CoRE Working Group C. Ansuess

I nternet-Draft Ener gy Harvesting Sol utions
Updates: 7959 (if approved) J. Mattsson
I nt ended status: Standards Track G Sel ander
Expires: May 3, 2018 Eri csson AB

Oct ober 30, 2017

Echo and Request-Tag
draft-ietf-core-echo-request-tag-00

Abst ract

Thi s docunent defines two optional extensions to the Constrained
Application Protocol (CoAP): the Echo option and the Request-Tag
option. Each of these options when integrity protected, such as with
DTLS or OSCORE, protects against certain attacks on CoAP nessage
exchanges.

The Echo option enables a CoAP server to verify the freshness of a
request by requiring the CoAP client to nmake anot her request and

i nclude a server-provided challenge. The Request-Tag option allows
the CoAP server to natch nessage fragnents belonging to the sane
request nessage, fragnmented using the CoAP Bl ock- W se Transfer
mechani sm This docunment al so specifies additional processing
requi renents on Bl ockl and Bl ock2 options.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on May 3, 2018.

Ansuess, et al. Expires May 3, 2018 [Page 1]

Internet-Draft Echo and Request-Tag Cct ober 2017

Copyright Notice

Copyright (c) 2017 |IETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 2
1.1. Request Freshness . . 3
1.2. Fragnented Message Body Integrlty . 3
1.3. Terminology . 4

2. The Echo Option . 5
2.1. Option Fornat 5
2.2. Echo Processing . 5
2.3. Applications . 7

3. The Request-Tag Cptlon 8
3.1. Option Format . C e e e 9
3.2. Request-Tag ProceSS|ng . X ¢
3.3. Applications . . A

3.3.1. Body Integrlty Based on Payload Integr|ty .
3.3.2. Miltiple Concurrent Bl ockw se Operations 12

4. Block2 / ETag Processing 13

5. |1ANA Considerations . 13

6. Security Considerations 13

7. References . . . e
7.1. Normative References e A
7.2. Informative References 14

Appendi x A. Perfornmance | npact V%en Lblng the Echo Cptlon S

Appendi x B. Request - Tag Nbssage Size Inpact S 15

Appendi x C. Change Log e 16

Authors’ Addresses 16

1. Introduction

The initial CoAP suite of specifications ([RFC7252], [RFC7641],
[RFC7959]) was designed with the assunption that security could be
provided on a separate layer, in particular by using DILS

Ansuess, et al. Expires May 3, 2018 [Page 2]

Internet-Draft Echo and Request-Tag Cct ober 2017

([RFC6347]). However, for some use cases, additional functionality
or extra processing is needed to support secure CoAP operations.

This docunent specifies two server-oriented CoAP options, the Echo
option and the Request-Tag option, addressing the security features
request freshness and fragnmented nessage body integrity,
respectively. These options in thenselves do not replace the need
for a security protocol; they specify the format and processi ng of
data which, when integrity protected in a nessage, e.g. using DILS
([RFC6347]) or OSCORE ([I-D.ietf-core-object-security]), provide
those security features. The Request-Tag option and al so the ETag
option are mandatory to use with Bl ockl and Bl ock2, respectively, to
secure bl ockwi se operations with nultiple representations of a
particul ar resource as is specified in this docunent.

Addi tional applications of the options are introduced. For exanple,
Echo can be used to mitigate anplification attacks.

1.1. Request Freshness

A CoAP server receiving a request may not be able to verify when the
request was sent by the CoAP client. This remains true even if the
request was protected with a security protocol, such as DILS. This
makes CoOAP requests vulnerable to certain delay attacks which are
particularly incrimnating in the case of actuators

([1-D. mattsson-core-coap-actuators]). Sone attacks are possible to
mtigate by establishing fresh session keys (e.g. perform ng the DILS
handshake) for each actuation, but in general this is not a solution
suitable for constrained environments.

A straightforward mitigation of potential delayed requests is that
the CoAP server rejects a request the first time it appears and asks
the CoAP client to prove that it intended to nake the request at this
point in tinme. The Echo option, defined in this docunent, specifies
such a mechani sm whi ch thereby enabl es the CoAP server to verify the
freshness of a request. This nmechanismis not only inportant in the
case of actuators, or other use cases where the CoAP operations
require freshness of requests, but also in general for synchronizing
state between CoAP client and server

1.2. Fragnented Message Body Integrity

CoAP was designed to work over unreliable transports, such as UDP
and include a lightweight reliability feature to handl e nessages
which are lost or arrive out of order. 1In order for a security
protocol to support CoAP operations over unreliable transports, it
must al | ow out-of-order delivery of nessages using e.g. a sliding

Ansuess, et al. Expires May 3, 2018 [Page 3]

I nt

1.3.

Ans

ernet-Draft Echo and Request-Tag Cct ober 2017

replay wi ndow such as described in Section 4.1.2.6 of DILS
([RFC6347]).

The Bl ock- W se Transfer nechani sm [RFC7959] extends CoAP by defining
the transfer of a large resource representation (CoAP nessage body)
as a sequence of bl ocks (CoAP nessage payl oads). The nmechani sm uses
a pair of CoAP options, Blockl and Bl ock2, pertaining to the request
and response payl oad, respectively. The blockw se functionality does
not support the detection of interchanged bl ocks between different
message bodies to the sane endpoi nt having the sane bl ock nunber.
This renmains true even when CoAP is used together with a security
protocol such as DTLS or OSCORE, within the replay w ndow

([1-D. ansuess-core-request-tag]), which is a vulnerability of CoAP
when usi ng RFC7959.

A straightforward mitigation of nmixing up bl ocks fromdifferent
messages is to use unique identifiers for different nmessage bodies,
whi ch woul d provi de equival ent protection to the case where the
complete body fits into a single payl oad. The ETag option [RFC7252],
set by the CoAP server, identifies a response body fragnmented using
the Bl ock2 option. This docunent defines the Request-Tag option for
i dentifying the request body fragnented using the Bl ockl option
simlar to ETag, but epheneral and set by the CoAP client.

Ter i nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Unl ess otherwi se specified, the terns "client" and "server" refers to
"CoAP client" and "CoAP server", respectively, as defined in
[RFC7252] .

The terns "payl oad" and "body" of a nessage are used as in [RFC7959].
The conpl ete interchange of a request and a response body is called a
(REST) "operation". An operation fragnmented using [RFC7959] is

called a "bl ockwi se operation". A bl ockw se operation which is
fragmenting the request body is called a "bl ockwi se request
operation". A blockw se operation which is fragnenting the response

body is called a "bl ockwi se response operation”

Two bl ockwi se operations between the same endpoint pair on the same
resource are said to be "concurrent” if a block of the second request
i s exchanged even though the client still intends to exchange further
blocks in the first operation. (Concurrent blockw se request
operations are inpossible with the options of [RFC7959] because the

uess, et al. Expires May 3, 2018 [Page 4]

Internet-Draft Echo and Request-Tag Cct ober 2017

second operation’s block overwites any state of the first
exchange.).

The Echo and Request-Tag options are defined in this docunent. The
concept of two nmessages being "Request-Tag-natchable" is defined in
Section 3. 1.
2. The Echo Option
The Echo option is a server-driven chall enge-response nechani smfor
CoAP. The Echo option value is a challenge fromthe server to the
client included in a CoAP response and echoed in a CoAP request.
2.1. Option Format

The Echo Option is elective, safe-to-forward, not part of the cache-
key, and not repeatable, see Figure 1.

e T s T oo oo I +-- -+
| No. | C| U] N| R] Nane | Format | Length | Default | E |
H-- - - - B T I ST YUy Fom e e e - - Fom e e e - - Fomm e o +---+
| TBD | [[[| Echo | opaque | 8-40 | (none) | X

S S R A T T Fommnnann Fommnaann N +-- -+

C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatabl e,
E=Encrypt and Integrity Protect (when using OSCORE)

Figure 1: Echo Option Sunmary

The val ue of the Echo option MIUST be a (pseudo-)random bit string of
a length of at least 64 bits. A new (pseudo-)randombit string MJST
be generated by the server for each use of the Echo option

2.2. Echo Processing

It is inportant to identify under what conditions a CoAP request to a
resource is required to be fresh. These conditions can for exanple

i ncl ude what resource is requested, the request nmethod and ot her data
in the request, and conditions in the environment such as the state
of the server or the tinme of the day.

A server MAY include the Echo option in a response. The Echo option
MUST NOT be used with enpty CoAP requests (i.e. Code=0.00). |If the
server receives a request which has freshness requirenents, and the
request does not contain the Echo option, the server SHOULD send a
4.01 Unaut horized response with a Echo option. The server SHOULD

Ansuess, et al. Expires May 3, 2018 [Page 5]

Internet-Draft Echo and Request-Tag Cct ober 2017

cache the transnitted Echo option value and the response transnit
time (here denoted tO0).

Upon receiving a response with the Echo option within the
EXCHANGE LI FETI ME ([RFC7252]) of the original request, the client
SHOULD echo the Echo option with the sane value in a new request to
the server. Upon receiving a 4.01 Unauthorized response with the
Echo option in response to a request within the EXCHANGE LI FETI ME of
the original request, the client SHOULD resend the original request.
The client MAY send a different request conpared to the origina
request.

If the server receives a request which has freshness requirenents,
and the request contains the Echo option, the server MJST verify that
the option val ue equal s a cached val ue; otherw se the request is not
processed further. The server MJST calculate the round-trip time RTT
= (tl - t0), where tl is the request receive tinme. The server MJST
only accept requests with a round-trip time below a certain threshold
T, i.e. RTT < T, otherwi se the request is not processed further, and
an error nessage MAY be sent. The threshold T is application
specific, its value depends e.g. on the freshness requirenents of the
request. An exanple nmessage flowis illustrated in Figure 2

When used to serve freshness requirenents, CoAP nessages contai ning
the Echo option MJUST be integrity protected, e.g. using DILS or
OSCORE ([I-D.ietf-core-object-security]).

If the server loses tinme synchronization, e.g. due to reboot, it MJST
del ete all cached Echo option values and response transm ssion tines.

Ansuess, et al. Expires May 3, 2018 [Page 6]

Internet-Draft

Echo and Request-Tag

Cct ober 2017

Client Server
I I
+----- >| Code: 0.03 (PUT)
| PUT | Token: 0x41
| | Uri-Path: |ock
| | Payl oad: 0 (Unl ock)
I I
| <----- + t0 Code: 4.01 (Unauthori zed)
| 4.03 | Token: 0x41
[[Echo: 0x6c880d41167ba807
I I
+----- > tl Code: 0.03 (PUT)
| PUT | Token: 0x42
| | Uri-Path: |ock
| | Echo: 0x6c880d41167ba807
[[Payl oad: 0 (Unl ock)
I I
| <----- + Code: 2.04 (Changed)
| 2.04 Token: 0x42
I

Fi gure 2: Echo option nessage fl ow

Constrai ned server inplenmentations can use the mechanisns outlined in
Appendix A to ninimze the nenory inpact of having many unanswered
Echo responses.

CoAP- CoAP proxi es MIST relay the Echo option unnodified, and SHOULD
NOT cache responses when a Echo option is present in request or
response for nore than the exchange. CoAP-HTTP proxies MAY request
freshness, especially if they have reason to assune that access may
require it (eg. because it is a PUT or POST); how this is determ ned
is out of scope for this docunent. HITP- CoAP-Proxi es SHOULD respond
to Echo chall enges thenselves if they know fromthe recent
establishing of the connection that the HTTP request is fresh
O herwi se, they SHOULD respond with 503 Service Unavailable, Retry-
After: 0 and term nate any underlying Keep-Alive connection. It MNAY
al so use other mechanisnms to establish freshness of the HITP request
that are not specified here.

2.3. Applications

1. Actuation requests often require freshness guarantees to avoid
accidental or malicious delayed actuator actions.

2. To avoid additional roundtrips for applications with nultiple
actuator requests in rapid sequence between the sanme client and

Ansuess, et al. Expires May 3, 2018 [Page 7]

Internet-Draft Echo and Request-Tag Cct ober 2017

3.

server, the server may use the Echo option (with a new value) in
response to a request containing the Echo option. The client
then uses the Echo option with the new value in the next
actuation request, and the server conpares the receive tine
accordi ngly.

3. If a server reboots during operation it rmay need to synchronize
state with requesting clients before continuing the interaction
For exanple, with OSCORE it is possible to reuse a persistently
stored security context by synchronizing the Partial |V (sequence
nunber) using the Echo option

4. Wen a device joins a nmulticast/broadcast group the device may
need to synchronize state or tine with the sender to ensure that
the received nessage is fresh. By synchronizing time with the
broadcaster, tine can be used for synchronizi ng subsequent
broadcast nessages. A server MJST NOT synchroni ze state or tine
with clients which are not the authority of the property being
synchroni zed. E.g. if access to a server resource is dependent
on time, then the client MJUST NOT set the time of the server.

5. A server that sends | arge responses to unauthenticated peers
SHOULD mitigate anplification attacks such as described in
Section 11.3 of [RFC7252] (where an attacker would put a victinis
address in the source address of a CoAP request). For this
pur pose, the server MAY ask a client to Echo its request to
verify its source address. This needs to be done only once per
peer, and limts the range of potential victins fromthe genera
Internet to endpoints that have been previously in contact with
the server. For this application, the Echo option can be used in
messages that are not integrity protected, for exanple during
di scovery.

The Request-Tag Option

The Request-Tag is intended for use as a short-lived identifier for
keepi ng apart distinct bl ockw se request operations on one resource
fromone client. It enables the receiving server to reliably
assenbl e request payl oads (bl ocks) to their nessage bodies, and, if
it chooses to support it, to reliably process sinmultaneous bl ockw se
request operations on a single resource. The requests nust be
integrity protected in order to protect against interchange of bl ocks
bet ween different nessage bodi es.

Ansuess, et al. Expires May 3, 2018 [Page 8]

Internet-Draft Echo and Request-Tag Cct ober 2017

3.1. Option Format

The Request-Tag option has the same properties as the Bl ockl option
it is critical, unsafe, not part of the cache-key, and not
repeat abl e, see Figure 3.

e T s T oo oo I +-- -+
| No. | C| U] N| R] Nane | Format | Length | Default | E |
H-- - - - B T I ST YUy Fom e e e - - Fom e e e - - Fomm e o +---+
| TBD| x| x| - | | Request-Tag | opaque | 0-8 | (none) | *

S S o R T s Fommnnann Fommnaann N +-- -+

C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatabl e,
E=Encrypt and Integrity Protect (when using OSCORE)

Fi gure 3: Request-Tag Option Summary

[Note to RFC editor: If this docunment is not released together with
OSCORE but before it, the foll ow ng paragraph and the "E' col um
above need to nove into OSCORE.]

Request-Tag, |ike the Blockl option, is a special class E option in
terns of OSCORE processing (see Section 4.3.1.2 of
[I-D.ietf-core-object-security]): The Request-Tag MAY be an inner or
outer option. The inner option is encrypted and integrity protected
between client and server, and provi des nessage body identification
in case of end-to-end fragnentation of requests. The outer option is
visible to proxies and | abel s nmessage bodies in case of hop-by-hop
fragmentation of requests.

The Request-Tag option is only used in request messages, and only in
conjunction with the Bl ockl option.

Two nmessages are defined to be Request-Tag-nmatchable if and only if
they are sent fromand to the sane end points (including security
associations), and target the sane URI, and if either neither carries
a Request-Tag option, or both carry exactly one Request-Tag option
and the option values are of same |length and content.

The Request-Tag nechanismis applied i ndependently on the server and
client sides of CoAP-CoAP proxies. CoAP-HITP proxies and HTTP- CoAP
proxi es can use Request-Tag on their CoAP sides; it is not applicable
to HTTP requests.

For each separate bl ockwi se request operation, the client can choose

a Request-Tag val ue, or choose not to set a Request-Tag. Creating a
new request operation whose nessages are Request-Tag-natchable to a

Ansuess, et al. Expires May 3, 2018 [Page 9]

Internet-Draft Echo and Request-Tag Cct ober 2017

previous operation is called request tag recycling. dients MJST NOT
recycle a request tag unless the first operation has concluded. What
constitutes a concluded operation depends on the application, and is

outlined individually in Section 3.3.

Clients are encouraged to generate conpact nessages. This neans
sendi ng nmessages wi t hout Request-Tag options whenever possible, and
usi ng short val ues when the absent option can not be recycl ed.

3.2. Request-Tag Processing

A server MJST NOT act on any two blocks in the same bl ockwi se request
operation that are not Request-Tag-matchable. This rule applies

i ndependent of whether the request actually carries a Request-Tag
option (in this case, the request can only be acted on together wth
ot her nessages not carrying the option, as per nmatchability
definition).

As not all nessages fromthe same source can be conbined any nore, a
bl ock not matchable to the first Bl ockl cannot overwite context kept
for an operation under a different tag (cf. [RFC7959] Section 2.5).
The server is still under no obligation to keep state of nore than
one transaction. Wen an operation is in progress and a second one
cannot be served at the sane time, the server MJIST respond to the
second request with a 5.03 (Service Unavail abl e) response code and
SHOULD indicate the tine it is willing to wait for additional blocks
in the first operation using the Max-Age option, as specified in
Section 5.9.3.4 of [RFC7252].

A server receiving a Request-Tag MJST treat it as opaque and nake no
assunptions about its content or structure.

Two messages bei ng Request-Tag-matchable is a necessary but not
sufficient condition for being part of the sane operation. They can
still be treated as independent nessages by the server (e.g. when it
sends 2.01/2.04 responses for every block), or initiate a new
operation (overwiting kept context) when the | ater nessage carries
Bl ockl number O.

If a request that uses Request-Tag is rejected with 4.02 Bad Opti on,
the client MAY retry the operation without it, but then it MJST
serialize all operations that affect the sane resource. Security
requi renents can forbid dropping the use of Request-Tag mechani sm

Ansuess, et al. Expires May 3, 2018 [Page 10]

Internet-Draft Echo and Request-Tag Cct ober 2017

3.3. Applications
3.3.1. Body Integrity Based on Payload Integrity

When a client fragnments a request body into multiple nessage

payl oads, even if the individual nessages are integrity protected, it
is still possible for a man-in-the-mddle to maliciously replace

| ater operation’s blocks with earlier operation s blocks (see

Section 3.2 of [I-D. amsuess-core-request-tag]). Therefore, the
integrity protection of each bl ock does not extend to the operation’s
request body.

In order to gain that protection, use the Request-Tag mechani sm as
fol |l ows:

0 The nessage payl oads MJUST be integrity protected end-to-end
bet ween client and server

o0 The client MJUST NOT recycle a request tag unless the previous
bl ockwi se request operation that used nmatchabl e Request-Tags has
concl uded.

o0 The client MJUST NOT regard a bl ockwi se request operation as
concl uded unless all of the nmessages the client previously sent in
the operation have been confirmed by the nessage integrity
protection mechanism or are considered invalid by the server if
repl ayed.

Typically, in OSCORE, these confirmations can result either from
the client receiving an OSCORE response nmessage matching the
request (an enpty ACK is insufficient), or because the nessage’s
sequence nunber is old enough to be outside the server’s receive
wi ndow.

In DTLS, this can only be confirmed if the request nessage was not
retransmtted, and was responded to.

o The client MUST NOT fall back to not using the Request-Tag
mechani sms when receiving a 4. 02 Bad Option response.

Aut hors of other docunents (e.g. [I-D.ietf-core-object-security])
are invited to mandate this behavior for clients that execute

bl ockwi se interactions over secured transports. In this way, the
server can rely on a conformng client to set the Request-Tag option
when required, and thereby conclude on the integrity of the assenbl ed
body.

Ansuess, et al. Expires May 3, 2018 [Page 11]

Internet-Draft Echo and Request-Tag Cct ober 2017

Note that this mechanismis inplicitly inplenented when the security
| ayer guarantees ordered delivery (e.g. CoAP over TLS
[1-D.tschof eni g-core-coap-tcp-tls]). This is because with each
message, any earlier operation can be regarded as concl uded by the
client, so it never needs to set the Request-Tag option unless it
wants to perform concurrent operations.

3.3.2. Miltiple Concurrent Bl ockw se Operations

CoAP clients, especially CoAP proxies, may initiate a bl ockw se
request operation to a resource, to which a previous one is already
in progress, and which the new request should not cancel. One
exanpl e is when a CoAP proxy fragnents an OSCORE messages using

bl ockwi se (so-called "outer" blockw se, see Section 4.3.1. of
[I-D.ietf-core-object-security])), where the Uri-Path is hidden

i nside the encrypted nmessage, and all the proxy sees is the server’s
"/" path.

When a client fragments a nessage as part of a bl ockw se request
operation, it can do so without a Request-Tag option set. For this
application, an operation can be regarded as concl uded when a fina
Bl ockl option has been sent and acknow edged, or when the client
chose not to continue with the operation (e.g. by user choice, or in
the case of a proxy when it decides not to take any further nessages
in the operation due to a timeout). Wen another concurrent

bl ockwi se request operation is made (i.e. before the operation is
concluded), the client can not recycle the request tag, and has to
pick a new one. The possible outcones are:

0 The server responds with a successful code.
The concurrent bl ockwi se operations can then conti nue.

0 The server responds 4.02 Bad Option.
This can indicate that the server does not support Request-Tag.
The client should wait for the first operation to conclude, and

then try the same request without a Request-Tag option

0 The server responds 5.03 Service Unavailable with a Max- Age option
to indicate when it is likely to be avail abl e again.

This can indicate that the server supports Request-Tag, but stil
is not prepared to handl e concurrent requests. The client should
wait for as long as the response is valid, and then retry the
operation, which nay not need to carry a Request-Tag option by
then any nore.

Ansuess, et al. Expires May 3, 2018 [Page 12]

Internet-Draft Echo and Request-Tag Cct ober 2017

7

In the cases where a CoAP proxy receives an error code, it can

i ndicate the anticipated delay by sending a 5.03 Service Unavail abl e
response itself. Note that this behavior is no different fromwhat a
CoAP proxy would need to do were it unaware of the Request-Tag
option.

Bl ock2 / ETag Processing

The sane security properties as in Section 3.3.1 can be obtained for
bl ockwi se response operations. The threat nodel here is not an
attacker (because the response is nmade sure to belong to the current
request by the security layer), but blocks in the client’s cache.

Anal ogous rules to Section 3.2 are already in place for assenbling a
response body in Section 2.4 of [RFC7959].

To gain equivalent protection to Section 3.3.1, a server MJST use the
Bl ock2 option in conjunction with the ETag option ([RFC7252],

Section 5.10.6), and MJUST NOT use the sanme ETag value for different
representations of a resource.

| ANA Consi derations
[TBD: Fill out the option tenplates for Echo and Request - Tag]
Security Considerations
Servers that store a Echo challenge per client can be attacked for
resour ce exhaustion, and should consider ninimzing the state kept
per client, e.g. using a nechanism as described in Appendix A
Ref er ences
1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s, BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997
<https://www.rfc-editor.org/info/rfc2119>
[RFC7252] Shel by, Z., Hartke, K, and C. Bormann, "The Constrai ned
Application Protocol (CoAP)", RFC 7252

DO 10.17487/ RFC7252, June 2014,
<https://www.rfc-editor.org/info/rfc7252>

Ansuess, et al. Expires May 3, 2018 [Page 13]

Internet-Draft Echo and Request-Tag Cct ober 2017

[RFC7959] Bormann, C. and Z. Shel by, Ed., "Block-Wse Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DA 10.17487/ RFC7959, August 2016,
<https://ww. rfc-editor.org/info/rfc7959>.

7.2. Informative References

[1-D. amsuess-core-request-tag]
Amsuess, C., "Request-Tag option", draft-ansuess-core-
request-tag-00 (work in progress), March 2017.

[I-D.ietf-core-object-security]
Sel ander, G, Mattsson, J., Palonbini, F., and L. Seitz,
"Object Security for Constrai ned RESTful Environnents
(OSCORE) ", draft-ietf-core-object-security-06 (work in
progress), Cctober 2017.

[1-D. mattsson-core-coap-actuat ors]
Mattsson, J., Fornehed, J., Selander, G, and F.
Pal onmbi ni, "Controlling Actuators with CoAP', draft-
mat t sson- cor e- coap-actuators-02 (work in progress),
Novenber 2016.

[1-D.tschofenig-core-coap-tcp-tls]
Bormann, C., Lemay, S., Technologies, Z., and H
Tschof enig, "A TCP and TLS Transport for the Constrained
Application Protocol (CoAP)", draft-tschofenig-core-coap-
tcp-tls-05 (work in progress), Novenber 2015.

[RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DO 10.17487/ RFC6347,
January 2012, <https://www.rfc-editor.org/info/rfc6347>.

[RFC7641] Hartke, K., "QObserving Resources in the Constrained
Application Protocol (CoAP)", RFC 7641,
DA 10.17487/ RFC7641, Septenber 2015,
<https://ww. rfc-editor.org/info/rfc7641>.

Appendi x A. Performance | npact Wen Using the Echo Option

The Echo option requires the server to keep sone state in order to
later verify the echoed request.

I nstead of caching Echo option val ues and response transm ssion
times, the server MAY use the encryption of the response transnmit
time t0 as Echo option value. Such a schene needs to ensure that the
server can detect a replay of a previous encrypted response transnmit
tinme.

Ansuess, et al. Expires May 3, 2018 [Page 14]

Internet-Draft Echo and Request-Tag Cct ober 2017

For exanple, the server MAY encrypt t0O with AES-CCM 128-64-64 using a
(pseudo-)random secret key k generated and cached by the server. A
uni que |V MJUST be used with each encryption, e.g. using a sequence
nunber. |f the server loses tinme synchronization, e.g. due to
reboot, then k MJUST be del eted and replaced by a new random secret
key. Wien using encrypted response transnmt tines, the Echo
processing is nodified in the followi ng way: The verification of
cached option value in the server processing is replaced by the
verification of the integrity of the encrypted option val ue using the
cached key and 1V (e.g. sequence nunber).

The two nethods - (a) the list of cached values, and (b) the
encryption of transnmit time - have different inpact on the
i mpl enent ati on:

0 size of cached data (list of cached values vs. key and |IV)
0 size of nessage (typically larger with encrypted tine)

0 conputation (encryption + decryption vs. generation new nonce +
cache + | ookup)

In general, the encryption of transmission tinmes is nost useful if
t he nunber of concurrent requests is high

A hybrid schene is also possible: the first Echo option values are
cached, and if the nunber of concurrent requests reach a certain
threshold, then encrypted tines are used until there is space for
storing new values in the list. 1In that case, the server may need to
make both verifications - either that the Echo value is in the list,
or that it verifies in decryption - and in either case that the
transm ssion tinme is valid.

Appendi x B. Request-Tag Message Size | npact

In absence of concurrent operations, the Request-Tag nechani smfor
body integrity (Section 3.3.1) incurs no overhead if no nessages are
|l ost (nore precisely: in OSCORE, if no operations are aborted due to
repeated transmission failure; in DILS, if no packages are lost), or
when bl ockwi se request operations happen rarely (in OSCORE, if only
one request operation with | osses within the replay w ndow).

In those situations, no nessage has any Request-Tag option set, and
that can be recycled indefinitely.

When t he absence of a Request-Tag option can not be recycled any nore

within a security context, the nmessages with a present but enpty
Request - Tag option can be used (1 Byte overhead), and when that is

Ansuess, et al. Expires May 3, 2018 [Page 15]

Internet-Draft Echo and Request-Tag Cct ober 2017

used-up, 256 values fromone byte | ong options (2 Bytes overhead) are
avai |l abl e.

In situations where those overheads are unacceptable (e.g. because
the payl oads are known to be at a fragnmentation threshold), the
absent Request-Tag val ue can be nmade usabl e agai n:

o In DILS, a new session can be established.

0 |In OSCORE, the sequence nunmber can be artificially increased so
that all | ost nessages are outside of the replay w ndow by the
time the first request of the new operation gets processed, and

al |

earlier operations can therefore be regarded as concl uded.

Appendi x C. Change Log

[The editor is asked to renove this section before publication.]

0o Major changes since draft-ansuess-core-repeat-request-tag-00:

*

Aut hor s’

The option used for establishing freshness was renamed from
"Repeat" to "Echo" to reduce confusion about repeatable
options.

The response code that goes with Echo was changed from4.03 to
4.01 because the client needs to provide better credentials.

The interaction between the new option and (cross) proxies is
now cover ed

Two messages bei ng "Request-Tag natchabl e" was introduced to
repl ace the ol der concept of having a request tag value with
its slightly awkward equi val ence definition

Addr esses

Christian Amsuess
Ener gy Harvesting Sol utions

Emai |

c. ansuess@ner gyharvesti ng. at

John Mattsson
Eri csson AB

Emai |

AnBUESS,

j ohn. mat t sson@ri csson. com

et al. Expires May 3, 2018 [Page 16]

Internet-Draft Echo and Request-Tag Cct ober 2017
Goer an Sel ander
Eri csson AB

Enmai | : goran. sel ander @ri csson. com

Ansuess, et al. Expires May 3, 2018 [Page 17]

