ 1: 123,	a2
		key : value pairs within	2: 456 }	01187b
		curly braces		021901c8
Boolean	7/20	false	false	f4
	7/21	true	true	f5
Null	7/22	null	null	f6
Not	7/23	undefined	undefined	f7
assigned				
 +----------+------+--------------------------+-----------+----------+

 Table 1: CBOR diagnostic notation summary

 The following extensions to the CBOR diagnostic notation are
 supported:

 o Any text within and including a pair of slashes is considered a
 comment.

 o Deltas are visualized as numbers preceded by a ’+’ or ’-’ sign.
 The use of the ’+’ sign for positive deltas represents an
 extension to the CBOR diagnostic notation as defined by [RFC7049]
 section 6.

3. Properties of the CBOR Encoding

 This document defines CBOR encoding rules for YANG schema trees and
 their subtrees.

 Basic schema nodes such as leaf, leaf-list, list, anydata and anyxml
 can be encoded standalone. In this case, only the value of this

Veillette, et al. Expires February 9, 2018 [Page 6]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 schema node is encoded in CBOR. Identification of this value needs
 to be provided by some external means when required.

 A collection such as container, list instance, notification, RPC
 input, RPC output, action input and action output is serialized using
 a CBOR map in which each child schema node is encoded using a key and
 a value. This specification supports two type of CBOR keys; YANG
 Schema Item iDentifier (SID) as defined in Section 2.1 and member
 names as defined in [RFC7951]. Each of these key types is encoded
 using a specific CBOR type which allows their interpretation during
 the deserialization process. The end user of this mapping
 specification (e.g. RESTCONF [RFC8040], CoMI [I-D.ietf-core-comi])
 can mandate the use of a specific key type.

 In order to minimize the size of the encoded data, the proposed
 mapping avoids any unnecessary meta-information beyond those natively
 supported by CBOR. For instance, CBOR tags are used solely in the
 case of anyxml data nodes and the union datatype to distinguish
 explicitly the use of different YANG datatypes encoded using the same
 CBOR major type.

4. Encoding of YANG Data Node Instances

 Schema node instances defined using the YANG modeling language are
 encoded using CBOR [RFC7049] based on the rules defined in this
 section. We assume that the reader is already familiar with both
 YANG [RFC7950] and CBOR [RFC7049].

4.1. The ’leaf’ Data Node

 Leafs MUST be encoded based on the encoding rules specified in
 Section 5.

4.2. The ’container’ Data Node

 Collections such as containers, list instances, notifications, RPC
 inputs, RPC outputs, action inputs and action outputs MUST be encoded
 using a CBOR map data item (major type 5). A map is comprised of
 pairs of data items, with each data item consisting of a key and a
 value. Each key within the CBOR map is set to a data node
 identifier, each value is set to the value of this data node instance
 according to the instance datatype.

 This specification supports two type of CBOR keys; SID as defined in
 Section 2.1 encoded as deltas and member names as defined in
 [RFC7951] encoded using CBOR text strings. The use of CBOR byte
 strings for keys is reserved for future extensions.

Veillette, et al. Expires February 9, 2018 [Page 7]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

4.2.1. SIDs as keys

 Keys implemented using SIDs MUST be encoded using a CBOR unsigned
 integer (major type 0) or CBOR negative integer (major type 1),
 depending on the actual value. Keys are represented as the delta of
 the associated SID, delta values are computed as follows:

 o The delta value is equal to the SID of the current schema node
 minus the SID of the parent schema node. When no parent exists in
 the context of use of this container, the delta is set to the SID
 of the current schema node (i.e., a parent with SID equal to zero
 is assumed).

 o Delta values may result in a negative number, clients and servers
 MUST support both unsigned and negative deltas.

 The following example shows the encoding of a ’system-state’
 container instance with a single child, a clock container. The clock
 container container has two children, a ’current-datetime’ leaf and a
 ’boot-datetime’ leaf.

 Definition example from [RFC7317]:

 typedef date-and-time {
 type string {
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|[\+\-]
 \d{2}:\d{2})’;
 }
 }

 container system-state {

 container clock {
 leaf current-datetime {
 type date-and-time;
 }

 leaf boot-datetime {
 type date-and-time;
 }
 }
 }

 For this first representation, we assume that parent SID of the root
 container (i.e. ’system-state’) is not available to the serializer.
 In this case, root data nodes are encoded using absolute SIDs.

 CBOR diagnostic notation:

Veillette, et al. Expires February 9, 2018 [Page 8]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 {
 1717 : { / clock (SID 1717) /
 +2 : "2015-10-02T14:47:24Z-05:00", / current-datetime (SID 1719)/
 +1 : "2015-09-15T09:12:58Z-05:00" / boot-datetime (SID 1718) /
 }
 }

 CBOR encoding:

 a1 # map(1)
 19 06b5 # unsigned(1717)
 a2 # map(2)
 02 # unsigned(2)
 78 1a # text(26)
 323031352d31302d30325431343a34373a32345a2d30353a3030
 01 # unsigned(1)
 78 1a # text(26)
 323031352d30392d31355430393a31323a35385a2d30353a3030

 On the other hand, if the serializer is aware of the parent SID, 1716
 in the case ’system-state’ container, root data nodes are encoded
 using deltas.

 CBOR diagnostic notation:

 {
 +1 : { / clock (SID 1717) /
 +2 : "2015-10-02T14:47:24Z-05:00", / current-datetime (SID 1719)/
 +1 : "2015-09-15T09:12:58Z-05:00" / boot-datetime (SID 1718) /
 }
 }

 CBOR encoding:

 a1 # map(1)
 01 # unsigned(1)
 a2 # map(2)
 02 # unsigned(2)
 78 1a # text(26)
 323031352d31302d30325431343a34373a32345a2d30353a3030
 01 # unsigned(1)
 78 1a # text(26)
 323031352d30392d31355430393a31323a35385a2d30353a3030

Veillette, et al. Expires February 9, 2018 [Page 9]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

4.2.2. Member names as keys

 Keys implemented using member names MUST be encoded using a CBOR text
 string data item (major type 3). A namespace-qualified member name
 MUST be used for all members of a top-level collection, and then also
 whenever the namespaces of the schema node and its parent are
 different. In all other cases, the simple form of the member name
 MUST be used. Names and namespaces are defined in [RFC7951] section
 4.

 The following example shows the encoding of a ’system’ container
 instance using names. This example is described in Section 4.2.1.

 CBOR diagnostic notation:

 {
 "ietf-system:clock" : {
 "current-datetime" : "2015-10-02T14:47:24Z-05:00",
 "boot-datetime" : "2015-09-15T09:12:58Z-05:00"
 }
 }

 CBOR encoding:

 a1 # map(1)
 71 # text(17)
 696574662d73797374656d3a636c6f636b # "ietf-system:clock"
 a2 # map(2)
 70 # text(16)
 63757272656e742d6461746574696d65 # "current-datetime"
 78 1a # text(26)
 323031352d31302d30325431343a34373a32345a2d30353a3030
 6d # text(13)
 626f6f742d6461746574696d65 # "boot-datetime"
 78 1a # text(26)
 323031352d30392d31355430393a31323a35385a2d30353a3030

4.3. The ’leaf-list’ Data Node

 A leaf-list MUST be encoded using a CBOR array data item (major type
 4). Each entry of this array MUST be encoded using the rules defined
 by the YANG type specified.

 The following example shows the encoding a ’search’ leaf-list
 instance containing the two entries, "ietf.org" and "ieee.org".

 Definition example [RFC7317]:

Veillette, et al. Expires February 9, 2018 [Page 10]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 typedef domain-name {
 type string {
 length "1..253";
 pattern ’((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9].)
 *([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?
)|\.’;
 }
 }

 leaf-list search {
 type domain-name;
 ordered-by user;
 }

 CBOR diagnostic notation: ["ietf.org", "ieee.org"]

 CBOR encoding: 82 68 696574662e6f7267 68 696565652e6f7267

4.4. The ’list’ Data Node

 A list MUST be encoded using a CBOR array data item (major type 4).
 Each list instance within this CBOR array is encoded using a CBOR map
 data item (major type 5) based on the same rules as a YANG container
 as defined in Section 4.2.

4.4.1. SIDs as keys

 The following example show the encoding of a ’server’ list instance
 using SIDs. It is important to note that the protocol or method
 using this mapping may carry a parent SID or may have the knowledge
 of this parent SID based on its context. In these cases, delta
 encoding can be performed based on this parent SID which minimizes
 the size of the encoded data.

 Definition example from [RFC7317]:

Veillette, et al. Expires February 9, 2018 [Page 11]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 list server {
 key name;

 leaf name {
 type string;
 }
 choice transport {
 case udp {
 container udp {
 leaf address {
 type host;
 mandatory true;
 }
 leaf port {
 type port-number;
 }
 }
 }
 }
 leaf association-type {
 type enumeration {
 enum server;
 enum peer;
 enum pool;
 }
 default server;
 }
 leaf iburst {
 type boolean;
 default false;
 }
 leaf prefer {
 type boolean;
 default false;
 }
 }

 CBOR diagnostic notation:

Veillette, et al. Expires February 9, 2018 [Page 12]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 [
 {
 1755 : "NRC TIC server", / name (SID 1755) /
 1757 : { / udp (SID 1757) /
 +1 : "tic.nrc.ca", / address (SID 1758) /
 +2 : 123 / port (SID 1759) /
 },
 1753 : 0, / association-type (SID 1753) /
 1754 : false, / iburst (SID 1754) /
 1756 : true / prefer (SID 1756) /
 },
 {
 1755 : "NRC TAC server", / name (SID 1755) /
 1757 : { / udp (SID 1757) /
 +1 : "tac.nrc.ca" / address (SID 1758) /
 }
 }
]

 CBOR encoding:

 82 # array(2)
 a5 # map(5)
 19 06db # unsigned(1755)
 6e # text(14)
 4e52432054494320736572766572 # "NRC TIC server"
 19 06dd # unsigned(1757)
 a2 # map(2)
 01 # unsigned(1)
 6a # text(10)
 7469632e6e72632e6361 # "tic.nrc.ca"
 02 # unsigned(2)
 18 7b # unsigned(123)
 19 06d9 # unsigned(1753)
 00 # unsigned(0)
 19 06da # unsigned(1754)
 f4 # primitive(20)
 19 06dc # unsigned(1756)
 f5 # primitive(21)
 a2 # map(2)
 19 06db # unsigned(1755)
 6e # text(14)
 4e52432054414320736572766572 # "NRC TAC server"
 19 06dd # unsigned(1757)
 a1 # map(1)
 01 # unsigned(1)
 6a # text(10)
 7461632e6e72632e6361 # "tac.nrc.ca"

Veillette, et al. Expires February 9, 2018 [Page 13]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

4.4.2. Member names as keys

 The following example shows the encoding of a ’server’ list instance
 using names. This example is described in Section 4.4.1.

 CBOR diagnostic notation:

 [
 {
 "ietf-system:name" : "NRC TIC server",
 "ietf-system:udp" : {
 "address" : "tic.nrc.ca",
 "port" : 123
 },
 "ietf-system:association-type" : 0,
 "ietf-system:iburst" : false,
 "ietf-system:prefer" : true
 },
 {
 "ietf-system:name" : "NRC TAC server",
 "ietf-system:udp" : {
 "address" : "tac.nrc.ca"
 }
 }
]

 CBOR encoding:

Veillette, et al. Expires February 9, 2018 [Page 14]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 82 # array(2)
 a5 # map(5)
 70 # text(16)
 696574662d73797374656d3a6e616d65 # "ietf-system:name"
 6e # text(14)
 4e52432054494320736572766572 # "NRC TIC server"
 6f # text(15)
 696574662d73797374656d3a756470 # "ietf-system:udp"
 a2 # map(2)
 67 # text(7)
 61646472657373 # "address"
 6a # text(10)
 7469632e6e72632e6361 # "tic.nrc.ca"
 64 # text(4)
 706f7274 # "port"
 18 7b # unsigned(123)
 78 1c # text(28)
 696574662d73797374656d3a6173736f63696174696f6e2d74797065
 00 # unsigned(0)
 72 # text(18)
 696574662d73797374656d3a696275727374 # "ietf-system:iburst"
 f4 # primitive(20)
 72 # text(18)
 696574662d73797374656d3a707265666572 # "ietf-system:prefer"
 f5 # primitive(21)
 a2 # map(2)
 70 # text(16)
 696574662d73797374656d3a6e616d65 # "ietf-system:name"
 6e # text(14)
 4e52432054414320736572766572 # "NRC TAC server"
 6f # text(15)
 696574662d73797374656d3a756470 # "ietf-system:udp"
 a1 # map(1)
 67 # text(7)
 61646472657373 # "address"
 6a # text(10)
 7461632e6e72632e6361 # "tac.nrc.ca"

4.5. The ’anydata’ Data Node

 An anydata serves as a container for an arbitrary set of schema nodes
 that otherwise appear as normal YANG-modeled data. An anydata
 instance is encoded using the same rules as a container, i.e., CBOR
 map. The requirement that anydata content can be modeled by YANG
 implies the following:

 o Keys of any inner data nodes MUST be set to valid deltas or member
 names.

Veillette, et al. Expires February 9, 2018 [Page 15]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 o The CBOR array MUST contain either unique scalar values (as a
 leaf-list, see Section 4.3), or maps (as a list, see Section 4.4).

 o Values MUST follow the encoding rules of one of the datatypes
 listed in Section 5.

 The following example shows a possible use of anydata. In this
 example, an anydata is used to define a data node containing a
 notification event, this data node can be part of a YANG list to
 create an event logger.

 Definition example:

 anydata event;

 This example also assumes the assistance of the following
 notification.

 module example-port {
 ...

 notification example-port-fault { # SID 2600
 leaf port-name { # SID 2601
 type string;
 }
 leaf port-fault { # SID 2601
 type string;
 }
 }
 }

 CBOR diagnostic notation:

 {
 2601 : "0/4/21", / port-name /
 2602 : "Open pin 2" / port-fault /
 }

 CBOR encoding:

 a2 # map(2)
 19 0a29 # unsigned(2601)
 66 # text(6)
 302f342f3231 # "0/4/21"
 19 0a2a # unsigned(2602)
 6a # text(10)
 4f70656e2070696e2032 # "Open pin 2"

Veillette, et al. Expires February 9, 2018 [Page 16]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

4.6. The ’anyxml’ Data Node

 An anyxml schema node is used to serialize an arbitrary CBOR content,
 i.e., its value can be any CBOR binary object. anyxml value may
 contain CBOR data items tagged with one of the tag listed in
 Section 7.1, these tags shall be supported.

 The following example shows a valid CBOR encoded instance.

 Definition example from [RFC7951]:

 anyxml bar;

 CBOR diagnostic notation: [true, null, true]

 CBOR encoding: 83 f5 f6 f5

5. Representing YANG Data Types in CBOR

 The CBOR encoding of an instance of a leaf or leaf-list data node
 depends on the built-in type of that data node. The following sub-
 section defined the CBOR encoding of each built-in type supported by
 YANG as listed in [RFC7950] section 4.2.4. Each subsection shows an
 example value assigned to a data node instance of the discussed
 built-in type.

5.1. The unsigned integer Types

 Leafs of type uint8, uint16, uint32 and uint64 MUST be encoded using
 a CBOR unsigned integer data item (major type 0).

 The following example shows the encoding of a ’mtu’ leaf instance set
 to 1280 bytes.

 Definition example from [RFC7277]:

 leaf mtu {
 type uint16 {
 range "68..max";
 }
 }

 CBOR diagnostic notation: 1280

 CBOR encoding: 19 0500

Veillette, et al. Expires February 9, 2018 [Page 17]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

5.2. The integer Types

 Leafs of type int8, int16, int32 and int64 MUST be encoded using
 either CBOR unsigned integer (major type 0) or CBOR negative integer
 (major type 1), depending on the actual value.

 The following example shows the encoding of a ’timezone-utc-offset’
 leaf instance set to -300 minutes.

 Definition example from [RFC7317]:

 leaf timezone-utc-offset {
 type int16 {
 range "-1500 .. 1500";
 }
 }

 CBOR diagnostic notation: -300

 CBOR encoding: 39 012b

5.3. The ’decimal64’ Type

 Leafs of type decimal64 MUST be encoded using a decimal fraction as
 defined in [RFC7049] section 2.4.3.

 The following example shows the encoding of a ’my-decimal’ leaf
 instance set to 2.57.

 Definition example from [RFC7317]:

 leaf my-decimal {
 type decimal64 {
 fraction-digits 2;
 range "1 .. 3.14 | 10 | 20..max";
 }
 }

 CBOR diagnostic notation: 4([-2, 257])

 CBOR encoding: c4 82 21 19 0101

5.4. The ’string’ Type

 Leafs of type string MUST be encoded using a CBOR text string data
 item (major type 3).

Veillette, et al. Expires February 9, 2018 [Page 18]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 The following example shows the encoding of a ’name’ leaf instance
 set to "eth0".

 Definition example from [RFC7223]:

 leaf name {
 type string;
 }

 CBOR diagnostic notation: "eth0"

 CBOR encoding: 64 65746830

5.5. The ’boolean’ Type

 Leafs of type boolean MUST be encoded using a CBOR true (major type
 7, additional information 21) or false data item (major type 7,
 additional information 20).

 The following example shows the encoding of an ’enabled’ leaf
 instance set to ’true’.

 Definition example from [RFC7317]:

 leaf enabled {
 type boolean;
 }

 CBOR diagnostic notation: true

 CBOR encoding: f5

5.6. The ’enumeration’ Type

 Leafs of type enumeration MUST be encoded using a CBOR unsigned
 integer (major type 0) or CBOR negative integer (major type 1),
 depending on the actual value. Enumeration values are either
 explicitly assigned using the YANG statement ’value’ or automatically
 assigned based on the algorithm defined in [RFC7950] section 9.6.4.2.

 The following example shows the encoding of an ’oper-status’ leaf
 instance set to ’testing’.

 Definition example from [RFC7317]:

Veillette, et al. Expires February 9, 2018 [Page 19]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 leaf oper-status {
 type enumeration {
 enum up { value 1; }
 enum down { value 2; }
 enum testing { value 3; }
 enum unknown { value 4; }
 enum dormant { value 5; }
 enum not-present { value 6; }
 enum lower-layer-down { value 7; }
 }
 }

 CBOR diagnostic notation: 3

 CBOR encoding: 03

5.7. The ’bits’ Type

 Leafs of type bits MUST be encoded using a CBOR byte string data item
 (major type 2). Bits position are either explicitly assigned using
 the YANG statement ’position’ or automatically assigned based on the
 algorithm defined in [RFC7950] section 9.7.4.2.

 Bits position 0 to 7 are assigned to the first byte within the byte
 string, bits 8 to 15 to the second byte, and subsequent bytes are
 assigned similarly. Within each byte, bits are assigned from least
 to most significant.

 The following example shows the encoding of a ’mybits’ leaf instance
 with the ’disable-nagle’ and ’10-Mb-only’ flags set.

 Definition example from [RFC7950]:

 leaf mybits {
 type bits {
 bit disable-nagle {
 position 0;
 }
 bit auto-sense-speed {
 position 1;
 }
 bit 10-Mb-only {
 position 2;
 }
 }
 }

 CBOR diagnostic notation: h’05’

Veillette, et al. Expires February 9, 2018 [Page 20]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 CBOR encoding: 41 05

5.8. The ’binary’ Type

 Leafs of type binary MUST be encoded using a CBOR byte string data
 item (major type 2).

 The following example shows the encoding of an ’aes128-key’ leaf
 instance set to 0x1f1ce6a3f42660d888d92a4d8030476e.

 Definition example:

 leaf aes128-key {
 type binary {
 length 16;
 }
 }

 CBOR diagnostic notation: h’1f1ce6a3f42660d888d92a4d8030476e’

 CBOR encoding: 50 1f1ce6a3f42660d888d92a4d8030476e

5.9. The ’leafref’ Type

 Leafs of type leafref MUST be encoded using the rules of the schema
 node referenced by the ’path’ YANG statement.

 The following example shows the encoding of an ’interface-state-ref’
 leaf instance set to "eth1".

 Definition example from [RFC7223]:

Veillette, et al. Expires February 9, 2018 [Page 21]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 typedef interface-state-ref {
 type leafref {
 path "/interfaces-state/interface/name";
 }
 }

 container interfaces-state {
 list interface {
 key "name";
 leaf name {
 type string;
 }
 leaf-list higher-layer-if {
 type interface-state-ref;
 }
 }
 }

 CBOR diagnostic notation: "eth1"

 CBOR encoding: 64 65746831

5.10. The ’identityref’ Type

 This specification supports two approaches for encoding identityref,
 a YANG Schema Item iDentifier (SID) as defined in Section 2.1 or a
 name as defined in [RFC7951] section 6.8.

5.10.1. SIDs as identityref

 When schema nodes of type identityref are implemented using SIDs,
 they MUST be encoded using a CBOR unsigned integer data item (major
 type 0). (Note that no delta mechanism is employed for SIDs as
 identityref.)

 The following example shows the encoding of a ’type’ leaf instance
 set to the value ’iana-if-type:ethernetCsmacd’ (SID 1180).

 Definition example from [RFC7317]:

Veillette, et al. Expires February 9, 2018 [Page 22]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 identity interface-type {
 }

 identity iana-interface-type {
 base interface-type;
 }

 identity ethernetCsmacd {
 base iana-interface-type;
 }

 leaf type {
 type identityref {
 base interface-type;
 }
 }

 CBOR diagnostic notation: 1180

 CBOR encoding: 19 049c

5.10.2. Name as identityref

 Alternatively, an identityref may be encoded using a name as defined
 in [RFC7951] section 6.8. When names are used, identityref MUST be
 encoded using a CBOR text string data item (major type 3). If the
 identity is defined in another module than the leaf node containing
 the identityref value, the namespace-qualified form MUST be used.
 Otherwise, both the simple and namespace-qualified forms are
 permitted. Names and namespaces are defined in [RFC7951] section 4.

 The following example shows the encoding of the identity ’iana-if-
 type:ethernetCsmacd’ using its name. This example is described in
 Section 5.10.1.

 CBOR diagnostic notation: "iana-if-type:ethernetCsmacd"

 CBOR encoding: 78 1b
 69616e612d69662d747970653a65746865726e657443736d616364

5.11. The ’empty’ Type

 Leafs of type empty MUST be encoded using the CBOR null value (major
 type 7, additional information 22).

 The following example shows the encoding of a ’is-router’ leaf
 instance when present.

Veillette, et al. Expires February 9, 2018 [Page 23]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 Definition example from [RFC7277]:

 leaf is-router {
 type empty;
 }

 CBOR diagnostic notation: null

 CBOR encoding: f6

5.12. The ’union’ Type

 Leafs of type union MUST be encoded using the rules associated with
 one of the types listed. When used in a union, the following YANG
 datatypes are prefixed by CBOR tag to avoid confusion between
 different YANG datatypes encoded using the same CBOR major type.

 o bits

 o enumeration

 o identityref

 o instance-identifier

 See Section 7.1 for more information about these CBOR tags.

 The following example shows the encoding of an ’ip-address’ leaf
 instance when set to "2001:db8:a0b:12f0::1".

 Definition example from [RFC7317]:

Veillette, et al. Expires February 9, 2018 [Page 24]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 typedef ipv4-address {
 type string {
 pattern ’(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}
 ([0-9][1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\p{N}
 \p{L}]+)?’;
 }
 }

 typedef ipv6-address {
 type string {
 pattern ’((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a
 -fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0
 -9]|[01]?[0-9]?[0-9])\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0
 -9]?[0-9])))(%[\p{N}\p{L}]+)?’;
 pattern ’(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|((([^:]+:)*[^:]+)
 ?::(([^:]+:)*[^:]+)?)(%.+)?’;
 }
 }

 typedef ip-address {
 type union {
 type ipv4-address;
 type ipv6-address;
 }
 }

 leaf address {
 type inet:ip-address;
 }

 CBOR diagnostic notation: "2001:db8:a0b:12f0::1"

 CBOR encoding: 74 323030313a6462383a6130623a313266303a3a31

5.13. The ’instance-identifier’ Type

 This specification supports two approaches for encoding an instance-
 identifier, one based on YANG Schema Item iDentifier (SID) as defined
 in Section 2.1 and one based on names as defined in [RFC7951] section
 6.11.

5.13.1. SIDs as instance-identifier

 SIDs uniquely identify a data node. In the case of a single instance
 data node, a data node defined at the root of a YANG module or
 submodule or data nodes defined within a container, the SID is
 sufficient to identify this instance.

Veillette, et al. Expires February 9, 2018 [Page 25]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 In the case of a data node member of a YANG list, a SID is combined
 with the list key(s) to identify each instance within the YANG
 list(s).

 Single instance data nodes MUST be encoded using a CBOR unsigned
 integer data item (major type 0) and set to the targeted data node
 SID.

 Data nodes member of a YANG list MUST be encoded using a CBOR array
 data item (major type 4) containing the following entries:

 o The first entry MUST be encoded as a CBOR unsigned integer data
 item (major type 0) and set to the targeted data node SID.

 o The following entries MUST contain the value of each key required
 to identify the instance of the targeted data node. These keys
 MUST be ordered as defined in the ’key’ YANG statement, starting
 from top level list, and follow by each of the subordinate
 list(s).

 First example:

 The following example shows the encoding of a leaf instance of type
 instance-identifier which identifies the data node "/system/contact"
 (SID 1737).

 Definition example from [RFC7317]:

 container system {

 leaf contact {
 type string;
 }

 leaf hostname {
 type inet:domain-name;
 }
 }

 CBOR diagnostic notation: 1737

 CBOR encoding: 19 06c9

 Second example:

 The following example shows the encoding of a leaf instance of type
 instance-identifier which identify the data node instance

Veillette, et al. Expires February 9, 2018 [Page 26]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 "/system/authentication/user/authorized-key/key-data" (SID 1730) for
 user name "bob" and authorized-key "admin".

 Definition example from [RFC7317]:

 list user {
 key name;

 leaf name {
 type string;
 }
 leaf password {
 type ianach:crypt-hash;
 }

 list authorized-key {
 key name;

 leaf name {
 type string;
 }
 leaf algorithm {
 type string;
 }
 leaf key-data {
 type binary;
 }
 }

 CBOR diagnostic notation: [1730, "bob", "admin"]

 CBOR encoding:

 83 # array(3)
 19 06c2 # unsigned(1730)
 63 # text(3)
 626f62 # "bob"
 65 # text(5)
 61646d696e # "admin"

 Third example:

 The following example shows the encoding of a leaf instance of type
 instance-identifier which identify the list instance
 "/system/authentication/user" (SID 1726) corresponding to the user
 name "jack".

 CBOR diagnostic notation: [1726, "jack"]

Veillette, et al. Expires February 9, 2018 [Page 27]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 CBOR encoding:

 82 # array(2)
 19 06be # unsigned(1726)
 64 # text(4)
 6a61636b # "jack"

5.13.2. Names as instance-identifier

 The use of names as instance-identifier is defined in [RFC7951]
 section 6.11. The resulting xpath MUST be encoded using a CBOR text
 string data item (major type 3).

 First example:

 This example is described in Section 5.13.1.

 CBOR diagnostic notation: "/ietf-system:system/contact"

 CBOR encoding:

 78 1c 2f20696574662d73797374656d3a73797374656d2f636f6e74616374

 Second example:

 This example is described in Section 5.13.1.

 CBOR diagnostic notation:

 "/ietf-system:system/authentication/user[name=’bob’]/authorized-key
 [name=’admin’]/key-data"

 CBOR encoding:

 78 59
 2f696574662d73797374656d3a73797374656d2f61757468656e74696361
 74696f6e2f757365725b6e616d653d27626f62275d2f617574686f72697a
 65642d6b65795b6e616d653d2761646d696e275d2f6b65792d64617461

 Third example:

 This example is described in Section 5.13.1.

 CBOR diagnostic notation:

 "/ietf-system:system/authentication/user[name=’bob’]"

 CBOR encoding:

Veillette, et al. Expires February 9, 2018 [Page 28]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 78 33
 2f696574662d73797374656d3a73797374656d2f61757468656e74696361
 74696f6e2f757365725b6e616d653d27626f62275d

6. Security Considerations

 The security considerations of [RFC7049] and [RFC7950] apply.

 This document defines an alternative encoding for data modeled in the
 YANG data modeling language. As such, this encoding does not
 contribute any new security issues in addition of those identified
 for the specific protocol or context for which it is used.

 To minimize security risks, software on the receiving side SHOULD
 reject all messages that do not comply to the rules of this document
 and reply with an appropriate error message to the sender.

7. IANA Considerations

7.1. Tags Registry

 This specification requires the assignment of CBOR tags for the
 following YANG datatypes. These tags are added to the Tags Registry
 as defined in section 7.2 of [RFC7049].

 +-----+---------------------+---------------------------+-----------+
 | Tag | Data Item | Semantics | Reference |
 +-----+---------------------+---------------------------+-----------+
40	bits	YANG bits datatype	RFC XXXX
41	enumeration	YANG enumeration datatype	RFC XXXX
42	identityref	YANG identityref datatype	RFC XXXX
43	instance-identifier	YANG instance-identifier	RFC XXXX
		datatype	
 +-----+---------------------+---------------------------+-----------+

 // RFC Ed.: update Tag values using allocated tags if needed and
 remove this note // RFC Ed.: replace XXXX with RFC number and remove
 this note

8. Acknowledgments

 This document has been largely inspired by the extensive works done
 by Andy Bierman and Peter van der Stok on [I-D.ietf-core-comi].
 [RFC7951] has also been a critical input to this work. The authors
 would like to thank the authors and contributors to these two drafts.

 The authors would also like to acknowledge the review, feedback, and
 comments from Ladislav Lhotka and Juergen Schoenwaelder.

Veillette, et al. Expires February 9, 2018 [Page 29]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

9.2. Informative References

 [I-D.ietf-core-comi]
 Veillette, M., Stok, P., Pelov, A., and A. Bierman, "CoAP
 Management Interface", draft-ietf-core-comi-01 (work in
 progress), July 2017.

 [I-D.ietf-core-sid]
 Veillette, M., Pelov, A., Turner, R., Minaburo, A., and A.
 Somaraju, "YANG Schema Item iDentifier (SID)", draft-ietf-
 core-sid-01 (work in progress), May 2017.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

Veillette, et al. Expires February 9, 2018 [Page 30]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 [RFC7277] Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 7277, DOI 10.17487/RFC7277, June 2014,
 <http://www.rfc-editor.org/info/rfc7277>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <http://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

Authors’ Addresses

 Michel Veillette (editor)
 Trilliant Networks Inc.
 610 Rue du Luxembourg
 Granby, Quebec J2J 2V2
 Canada

 Phone: +14503750556
 Email: michel.veillette@trilliantinc.com

 Alexander Pelov (editor)
 Acklio
 2bis rue de la Chataigneraie
 Cesson-Sevigne, Bretagne 35510
 France

 Email: a@ackl.io

 Abhinav Somaraju
 Tridonic GmbH & Co KG
 Farbergasse 15
 Dornbirn, Vorarlberg 6850
 Austria

 Phone: +43664808926169
 Email: abhinav.somaraju@tridonic.com

Veillette, et al. Expires February 9, 2018 [Page 31]

Internet-Draft CBOR Encoding of Data Modeled with YANG August 2017

 Randy Turner
 Landis+Gyr
 30000 Mill Creek Ave
 Suite 100
 Alpharetta, GA 30022
 US

 Phone: ++16782581292
 Email: randy.turner@landisgyr.com
 URI: http://www.landisgyr.com/

 Ana Minaburo
 Acklio
 2bis rue de la chataigneraie
 Cesson-Sevigne, Bretagne 35510
 France

 Email: ana@ackl.io

Veillette, et al. Expires February 9, 2018 [Page 32]

