CoRE Working Group G Sel ander

I nternet-Draft J. Mattsson
I nt ended status: Standards Track F. Pal onbi ni
Expires: April 28, 2018 Eri csson AB

L. Seitz

SI CS Swedi sh I CT
Cct ober 25, 2017

bj ect Security for Constrained RESTful Environnments (OSCORE)
draft-ietf-core-object-security-06

Abst ract

Thi s docunment defines Object Security for Constrai ned RESTf ul

Envi ronments (OSCORE), a nethod for application-layer protection of
the Constrained Application Protocol (CoAP), using CBOR hject

Si gni ng and Encryption (COSE). OSCORE provi des end-to-end
encryption, integrity and replay protection, as well as a secure
message binding. OSCORE is designed for constrai ned nodes and

net wor ks and can be used over any | ayer and across internediaries,
and also with HTTP. OSCORE may be used to protect group

communi cations as is specified in a separate draft.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on April 28, 2018.

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal
Provisions Relating to | ETF Docunents

Sel ander, et al. Expires April 28, 2018 [Page 1]

Internet-Draft OSCORE Cct ober 2017

(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunments

careful ly,
to this docunent.

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1.

2.
3.

9.
10.

NANANN

bl

aoo

o000

o © 0 ©

I ntroduction

.1

The
The

.1
. 2.
. 3.
Prot ected Message Fields

Ter mi nol ogy . . .

CoAP bj ect - Securl ty Optl on .

Security Context .

Securlty Cont ext Def|n|t|on . .

Est abl i shnent of Security Context Par arret ers
Requirements on the Security Context Paraneters .

CoAP Payl oad

CoAP Opti ons

CoAP Header

COSE (nj ect

Nonce .

Pl ai nt ext . .
Addi ti onal Aut hentl Cat ed Data .

Sequence Nunmbers, Repl ay, Nbssage Bi nd| ng, a.nd. F.re.sh.ne.ss.

.1

2
3
4
5.
Processi ng
1.
2
3
4.

Message Bi nding . -

AEAD Nonce Uni queness .
Freshness . .

Repl ay Protecti on .

Losing Part of the Oont ext St ate

Protecting the Request
Verifying the Request
Protecting the Response .
Verifying the Response

OSCORE Conpr essi on

1.
2.
3.
4.
Web

Encodi ng of the Qbj ect Securl ty VaI ue .
Encodi ng of the OSCORE Payl oad

Context Hint . . .
Exanpl es of Conpressed COSE OOJ ects .
Li nking . .

Proxy Operations
10. 1.
10. 2.
10. 3.
11. Security Considerations .
12. Privacy Considerations

Sel ander,

CoAP-t 0- CoAP i:otmar di ng Pr oxy
HTTP-t o- CoAP Transl ati on Proxy .
CoAP-t o- HTTP Transl ati on Proxy .

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

et al. Expires April 28, 2018 [Page 2]

Internet-Draft OSCORE Cct ober 2017

13. | ANA Considerations . 38
13.1. CoAP Option Nunbers Registry 38
13.2. Header Field Registrations 38

14. Acknow edgnents .. . 38

15. References 3
15.1. Normative References 39
15.2. Infornmtive References 40

Appendi x A. Test Vectors M4

Appendix B. Exanples 4
B. 1. Secure Access to Sensor 42
B.2. Secure Subscribe to Sensor 43

Aut hors’ Addresses ... 44

1. Introduction

The Constrained Application Protocol (CoAP) is a web application
protocol, designed for constrai ned nodes and networks [RFC7228].
CoAP specifies the use of proxies for scalability and efficiency, and
a mapping to HTTP is al so specified [RFC8075]. CoAP [RFC7252]

ref erences DTLS [RFC6347] for security. CoAP and HTTP proxies
require (D)TLS to be termi nated at the proxy. The proxy therefore
not only has access to the data required for perform ng the intended
proxy functionality, but is also able to eavesdrop on, or nmanipul ate
any part of the nessage payload and netadata, in transit between the
endpoi nts. The proxy can also inject, delete, or reorder packets
since they are no | onger protected by (D)TLS.

Thi s docunent defines the Cbject Security for Constrained RESTful
Envi ronnments (OSCORE) security protocol, protecting CoAP and CoAP-
mappabl e HTTP requests and responses end-to-end across intermediary
nodes such as CoAP forward proxies and cross-protocol translators

i ncludi ng HTTP-t o- CoAP proxi es [RFC8075]. |In addition to the core
CoAP features defined in [RFC7252], OSCORE supports Observe [RFC7641]
and Bl ockwi se [RFC7959]. An anal ysis of end-to-end security for CoAP
messages through sone types of internediary nodes is perforned in
[1-D. hartke-core-e2e-security-reqs]. OSCORE protects the Request/
Response | ayer only, and not the CoAP Messaging Layer (Section 2 of

[RFC7252]). Therefore, all the CoAP messages nentioned in this
docunent refer to non-Enpty CON, NON, and ACK nessages [RFC7252].
Additionally, since the nessage formats for CoAP over unreliable
transport [RFC7252] and for CoAP over reliable transport
[I-D.ietf-core-coap-tcp-tls] differ only in ternms of Messaging Layer
OSCORE can be applied to both unreliable and reliable transports.

OSCORE i s designed for constrained nodes and networks and provi des an
in-layer security protocol that does not depend on underlying | ayers.
OSCORE can be used anywhere where CoAP or HTTP can be used, including
non-1P transports (e.g., [|-D.bormann-6l o-coap-802-15-ie]). An

Sel ander, et al. Expires April 28, 2018 [Page 3]

Internet-Draft OSCORE Cct ober 2017

ext ensi on of OSCORE may al so be used to protect group conmunication
for CoAP [I-D.tiloca-core-nulticast-oscoap]. The use of OSCORE does
not affect the URI schene and OSCORE can therefore be used with any
URI schene defined for CoAP or HTTP. The application decides the
conditions for which OSCORE is required.

OSCORE bui |l ds on CBOR (bj ect Signing and Encryption (COSE) [RFC8152],
provi di ng end-to-end encryption, integrity, replay protection, and
secure nmessage binding. A conpressed version of COSE is used, as

di scussed in Section 8. The use of OSCORE is signaled with the

bj ect-Security CoAP option or HTTP header, defined in Section 2 and
Section 10.2. OSCORE is designed to protect as nmuch infornmation as
possible, while still allow ng proxy operations (Section 10). OSCORE
provi des protection of nessage payl oad, al nost all CoAP options, and
the RESTful method. The solution transforns a nessage into an

" OSCORE nessage" before sending, and vice versa after receiving. The
OSCORE nessage is related to the original nessage in the foll ow ng
way: the original nmessage is translated to CoAP (if not already in
CoAP) and the resulting nessage payload (if present), options not
processed by a proxy, and the request/response nmethod (CoAP Code) are
protected in a COSE object. The nessage fields of the origina
message that are encrypted are transported in the payl oad of the
OSCORE nessage, and the Object-Security option is included, see

Fi gure 1.

dient Server
| OSCORE request - POST exanpl e. com |
[Header, Token, [
| Options: {oject-Security, ...}, |
| Payl oad: COSE ci phertext |

I

|

[OSCORE response - 2.04 (Changed): [
| Header, Token, |
| Options: {oject-Security, ...}, |
| Payl oad: COSE ci phertext |
I I

Figure 1: Sketch of CoAP with OSCORE

OSCORE may be used in very constrained settings, thanks to its snall
nmessage size and the restricted code and nmenory requirenents in
addition to what is required by CoAP. (OSCORE can be conbined with
transport |ayer security such as DTLS or TLS, thereby enabling end-
to-end security of e.g. CoAP Payl oad, Options and Code, in

conbi nation w th hop-by-hop protection of the Messagi ng Layer, during

Sel ander, et al. Expires April 28, 2018 [Page 4]

Internet-Draft OSCORE Cct ober 2017

transport between end-point and internediary node. Exanples of the
use of OSCORE are given in Appendi x B.

An i npl enentation supporting this specification MAY only inplenent
the client part, MAY only inplenment the server part, or MAY only

i npl ement one of the proxy parts. OSCORE is designed to work with
| egacy CoAP-to- CoAP forward proxies [RFC7252], but an OSCORE- awar e
proxy will be nore efficient. HITP-to-CoAP proxies [RFC8075] and
CoAP-t 0- HTTP proxi es need to inplenment respective parts of this
specification to work with OSCORE (see Section 10).

1.1. Termnol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119]. These
words nay al so appear in this docunent in | owercase, absent their
normati ve neani ngs.

Readers are expected to be famliar with the ternms and concepts
described in CoAP [RFC7252], Cbserve [RFC7641], Bl ockwi se [RFC7959],
COSE [RFC8152], CBOR [RFC7049], CDDL

[1-D. greevenbosch-appsawg-cbor-cddl], and constrai ned environnments

[RFC7228] .

The ternms Common/ Sender/ Reci pi ent Context, Master Secret/Salt, Sender
| DY Key, Recipient |ID Key, and Common |1V are defined in Section 3.1.

2. The CoAP nject-Security Option

The CoAP bject-Security option (see Figure 2) indicates that the
CoAP nmessage is an OSCORE message and that it contains a conpressed
COSE obj ect (see Section 5 and Section 8). The (Cbject-Security
option is critical, safe to forward, part of the cache key, and not
r epeat abl e.

e e L T T T oo oo I +
| No. | C| U] N| R] Nane | Format | Length | Default |
H-- - - - B T IR, ST Yy Fom e e e - - Fom e e e - - Fomm e o +
| TBD | x | [[| Qoject-Security | (*) | 0-255 | (none) |
S S e Fommnoaan Fommnaann N +

C=~Critical, U= Unsafe, N = NoCacheKey, R = Repeatabl e
(*) See bel ow

Figure 2: The hject-Security Option

The nhject-Security option contains the OSCORE flag byte (Section 8),
t he Sender Sequence Nunber and the Sender |D when present

Sel ander, et al. Expires April 28, 2018 [Page 5]

Internet-Draft OSCORE Cct ober 2017

(Section 3). The detailed format is specified in Section 8). |If the
OSCORE flag byte is all zero (0x00) the Option value SHALL be enpty
(Option Length = 0). An endpoint receiving a CoAP nessage wi t hout
payl oad, that also contains an Object-Security option SHALL treat it
as mal forned and reject it.

A successful response to a request with the Cbject-Security option
SHALL contain the Object-Security option. Wether error responses
contain the Object-Security option depends on the error type (see
Section 7).

Si nce the payl oad and nost options are encrypted Section 4, and the
correspondi ng plain text nessage fields of the original are not

i ncluded in the OSCORE nessage, the processing of these fields does
not expand the total message size.

A CoAP proxy SHOULD NOT cache a response to a request with an bject-
Security option, since the response is only applicable to the
original client’s request, see Section 10.1. As the conpressed COSE
bject is included in the cache key, nessages with the Cbject-
Security option will never generate cache hits. For Max-Age
processing, see Section 4.2.3.1.

3. The Security Context

OSCORE requires that client and server establish a shared security
context used to process the COSE objects. OSCORE uses COSE with an
Aut henti cated Encryption with Additional Data (AEAD) al gorithm for
protecting nessage data between a client and a server. |In this
section, we define the security context and howit is derived in
client and server based on a common shared naster secret and a key
derivation function (KDF).

3.1. Security Context Definition

The security context is the set of information el enents necessary to
carry out the cryptographic operations in OSCORE. For each endpoint,
the security context is conposed of a "Common Context", a "Sender
Context"”, and a "Recipient Context".

The endpoi nts protect nessages to send using the Sender Context and
verify messages received using the Recipient Context, both contexts
being derived fromthe Common Context and other data. dients and

Servers need to be able to retrieve the correct security context to
use.

An endpoint uses its Sender ID (SID) to derive its Sender Context,
and the other endpoint uses the sane ID, now called Recipient ID

Sel ander, et al. Expires April 28, 2018 [Page 6]

Internet-Draft OSCORE Cct ober 2017

(RID), to derive its Recipient Context. |n comunication between two
endpoi nts, the Sender Context of one endpoint matches the Recipient
Cont ext of the other endpoint, and vice versa. Thus, the two
security contexts identified by the same IDs in the two endpoints are
not the sane, but they are partly mrrored. Retrieval and use of the
security context are shown in Figure 3.

| Conmon, | | Conmon, |

| Sender, [| Recipient, |

| Recipient | | Sender |

Cient Server
I
Retrieve context for | OSCORE request: |
target resource [Token = Tokenl,
Protect request with | kid = SI D,
Sender Cont ext L >| Retrieve context with

I
I
I
| RD-=kid

| Verify request with

| Recipient Context

| Protect response with
| Sender Context

I
|
| OSCORE response:
| Token = Tokenl,
Retrieve context with |
Token = Tokenl |
Verify request with |
Reci pi ent Cont ext |

Figure 3: Retrieval and use of the Security Context
The Conmon Cont ext contains the follow ng paraneters:
0 AEAD Algorithm (alg). The COSE AEAD al gorithmto use for

encryption. |Its value is immtable once the security context is
est abl i shed.

0 Key Derivation Function. The HVAC based HKDF [RFC5869] used to
derive Sender Key, Recipient Key, and Conmon | V.

0 Master Secret. Variable length, uniformly random byte string
containing the key used to derive traffic keys and IVs. Its value
is immutable once the security context is established.

0 Master Salt (OPTIONAL). Variable length byte string containing

the salt used to derive traffic keys and IVs. Its value is
i mut abl e once the security context is established.

Sel ander, et al. Expires April 28, 2018 [Page 7]

Internet-Draft OSCORE Cct ober 2017

0o Common |V. Byte string derived from Master Secret and Master
Salt. Length is determ ned by the AEAD Algorithm Its value is
i mmut abl e once the security context is established.

The Sender Context contains the follow ng paraneters:

0 Sender ID. Byte string used to identify the Sender Context and to
assure uni que nonces. Maxinumlength is deternined by the AEAD
Algorithm Its value is immutable once the security context is
est abl i shed.

0 Sender Key. Byte string containing the symretric key to protect
messages to send. Derived from Common Context and Sender |D.
Length is determ ned by the AEAD Algorithm Its value is
i mmut abl e once the security context is established.

0 Sender Sequence Nunber. Non-negative integer used by the sender
to protect requests and Cbserve notifications. Used as "Parti al
I' V' [RFC8152] to generate unique nonces for the AEAD. Maxi num
val ue is deternined by the AEAD Al gorithm

The Reci pi ent Context contains the foll ow ng paraneters:

0 Recipient ID. Byte string used to identify the Recipient Context
and to assure uni que nonces. Muxinumlength is determ ned by the
AEAD Algorithm Its value is imutable once the security context
i s established.

0 Recipient Key. Byte string containing the syimmetric key to verify
nmessages received. Derived from Conmon Context and Recipient |ID.
Length is determined by the AEAD Algorithm Its value is
i mmut abl e once the security context is established.

0 Replay Wndow (Server only). The replay wi ndow to verify requests
received.

An endpoint may free up menory by not storing the Common |V, Sender
Key, and Recipient Key, deriving themfromthe Master Key and Master
Salt when needed. Alternatively, an endpoint may free up nenory by
not storing the Master Secret and Master Salt after the other
paraneters have been derived.

Endpoi nts MAY operate in either or both roles as client and server
and use the sane security context for those roles. |ndpendent of
being client or server, the endpoint protects nessages to send using
its Sender Context, and verifies nessages received using its

Reci pi ent Context. The endpoints MJUST NOT change t he Sender/

Sel ander, et al. Expires April 28, 2018 [Page 8]

Internet-Draft OSCORE Cct ober 2017
Reci pi ent |1 D when changing roles. In other words, changing the roles
does not change the set of keys to be used.

3.2. Establishnment of Security Context Parameters
The paranmeters in the security context are derived froma small set
of input paraneters. The follow ng input paraneters SHALL be pre-
est abl i shed:

0 Master Secret
o Sender ID
0 Recipient ID
The follow ng input paraneters MAY be pre-established. 1In case any
of these paraneters is not pre-established, the default val ue
i ndi cated bel ow i s used:
0 AEAD Algorithm (al g)
* Default is AES-CCM 16-64-128 (COSE al gorithm encodi ng: 10)
0 Master Salt
* Default is the enpty string
0 Key Derivation Function (KDF)
* Default is HKDF SHA- 256
0 Replay Wndow Type and Size

* Default is DILS-type replay protection with a wi ndow size of 32
([RFCB347])

Al'l input parameters need to be known to and agreed on by both
endpoi nts, but the replay wi ndow may be different in the two
endpoints. The replay wi ndow type and size is used by the client in
the processing of the Request-Tag

[I-D. anmsuess-core-repeat-request-tag]. How the input paraneters are
pre-established, is application specific. The ACE framework may be
used to establish the necessary input paraneters
[I-D.ietf-ace-oauth-authz].

Sel ander, et al. Expires April 28, 2018 [Page 9]

Internet-Draft OSCORE Cct ober 2017

3.2.1. Derivation of Sender Key, Recipient Key, and Conmon |V
The KDF MUST be one of the HVAC based HKDF [RFC5869] al gorithns
defined in COSE. HKDF SHA-256 is mandatory to inplenent. The
security context paraneters Sender Key, Recipient Key, and Common |V
SHALL be derived fromthe input paraneters using the HKDF, which
consists of the conposition of the HKDF- Extract and HKDF- Expand steps
([RFC5869]) :

out put paraneter = HKDF(salt, IKM info, L)

wher e:
0o salt is the Master Salt as defined above

o0 |IKMis the Master Secret is defined above

o infois a CBOR array consisting of:

info = [
id: bstr / nil,
alg : int / tstr,
type : tstr,
L : uint
]
wher e:

0o idis the Sender ID or Recipient |ID when deriving keys and ni
when deriving the Coormon IV. The encoding is described in
Section 5

o type is "Key" or "IV
0 L is the size of the key/IV for the AEAD al gorithmused, in octets
For exanple, if the algorithm AES- CCM 16-64-128 (see Section 10.2 in
[RFC8152]) is used, the value for L is 16 for keys and 13 for the
Common | V.

3.2.2. Initial Sequence Nunbers and Replay W ndow
The Sender Sequence Nunber is initialized to 0. The supported types
of replay protection and replay wi ndow |l ength is application specific
and depends on the |lower layers. The default is DILS-type replay

protection with a window size of 32 initiated as described in
Section 4.1.2.6 of [RFC6347].

Sel ander, et al. Expires April 28, 2018 [Page 10]

Internet-Draft OSCORE Cct ober 2017

3.3. Requirenments on the Security Context Paramneters

As collisions may lead to the | oss of both confidentiality and
integrity, Sender ID SHALL be unique in the set of all security
contexts using the sane Master Secret and Master Salt. Wen a
trusted third party assigns identifiers (e.g., using
[I-D.ietf-ace-oauth-authz]) or by using a protocol that allows the
parties to negotiate locally unique identifiers in each endpoint, the
Sender | Ds can be very short. The maxi mum|ength of Sender IDis

| ength of nonce - 6 bytes. For AES-CCM 16-64-128 the naxi num | ength
of Sender IDis 7 bytes. |f Sender |ID uniqueness cannot be

guar anteed by construction, Sender |IDs MJST be long uniformy random
distributed byte strings such that the probability of collisions is
negligi bl e.

To enable retrieval of the right Recipient Context, the Recipient ID
SHOULD be unique in the sets of all Recipient Contexts used by an
endpoint. The Cient MAY provide a Context Hint Section 8.3 to help
the Server find the right context.

VWhile the triple (Master Secret, Master Salt, Sender 1D) MJIST be
uni que, the sanme Master Salt MAY be used with several Master Secrets
and the sane Master Secret MAY be used with several Master Salts.

4. Protected Message Fields

OSCORE transforms a CoAP nessage (which may have been generated from
an HTTP nessage) into an OSCORE nessage, and vice versa. OSCORE
protects as nuch of the original nessage as possible while stil
all ow ng certain proxy operations (see Section 10). This section
defines how OSCORE protects the nessage fields and transfers them
end-to-end between client and server (in any direction).

The remai nder of this section and | ater sections discuss the behavior
in terns of CoAP nessages. |If HITP is used for a particular leg in
the end-to-end path, then this section applies to the conceptual CoAP
nmessage that is mappable to/fromthe original HTTP nessage as

di scussed in Section 10. That is, an HITP nessage is conceptually
transforned to a CoAP nessage and then to an OSCORE nessage, and
simlarly in the reverse direction. An actual inplenentation night
translate directly fromHITP to OSCORE wit hout the intervening CoAP
representation.

Message fields of the CoAP message may be protected end-to-end
bet ween CoAP client and CoAP server in different ways

0 Cass E encrypted and integrity protected,

Sel ander, et al. Expires April 28, 2018 [Page 11]

Internet-Draft OSCORE Cct ober 2017

0 Cass |I: integrity protected only, or
0 Cdass U unprotected.

The sendi ng endpoint SHALL transfer C ass E nessage fields in the
ci phertext of the COSE object in the OSCORE nmessage. The sending
endpoi nt SHALL include Class | nmessage fields in the Additiona
Aut henti cated Data (AAD) of the AEAD al gorithm allow ng the
recei ving endpoint to detect if the value has changed in transfer
Class U nessage fields SHALL NOT be protected in transfer. C ass
and Class U nessage field values are transferred in the header or
options part of the OSCORE nessage which is visible to proxies.

Message fields not visible to proxies, i.e., transported in the

ci phertext of the COSE object, are called "Inner" (Class E). Message
fields transferred in the header or options part of the OSCORE
message, which is visible to proxies, are called "Quter" (Cass | or

U).

An OSCORE nmessage may contain both an I nner and an Quter nessage

field of certain CoAP message fields. |Inner if the value is intended
for the destination endpoint, Quter if the value is intended for a
proxy. Inner and Quter nessage fields are processed i ndependently.

4.1. CoAP Payl oad

The CoAP Payl oad, if present in the original CoAP nessage, SHALL be
encrypted and integrity protected and is thus an |Inner nessage field.
The sending endpoint wites the payload of the original CoAP nessage
into the plaintext (Section 5.2) input to the COSE object. The

recei ving endpoint verifies and decrypts the COSE object, and
recreates the payload of the original CoAP nessage

4.2. CoAP Options
A summary of how options are protected is shown in Figure 4. Options

whi ch require special processing, in particular those which may have
both Inner and Quter nmessage fields, are |labelled with asterisks.

Sel ander, et al. Expires April 28, 2018 [Page 12]

Internet-Draft OSCORE Cct ober 2017

Fom e e e B L
| No.| Nanme | EJT I | U]J
Fomm e e e e e e o B L
| f-Match X |
Uri - Host

ETag

| f - None- Vat ch
Gbserve
Uri - Port
Locati on- Pat h
Uri-Path

Cont ent - For mat

I I
I I
I I
I I
I I
I I
I I
I I
I I
| Max- Age |
I I
I I
I I
I I
I I
I I
I I
I I
I I

| X
X |
X |

* X X X

Uri-Query
Accept
Locati on- Query
Bl ock2

Bl ockl

Si ze2

Pr oxy- Uri

Pr oxy- Schene
Si zel
o I L

* ok ok ok X X X

E

* X

|
| x|
|
|
| >
| x|
|
|
|
| =
|
|
|
| =
| =
| >
| >
| x|
|

“

Encrypt and Integrity Protect (Ilnner)
Integrity Protect only (Quter)
Unprotected (Quter)

Speci al

Figure 4: Protection of CoAP Options

Options that are unknown or for which OSCORE processing is not
defined SHALL be processed as class E (and no special processing).
Speci fications of new CoAP options SHOULD define how they are
processed with OSCORE. A new COAP option SHOULD be of class E unless
it requires proxy processing. New CoAP options which are repeatable
and of class | MJST specify that proxies MJST NOT change the order of
the option’ s occurences.

4.2.1. Inner Options
When using OSCORE, |nner option nessage fields (marked in colum E of
Figure 4) are sent in a way anal ogous to comunicating in a protected

manner directly with the other endpoint.

The sendi ng endpoint SHALL write the Inner option nessage fields
present in the original CoAP nessage into the plaintext of the COSE

Sel ander, et al. Expires April 28, 2018 [Page 13]

Internet-Draft OSCORE Cct ober 2017

obj ect Section 5.2, and then renove the |Inner option nmessage fields
fromthe OSCORE nessage.

The processing of Inner option nessage fields by the receiving
endpoint is specified in Section 7.2 and Section 7. 4.

4.2.2. CQuter Options

Quter option nessage fields (marked in columm U or | of Figure 4) are
used to support proxy operations.

The sendi ng endpoint SHALL include the Quter option nmessage field
present in the original nessage in the options part of the OSCORE
message. All CQuter option nmessage fields, including Object-Security,
SHALL be encoded as described in Section 3.1 of [RFC7252], where the
delta is the difference to the previously included Quter option
message field.

The processing of Quter options by the receiving endpoint is
specified in Section 7.2 and Section 7.4.

A procedure for integrity-protection-only of Class | option nessage
fields is specified in Section 5. 3.

Note: There are currently no Class | option nessage fields defined.
4.2.3. Special Options

Sone options require special processing, marked with an asterisk '*’
in Figure 4. An asterisk in the colums E and U indicate that the
option may be added as an Inner and/or Quter nessage by the sending
endpoint; the processing is specified in this section

4.2.3.1. Max-Age

The I nner Max-Age option is used to specify the freshness (as defined
in [RFC7252]) of the resource, end-to-end fromthe server to the
client, taking into account that the option is not accessible to
proxi es. The Inner Max-Age SHALL be processed by OSCORE as specified
in Section 4.2.1.

The Quter Max-Age option is used to avoid unnecessary caching of
OSCORE responses at OSCORE unawar e intermedi ary nodes. A server MNAY
set a Cass U Max-Age option with value zero to Cbserve responses
(see Section 5.6.1 of [RFC7252]) which is then processed according to
Section 4.2.2. The Quter Max-Age option value SHALL be discarded by
the OSCORE client.

Sel ander, et al. Expires April 28, 2018 [Page 14]

Internet-Draft OSCORE Cct ober 2017

Non- Cbserve OSCCORE responses do not need to include a Max- Age option
since the responses are non-cacheabl e by construction (see
Section 4.3).

4.2.3.2. The Block Options

Bl ockwi se [RFC7959] is an optional feature. An inplenentation MAY
support [RFC7252] and the (Object-Security option w thout supporting

[RFC7959]. The Bl ock options are used to secure nessage
fragmentation end-to-end (I nner options) or for proxies to fragnent
the OSCORE nessage for the next hop (Quter options). |Inner and Quter
bl ock processing nmay have different performance properties dependi ng
on the underlying transport. The integrity of the message can be
verified end-to-end both in case of Inner and Quter Bl ockw se
provided all blocks are received (see Section 4.2.3.2.2).

4,.2.3.2.1. Inner Block Options

The sendi ng CoAP endpoi nt MAY fragnent a CoAP nessage as defined in

[RFC7959] before the message is processed by OSCORE. In this case
the Bl ock options SHALL be processed by OSCORE as I nner options
(Section 4.2.1). The receiving CoAP endpoi nt SHALL process the
OSCORE nessage according to Section 4.2.1 before processing bl ockw se
as defined in [RFC7959].

For bl ockwi se request operations using Blockl, an endpoint MJST
comply with the Request-Tag processing defined in Section 3 of

[1-D. anmsuess-core-repeat-request-tag]. |In particular, the rules in
section 3.3.1 of [I|-D. ansuess-core-repeat-request-tag] MJIST be

foll owed, which guarantee that a specific request body is assenbl ed
only fromthe correspondi ng request bl ocks.

For bl ockwi se response operations using Bl ock2, an endpoint MJST
comply with the ETag processing defined in Section 4 of
[1-D. ansuess-core-repeat-request-tag].

4.2.3.2.2. CQuter Block Options

Proxi es MAY fragnment an OSCORE nessage using [RFC7959], which then

i ntroduces Quter Block options not generated by the sendi ng endpoint.
Note that the Quter Block options are neither encrypted nor integrity
protected. As a consequence, a proxy can naliciously inject block
fragments indefinitely, since the receiving endpoint needs to receive
the | ast block (see [RFC7959]) to be able to conpose the OSCORE
message and verify its integrity. Therefore, applications supporting
OSCORE and [RFC7959] MUST specify a security policy defining a

maxi mum unf ragment ed nmessage si ze (MAX_UNFRAGMVENTED Sl ZE) consi dering
the maxi num si ze of nmessage whi ch can be handl ed by the endpoints.

Sel ander, et al. Expires April 28, 2018 [Page 15]

Internet-Draft OSCORE Cct ober 2017

Messages exceeding this size SHOULD be fragmented by the sending
endpoi nt using Inner Block options (Section 4.2.3.2.1).

An endpoi nt receiving an OSCORE nessage with an Quter Bl ock option
SHALL first process this option according to [RFC7959], until al

bl ocks of the OSCORE nessage have been received, or the cunul ated
nmessage size of the bl ocks exceeds MAX UNFRAGVENTED SI ZE. In the
fornmer case, the processing of the OSCORE nessage continues as
defined in this docunment. In the latter case the nmessage SHALL be
di scarded

To allow multiple concurrent request operations to the same server
(not only sane resource), a CoAP proxy SHOULD foll ow t he Request-Tag
processing specified in section 3.3.2 of

[1-D. ansuess-core-repeat -request-tag].

4.2.3.3. Proxy-Uri

Proxy-Uri, when present, is split by OSCORE into class U options and
class E options, which are processed accordingly. Wen Proxy-Ui is
used in the original CoAP message, Uri-* are not present [RFC7252].

The sendi ng endpoint SHALL first deconpose the Proxy-Uri value of the
ori gi nal CoAP nessage into the Proxy-Scheme, Uri-Host, Uri-Port, Uri-
Path, and Uri-Query options (if present) according to section 6.4 of
[RFC7252] .

Ui-Path and Uri-Query are class E options and SHALL be protected and
processed as I nner options (Section 4.2.1).

The Proxy-Uri option of the OSCORE nessage SHALL be set to the
composi tion of Proxy-Schene, Uri-Host and Uri-Port options (if
present) as specified in section 6.5 of [RFC7252], and processed as
an CQuter option of Cass U (Section 4.2.2).

Note that replacing the Proxy-Uri value with the Proxy-Schenme and
Ui-* options works by design for all CoAP URIs (see Section 6 of

[RFC7252]. OSCORE-aware HTTP servers shoul d not use the userinfo
component of the HITP URI (as defined in section 3.2.1. of

[RFC3986]), so that this type of replacenent is possible in the
presence of CoAP-to-HTTP proxies. |In other docunents specifying
cross-protocol proxying behavior using different URI structures, it
is expected that the authors will create Uri-* options that allow
deconposing the Proxy-Uri, and specify in which OSCORE cl ass they
bel ong.

An exanpl e of how Proxy-Uri is processed is given here. Assune that
the original CoAP message contains:

Sel ander, et al. Expires April 28, 2018 [Page 16]

Internet-Draft OSCORE Cct ober 2017

0 Proxy-Uri = "coap://exanple.conlresource?q=1"
Duri ng OSCORE processing, Proxy-Uri is split into:
0 Proxy-Schene = "coap"

o Uri-Host = "exanple.conf

o Ui-Port = "5683"

o UWi-Path = "resource"

o Ui-Qery = "g=1"

Ui-Path and Uri-Query follow the processing defined in

Section 4.2.1, and are thus encrypted and transported in the CCSE
object. The remmining options are conposed into the Proxy-Uri
included in the options part of the OSCORE nessage, which has val ue:

0 Proxy-Ui = "coap://exanple.cont
See Section 6.1 and 12.6 of [RFC7252] for nore infornmation
4.2.3.4. (Observe

bserve [RFC7641] is an optional feature. An inplenentation MAY
support [RFC7252] and the Object-Security option w thout supporting
[RFC7641]. The (bserve option as used here targets the requirenents
on forwarding of [I-D. hartke-core-e2e-security-reqs]

(Section 2.2.1.2).

In order for an OSCORE-unaware proxy to support forwarding of Cbserve
messages ([RFC7641]), there SHALL be an CQuter Cbserve option, i.e.
present in the options part of the OSCORE nessage. The processing of
the CoAP Code for Cbserve nessages is described in Section 4. 3.

To secure the order of notifications, the client SHALL maintain a
Notification Nunber for each Observation it registers. The
Notification Nunmber is a non-negative integer containing the |argest
Partial 1V of the successfully received notifications for the

associ ated Cbserve registration, see Section 6.4. The Notification
Nunber is initialized to the Partial 1V of the first successfully
received notification response to the registration request. In
contrast to [RFC7641], the received Partial 1V MIST al ways be
compared with the Notification Nunber, which thus MUST NOT be
forgotten after 128 seconds.

Sel ander, et al. Expires April 28, 2018 [Page 17]

Internet-Draft OSCORE Cct ober 2017

If the verification fails, the client SHALL stop processing the
response, and in the case of CON respond with an enpty ACK. The
client MAY ignore the Cbserve option val ue.

The Qbserve option in the CoAP request may be legitimtely renoved by

a proxy. |f the Observe option is renoved froma CoAP request by a
proxy, then the server can still verify the request (as a non-Cbserve
request), and produce a non-Cbserve response. |If the OSCORE client

receives a response to an Observe request w thout an outer Cbserve
value, then it MJST verify the response as a non-(Cbserve response.
(The reverse case is covered in the verification of the response, see
Section 7.)

4.3. CoAP Header

Most CoAP header fields (i.e. the nessage fields in the fixed 4-byte
header) are required to be read and/ or changed by CoAP proxies and
thus cannot in general be protected end-to-end between the endpoints.
As nentioned in Section 1, OSCORE protects the CoAP Request/Response
| ayer only, and not the Messaging Layer (Section 2 of [RFC7252]), so
fields such as Type and Message I D are not protected with OSCORE

The CoAP header field Code is protected by OSCORE. Code SHALL be
encrypted and integrity protected (Cass E) to prevent an

i ntermedi ary from eavesdroppi ng or mani pul ati ng the Code (e.qg.
changing from GET to DELETE)

The sendi ng endpoint SHALL write the Code of the original CoAP
message into the plaintext of the COSE object Section 5.2. After
that, the Quter Code of the OSCORE nessage SHALL be set to 0.02
(PCST) for requests and to 2.04 (Changed) for responses, except for
bserve nessages. For (bserve messages, the Quter Code of the OSCORE
message SHALL be set to 0.05 (FETCH) for requests and to 2.05
(Content) for responses. This exception allows OSCORE to be
compliant with the Cbserve processing i n OSCORE-unaware proxies. The
choi ce of POST and FETCH ([RFC8132]) allows all OSCORE nessages to
have payl oad.

The receiving endpoint SHALL di scard the Code in the OSCORE nessage
and wite the Code of the Plaintext in the COSE object (Section 5.2)
into the decrypted CoAP nessage

The ot her CoAP header fields are Unprotected (Class U. The sending
endpoint SHALL wite all other header fields of the original nessage
into the header of the OSCORE nessage. The receiving endpoint SHALL
wite the header fields fromthe received OSCORE nessage into the
header of the decrypted CoAP nessage.

Sel ander, et al. Expires April 28, 2018 [Page 18]

Internet-Draft OSCORE Cct ober 2017

5.

The COSE nj ect

This section defines howto use COSE [RFC8152] to wap and protect
data in the original nmessage. OSCORE uses the untagged COSE EncryptO
structure with an Authenticated Encryption with Additional Data
(AEAD) algorithm The key lengths, 1V length, nonce |length, and
maxi mum Sender Sequence Nunber are al gorithm dependent.

The AEAD al gorithm AES- CCM 16-64-128 defined in Section 10.2 of

[RFC8152] is mandatory to inplenent. For AES-CCM 16-64-128 the

| ength of Sender Key and Recipient Key is 128 bits, the |l ength of
nonce and Common |V is 13 bytes. The nmaxi num Sender Sequence Nunber
is specified in Section 11

We denote by Plaintext the data that is encrypted and integrity
protected, and by Additional Authenticated Data (AAD) the data that
is integrity protected only.

The COSE Obj ect SHALL be a COSE EncryptO object with fields defined
as foll ows

0 The "protected" field is enpty.
0 The "unprotected" field includes:

* The "Partial |IV' paraneter. The value is set to the Sender
Sequence Nunber. All |eading zeroes SHALL be renoved when
encoding the Partial IV. The value 0 encodes to the byte
string 0x00. This paraneter SHALL be present in requests. In
case of (bserve (Section 4.2.3.4) the Partial IV SHALL be
present in responses, and otherw se the Partial |1V SHOULD NOT
be present in responses. (A non-Cbserve exanpl e where the
Partial I1Vis included in a response is provided in
Section 6.5.2.)

* The "kid" paraneter. The value is set to the Sender ID. This
paraneter SHALL be present in requests and SHOULD NOT be
present in responses. (An exanple where the Sender IDis
included in a response is the extension of OSCORE to group
conmmuni cation [I-D.tiloca-core-nulticast-oscoap].)

0 The "ciphertext" field is conputed fromthe secret key (Sender Key
or Recipient Key), Nonce (see Section 5.1), Plaintext (see
Section 5.2), and the Additional Authenticated Data (AAD) (see
Section 5.3) following Section 5.2 of [RFC8152].

The encryption process is described in Section 5.3 of [RFC8152].

Sel ander, et al. Expires April 28, 2018 [Page 19]

Internet-Draft OSCORE Cct ober 2017

5.1. Nonce
The nonce is constructed in the followi ng way (see Figure 5):

1. left-padding the Partial IV (in network byte order) with zeroes
to exactly 5 bytes,

2. left-padding the (Sender) ID of the endpoint that generated the
Partial 1V (in network byte order) with zeroes to exactly nonce
|l ength - 6 bytes,

3. concatenating the size of the ID(S) with the padded ID and the
padded Partial 1V,

4. and then XORing with the Comon | V.

Note that in this specification only algorithns that use nonces equa
or greater than 7 bytes are support ed.

When observe is not used, the request and the response may use the

same nonce. |In this way, the Partial 1V does not have to be sent in
responses, which reduces the size. For processing instructions, see
Section 7.
oo e e e e e B T P S
| S| IDof PIV generator | Partial IV |[----+
B B T S S |
I
B . + |
Comon |V | - >(XOR)
TS + |
I
o + |
Nonce | <---+
o m o e e e e e e e e e e e e e e e e eee oo +

Fi gure 5: AEAD Nonce Fornmation
5.2. Plaintext

The Plaintext is formatted as a CoAP nessage wi t hout Header (see
Fi gure 6) consisting of:

o the Code of the original CoAP nmessage as defined in Section 3 of
[RFC7252]; and

o all Inner option nmessage fields (see Section 4.2.1) present in the
original CoAP nessage (see Section 4.2). The options are encoded

Sel ander, et al. Expires April 28, 2018 [Page 20]

Internet-Draft OSCORE Cct ober 2017

as described in Section 3.1 of [RFC7252], where the delta is the
difference to the previously included Cass E option; and

o the Payl oad of original CoAP nessage, if present, and in that case
prefixed by the one-byte Payl oad Marker (OxFF).

0 1 2 3
01234567890123456789012345678901
B S S I T S S e e S S T S S S S i i S S

[Code [Class E options (if any)
e T T S S A
[11111111] Payl oad (if any)

T R e e o e i S S e S E t e ok o S
(only if there
i s payl oad)

Fi gure 6: Pl aintext
5.3. Additional Authenticated Data
The external _aad SHALL be a CBOR array as defined bel ow

external _aad = |
version : uint,
alg : int / tstr,
request _kid : bstr,
request _piv : bstr,
options : bstr

]

wher e:

0 version: contains the OSCORE version nunber. |nplementations of
this specification MIST set this field to 1. Oher values are
reserved for future versions

o alg: contains the AEAD Algorithmfromthe security context used
for the exchange (see Section 3.1).

0 request _kid: contains the value of the "kid in the COSE object of
the request (see Section 5).

0 request_piv: contains the value of the "Partial IV in the COSE
obj ect of the request (see Section 5).

0 options: contains the Class | options (see Section 4.2.2) present
in the original CoAP nessage encoded as described in Section 3.1

Sel ander, et al. Expires April 28, 2018 [Page 21]

Internet-Draft OSCORE Cct ober 2017

of [RFC7252], where the delta is the difference to the previously
i ncluded class | option

NOTE: The fornmat of the external _aad is for sinplicity the sane for
requests and responses, although sone paraneters, e.g. request _kid
need not be integrity protected in the requests.

6. Sequence Nunbers, Replay, Message Binding, and Freshness
6.1. Message Binding

In order to prevent response delay and m snatch attacks

[1-D. mattsson-core-coap-actuators] fromon-path attackers and

conprom sed proxi es, OSCORE binds responses to the requests by
including the kid and Partial IV of the request in the AAD of the
response. The server therefore needs to store the kid and Partial IV
of the request until all responses have been sent.

6.2. AEAD Nonce Uni queness

An AEAD nonce MUST NOT be used nore than once per AEAD key. In order
to assure uni que nonces, each Sender Context contains a Sender
Sequence Nunber used to protect requests, and - in case of Cbserve -
responses. |If nessages are processed concurrently, the operation of
readi ng and increasing the Sender Sequence Number MJST be atonic.

The maxi num Sender Sequence Nunber is al gorithm dependent, see
Section 11, and no greater than 2740 - 1. |If the Sender Sequence
Nunber exceeds the maxi num the endpoint MJUST NOT process any nore
nmessages with the given Sender Context. The endpoint SHOULD acquire
a new security context (and consequently informthe other endpoint)
before this happens. The latter is out of scope of this docunent.

6. 3. Freshness

For requests, OSCORE provi des weak absolute freshness as the only
guarantee is that the request is not older than the security context.
For applications having stronger demands on request freshness (e.qg.
control of actuators), OSCORE needs to be augnented with mechani sns
providing freshness [|-D. ansuess-core-repeat-request-tag].

For responses, the nmessage bi nding guarantees that a response i s not
ol der than its request. For responses w thout Cbserve, this gives
strong absol ute freshness. For responses with Observe, the absolute
freshness gets weaker with tine, and it is RECOMVENDED t hat the
client regularly restart the observation

Sel ander, et al. Expires April 28, 2018 [Page 22]

I nt

6. 4.

6. 5.

Sel

ernet-Draft OSCORE Cct ober 2017

For requests, and responses with Cbserve, OSCORE al so provides
relative freshness in the sense that the received Partial 1V allows a
recipient to determne the relative order of responses.

Repl ay Protection

In order to protect fromreplay of requests, the server’s Recipient
Context includes a Replay Wndow. A server SHALL verify that a
Partial 1V received in the COSE object has not been received before.
If this verification fails and the nessage received is a CON nessage,
the server SHALL respond with a 5.03 Service Unavail able error
message with the inner Max-Age option set to 0. The diagnostic

payl oad MAY contain the "Replay protection failed" string. The size
and type of the Replay W ndow depends on the use case and | ower
protocol layers. 1In case of reliable and ordered transport from
endpoi nt to endpoint, the server MAY just store the |last received
Partial IV and require that newWy received Partial |Vs equals the

| ast received Partial IV + 1.

Responses to non-(Cbserve requests are protected agai nst replay as
they are cryptographically bound to the request.

In the case of Cbserve, a client receiving a notification SHALL
verify that the Partial |V of a received notification is greater than
the Notification Nunmber bound to that Observe registration. |If the
verification fails, the client SHALL stop processing the response,
and in the case of CON respond with an enpty ACK. If the
verification succeeds, the client SHALL overwite the corresponding
Notification Number with the received Partial |V.

I f messages are processed concurrently, the Partial IV needs to be
validated a second tine after decryption and before updating the
replay protection data. The operation of validating the Partial 1V
and updating the replay protection data MJUST be atonic.

Losing Part of the Context State

To prevent reuse of the Nonce with the sanme key, or from accepting
repl ayed nessages, a node needs to handle the situation of |osing
rapi dly changing parts of the context, such as the request Token
Sender Sequence Nunber, Replay W ndow, and Nofitifcation Nunbers.
These are typically stored in RAM and therefore |lost in the case of
an unpl anned reboot.

After boot, a node MAY reject to use existing security contexts from

before it booted and MAY establish a new security context with each
party it communi cates. However, establishing a fresh security

ander, et al. Expires April 28, 2018 [Page 23]

Internet-Draft OSCORE Cct ober 2017

6

6

6

context may have a non-negligible cost in terns of, e.g., power
consunpt i on.

After boot, a node MAY use a partly persistently stored security
context, but then the node MJUST NOT reuse a previous Sender Sequence
Nunmber and MJST NOT accept previously accepted nessages. Sone ways
to achieve this is described bel ow

5.1. Sequence Nunber

To prevent reuse of Sender Sequence Nunmbers, a node MAY performthe
foll owi ng procedure during nornmal operations:

o Each time the Sender Sequence Nunber is evenly divisible by K
where Kis a positive integer, store the Sender Sequence Number in
persistent nenory. After boot, the node initiates the Sender
Sequence Nunber to the value stored in persistent menory + K - 1.
Storing to persistent nenory can be costly. The value K gives a
trade-of f between the nunber of storage operations and efficient
use of Sender Sequence Nunbers.

5.2. Replay W ndow

To prevent accepting replay of previously received requests, the
server MAY performthe follow ng procedure after boot:

0 For each stored security context, the first time after boot the
server receives an OSCORE request, the server responds with the
Repeat option [|-D. anmsuess-core-repeat-request-tag] to get a
request with verifiable freshness. The server MJST use its
Partial |V when generating the nonce and MJST include the Partia
IV in the response.

If the server using the Repeat option can verify a second request as
fresh, then the Partial IV of the second request is set as the | ower
limt of the replay w ndow

5.3. Replay Protection of Cbserve Notifications

To prevent accepting replay of previously received notification
responses, the client MAY performthe followi ng procedure after boot:

0o The client rejects notifications bound to the earlier
registration, renoves all Notification Nunbers and re-register
usi ng Qbserve.

Sel ander, et al. Expires April 28, 2018 [Page 24]

Internet-Draft OSCORE Cct ober 2017

Processi ng

This section describes the OSCORE nessage processing.

Protecting the Request

G ven a CoAP request, the client SHALL performthe followi ng steps to
create an OSCORE request:

7

7. 1.
1.
2
3.
4.
5.
6.

7.2.

Retrieve the Sender Context associated with the target resource.

Conpose the Additional Authenticated Data, as described in
Section 5.

Conput e the AEAD nonce fromthe Sender 1D, Common |V, and Parti al
IV (Sender Sequence Nunber in network byte order) as described in
Section 5.1. Then (in one atomic operation, see Section 6.2)

i ncrenment the Sender Sequence Nunber by one.

Encrypt the COSE object using the Sender Key. Conpress the CCSE
Ohj ect as specified in Section 8.

Format t he OSCORE nessage according to Section 4. The Object-
Security option is added, see Section 4.2.2.

Store the association Token - Security Context. The client SHALL
be able to find the Recipient Context fromthe Token in the
response.

Verifying the Request

A server receiving a request containing the Cbject-Security option
SHALL performthe foll owi ng steps:

1.

Process outer Block options according to [RFC7959], until all
bl ocks of the request have been received, see Section 4.2.3.2.

Di scard the nmessage Code and all non-special Inner option
message fields (marked with "x’ in colum E of Figure 4) present
in the received nessage. For exanple, an If-Match Quter option
is discarded, but an Uri-Host Quter option is not discarded.

Deconpress the COSE Cbject (Section 8) and retrieve the
Reci pi ent Context associated with the Recipient IDin the "kid
paraneter. |If the request is a NON nessage and either the
deconpressi on or the COSE nessage fails to decode, or the server
fails to retrieve a Recipient Context with Recipient ID
corresponding to the '"kid paranmeter received, then the server

Sel ander, et al. Expires April 28, 2018 [Page 25]

Internet-Draft OSCORE Cct ober 2017

10.

SHALL stop processing the request. |If the request is a CON
message, and:

* either the deconpression or the COSE nessage fails to decode,
the server SHALL respond with a 4.02 Bad Option error
message. The diagnostic payl oad SHOULD contain the string
"Failed to decode COSE".

* the server fails to retrieve a Recipient Context with
Reci pient ID corresponding to the 'kid paraneter received,
the server SHALL respond with a 4.01 Unauthorized error
message. The diagnostic payload MAY contain the string
"Security context not found".

Verify the "Partial |1V paraneter using the Replay Wndow, as
described in Section 6.

Conpose the Additional Authenticated Data, as described in
Section 5.

Conput e the AEAD nonce fromthe Recipient 1D, Common |V, and the
"Partial |V paraneter, received in the COSE Object.

Decrypt the COSE object using the Recipient Key.

* |f decryption fails, the server MJST stop processing the
request and, if the request is a CON nessage, the server MJST
respond with a 4. 00 Bad Request error nessage. The
di agnostic payl oad MAY contain the "Decryption failed"
string.

* | f decryption succeeds, update the Replay W ndow, as
described in Section 6.

For each decrypted option, check if the option is also present
as an Quter option: if it is, discard the Quter. For exanple:

t he message contains a Max-Age | nner and a Max- Age CQuter option.
The Quter Max-Age is discarded.

Add decrypted code, options and payload to the decrypted
request. The (Object-Security option is renoved.

The decrypted CoAP request is processed according to [RFC7252]

Sel ander, et al. Expires April 28, 2018 [Page 26]

Internet-Draft OSCORE Cct ober 2017

7.3. Protecting the Response

G ven a CoAP response, the server SHALL performthe foll owi ng steps
to create an OSCORE response. Note that CoAP error responses derived
from CoAP processing (point 10. in Section 7.2) are protected, as
wel | as successful CoAP responses, while the OSCORE errors (point 3.
4., 7. in Section 7.2) do not follow the processing below, but are
sent as sinple CoAP responses, w thout OSCORE processing

1. Retrieve the Sender Context in the Security Context used to
verify the request.

2. Conpose the Additional Authenticated Data, as described in
Section 5.

3. Conpute the AEAD nonce
* |f Cbserve is used, Conpute the AEAD nonce fromthe Sender |D
Conmon |V, and Partial 1V (Sender Sequence Number in network
byte order). Then (in one atom c operation, see Section 6.2)
i ncrement the Sender Sequence Number by one.

* |f Cbserve is not used, either the nonce fromthe request is
used or a new Partial IV is used.

4. Encrypt the COSE object using the Sender Key. Conpress the COSE

bj ect as specified in Section 8. If in 3. the nonce was
constructed froma new Partial 1V, this Partial |V MIST be
included in the nessage. |If the nonce fromthe request was used,

the Partial 1V MUST NOT be included in the nessage.

5. Format the OSCORE nessage according to Section 4. The Object-
Security option is added, see Section 4.2.2.

7.4. Verifying the Response

A client receiving a response containing the Object-Security option
SHALL performthe foll ow ng steps:

1. Process outer Block options according to [RFC7959], until al
bl ocks of the OSCORE nessage have been received, see
Section 4.2.3.2.

2. Di scard the nessage Code and all non-special C ass E options

fromthe nmessage. For exanple, ETag Quter option is discarded,
Max- Age Quter option is not discarded.

Sel ander, et al. Expires April 28, 2018 [Page 27]

Internet-Draft OSCORE Cct ober 2017

3. Retrieve the Recipient Context associated with the Token
Deconpress the COSE Cbject (Section 8). |If either the
deconpression or the COSE nessage fails to decode, then go to
11.

4, For (bserve notifications, verify the received 'Partial |V
par anet er agai nst the corresponding Notification Nunber as
described in Section 6. |If the client receives a notification
for which no Cbserve request was sent, then go to 11.

5. Conpose the Additional Authenticated Data, as described in
Section 5.

6. Conput e the AEAD nonce

1. If the Observe option and the Partial IV are not present in
the response, the nonce fromthe request is used.

2. If the bserve option is present in the response, and the
Partial IV is not present in the response, then go to 11.

3. If the Partial IV is present in the response, conpute the
AEAD nonce fromthe Recipient ID, Cormon |V, and the
"Partial IV paranmeter, received in the COSE bject.

7. Decrypt the COSE object using the Recipient Key.
* |f decryption fails, then go to 11

* |f decryption succeeds and Ohserve is used, update the
corresponding Notification Nunber, as described in Section 6.

8. For each decrypted option, check if the option is also present
as an Quter option: if it is, discard the Quter. For exanple:
the nmessage contains a Max- Age | nner and a Max- Age Quter option
The Quter Max-Age is discarded

9. Add decrypted code, options and payl oad to the decrypted
request. The Cbject-Security option is renoved.

10. The decrypted CoAP response is processed according to [RFC7252]

11. (Optional) In case any of the previous erroneous conditions
apply: if the response is a CON nessage, then the client SHALL
send an enpty ACK back and stop processing the response; if the
response is a ACK or a NON nessage, then the client SHALL sinply
stop processing the response.

Sel ander, et al. Expires April 28, 2018 [Page 28]

Internet-Draft OSCORE Cct ober 2017

8. OSCORE Conpr essi on

The Conci se Binary Object Representation (CBOR) [RFC7049] conbi nes
very snall nessage sizes with extensibility. The CBOR Object Signing
and Encryption (COSE) [RFC8152] uses CBOR to create conpact encoding
of signed and encrypted data. COSE is however constructed to support
a large nunber of different stateless use cases, and is not fully
optimzed for use as a stateful security protocol, leading to a

| arger than necessary nessage expansion. In this section, we define
a sinple statel ess conpression nechani smfor OSCORE call ed the
"conpressed COSE object"”, which significantly reduces the per-packet
over head.

8.1. Encoding of the Object-Security Val ue
The val ue of the nject-Security option SHALL contain the OSCORE fl ag

byte, the Partial |1V paraneter, the Context Hint paraneter (length
and val ue), and the kid paranmeter as foll ows:

01234567 <--------- n bytes ------------- >
B T 2T 2t 2 T
|0 O Olhlk] n | Partial 1V (if any)
B T o o
<-- 1 byte --> <------ S bytes ------ >
B RS B o +
| s (if any) | Context Hint (if any) | kid (if any)
S o S +

Figure 7: bject-Security Val ue

o The first byte (= the OSCORE flag byte) encodes a set of flags and
the length of the Partial |V paraneter

* The three least significant bits encode the Partial IV length

n. If n=0then the Partial IV is not present in the
compressed COSE object. The values n =6 and n = 7 is
reserved.

* The fourth least significant bit is the kid flag, k: it is set
to 1l if the kid is present in the conpressed COSE object.

* The fifth least significant bit is the Context Hint flag, h: it
is set to 1 if the conmpressed COSE object contains a Context
Hint, see Section 8.3.

* The sixth-eighth least significant bits are reserved and SHALL
be set to zero when not in use

Sel ander, et al. Expires April 28, 2018 [Page 29]

I nt

8. 2.

8. 3.

8. 4.

Sel

ernet-Draft OSCORE Cct ober 2017

o The following n bytes encode the value of the Partial 1V, if the
Partial IVis present (n > 0).

o The following 1 byte encode the | ength of the Context Hint
(Section 8.3) s, if the Context Hint flag is set (h = 1).

o The following s bytes encode the Context Hint, if the Context Hint
flag is set (h =1).

0 The renmai ning bytes encode the value of the kid, if the kid is
present (k = 1)

Note that the kid MJUST be the last field of the object-security
val ue, even in case reserved bits are used and additional fields are
added to it.

Encodi ng of the OSCORE Payl oad

The payl oad of the OSCORE nessage SHALL encode the ciphertext of the
COSE obj ect.

Cont ext Hint

For certain use cases, e.g. deploynents where the sane Recipient ID
is used with nultiple contexts, it is necessary or favorable for the
client to provide a Context Hint in order for the server to retrieve
the Recipient Context. The Context Hint is inplicitly integrity
protected, as mani pulation |leads to the wong or no context being
retrieved resulting in a verification error, as described in

Section 7.2. This paraneter MAY be present in requests and SHALL NOT
be present in responses.

Exanpl es:

o If the client has an identifier in sone other nanmespace which can
be used by the server to retrieve or establish the security
context, then that identifier can be used as Context Hint.

0 In case of a group comuni cation scenario
[I-D.tiloca-core-nulticast-oscoap], if the server belongs to
mul tiple groups, then a group identifier can be used as Context
H nt to enable the server to find the right security context.

Exanpl es of Conpressed COSE (bj ects

ander, et al. Expires April 28, 2018 [Page 30]

Internet-Draft OSCORE Cct ober 2017

8.4.1. Exanple: Requests
Request with kid = 25 and Partial 1V =5
Bef ore conpression (24 bytes):

4'h 25, 6:h 05 },
' aea0155667924df f 8a24e4ch35h9’

— s 5

After conpression (17 bytes):

Fl ag byte: 0b00001001 = 0x09

Option Value: 09 05 25 (3 bytes)

Payl oad: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)
Request with kid = enpty string and Partial IV =0

After conpression (16 bytes):

Fl ag byte: 0b00001001 = 0x09

Option Value: 09 00 (2 bytes)

Payl oad: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)

Request with kid = enpty string, Partial 1V =5, and Context Hint =
0x44616c656b

After conpression (22 bytes):

Fl ag byte: 0b00011001 = 0x19

Option Value: 19 05 01 44 61 6¢c 65 6b (8 bytes)

Payl oad: ae a0 15 56 67 92 4d ff 8a 24 e4 chb 35 b9 (14 bytes)
8.4.2. Exanple: Response (wi thout Cbserve)

Bef ore conpression (18 bytes):

Sel ander, et al. Expires April 28, 2018 [Page 31]

Internet-Draft OSCORE Cct ober 2017

[

hi!,

{1

h' aea0155667924df f 8a24e4cb35hb9

]

After conpression (14 bytes):

Fl ag byte: 0b00000000 = 0x00

Option Value: (0 bytes)

Payl oad: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)
8.4.3. Exanple: Response (with Cbserve)

Bef ore conpression (21 bytes):

6 h' 07 1},
' 2ea0155667924df f 8a24e4ch35h9’

— s 5

After conpression (16 bytes):

Fl ag byte: 0b00000001 = 0x01

Option Value: 01 07 (2 bytes)

Payl oad: ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9 (14 bytes)
9. Web Linking

The use of OSCORE MAY be indicated by a target attribute "osc" in a
web link [RFC8288] to a resource. This attribute is a hint
indicating that the destination of that link is to be accessed using
OSCORE. Note that this is sinply a hint, it does not include any
security context material or any other information required to run
OSCORE.

A val ue MUST NOT be given for the "osc" attribute; any present val ue
MUST be ignored by parsers. The "osc" attribute MJUST NOT appear nore
than once in a given |ink-value; occurrences after the first MJST be
i gnored by parsers

Sel ander, et al. Expires April 28, 2018 [Page 32]

Internet-Draft OSCORE Cct ober 2017

10.

10.

10.

Proxy Operations

RFC 7252 defines operations for a CoAP-to- CoAP proxy (see Section 5.7
of [RFC7252]) and for proxying between CoAP and HITP (Section 10 of

[RFC7252]). A nore detail ed description of the HITP-to- CoAP mappi ng
is provided by [RFC8075]. This section describes the operations of
OSCORE- awar e proxi es.

1. CoAP-to- CoAP Forwardi ng Proxy

OSCORE is designed to work with | egacy CoAP-to- CoAP forward proxies
[RFC7252], but OSCORE- aware proxies provide certain sinplifications
as specified in this section.

The targeted proxy operations are specified in Section 2.2.1 of
[1-D. hartke-core-e2e-security-reqs]. |In particular caching is

di sabl ed since the CoAP response is only applicable to the original
client’s CoAP request. An OSCORE-aware proxy SHALL NOT cache a
response to a request with an Object-Security option. As a
consequence, the search for cache hits and CoAP freshness/ Max- Age
processing can be omitted.

Proxy processing of the (Quter) Proxy-Uri option is as defined in
[RFC7252] .

Proxy processing of the (Quter) Block options is as defined in
[RFC7959] and [1-D. ansuess-core-repeat-request-tag].

Proxy processing of the (Quter) Observe option is as defined in
[RFC7641] . OSCORE- aware proxies MAY | ook at the Partial |V value
i nstead of the Quter Observe option.

2. HITP-to- CoAP Transl ati on Proxy

Section 10.2 of [RFC7252] and [RFC8075] specify the behavior of an
HTTP-t o- COAP proxy. As requested in Section 1 of [RFC8075], this
section describes the HITP napping for the OSCORE protocol extension
of CoAP.

The presence of the (bject-Security option, both in requests and
responses, is expressed in an HTTP header field nanmed Object-Security
in the mapped request or response. The value of the field is the

val ue of the Object-Security option Section 8.1 in base64url encoding
(Section 5 of [RFC4648]) without padding (see [RFC7515] Appendix C
for inplementation notes for this encoding). The value of the

payl oad i s the OSCORE payl oad Section 8.2, also base64url -encoded

wi t hout paddi ng.

Sel ander, et al. Expires April 28, 2018 [Page 33]

Internet-Draft OSCORE Cct ober 2017

Exanpl e:

Mappi ng and notation here is based on "Sinple Fornt (Section 5.4.1.1
of [RFCB075]).

[HTTP request -- Before object security processing]

GET http://proxy.url/hc/?target _uri=coap://server.url/orders HITP/ 1.1
[HTTP request -- HITP dient to Proxy]

POST http://proxy.url/hc/?target _uri=coap://server.url/ HITP/ 1.1

bj ect-Security: 0Ob 25

Body: 09 07 01 13 61 f7 Of d2 97 bl [binary]
[CoAP request -- Proxy to CoAP Server]

PCST coap://server.url/

bj ect-Security: 0Ob 25

Payl oad: 09 07 01 13 61 f7 Of d2 97 bl [binary]

[CoAP response -- CoAP Server to Proxy]

2. 04 Changed
bj ect-Security: [enpty]
Payl oad: 00 31 dl1 fc f6 70 fb Oc 1d d5 ... [binary]

[HTTP response -- Proxy to HITP dient]

HTTP/ 1.1 200 K
bj ect-Security: [enpty]
Body: 00 31 d1 fc f6 70 fb Oc 1d d5 ... [binary]

[HTTP response -- After object security processing]

HTTP/ 1.1 200 K
Body: Exterminate! Extermn nate!

Note that the HTTP Status Code 200 in the next-to-last nessage is the
mappi ng of CoAP Code 2.04 (Changed), whereas the HITP Status Code 200
in the | ast nessage is the mappi ng of the CoAP Code 2.05 (Content),
whi ch was encrypted within the conpressed COSE object carried in the
Body of the HTITP response.

Sel ander, et al. Expires April 28, 2018 [Page 34]

Internet-Draft OSCORE Cct ober 2017

10. 3. CoAP-to-HTTP Transl ati on Proxy
Section 10.1 of [RFC7252] describes the behavior of a CoAP-to-HITP
proxy. RFC 8075 [RFC8075] does not cover this direction in any nore
detail and so an exanple instantiation of Section 10.1 of [RFC7252]
i s used bel ow
Exanpl e:
[CoAP request -- Before object security processing]

GET coap://proxy.url/
Proxy-Uri=http://server.url/orders

[CoAP request -- CoAP dient to Proxy]

PCST coap://proxy.url/

Proxy-Uri=http://server.url/

bj ect-Security: 0Ob 25

Payl oad: 09 07 01 13 61 f7 Of d2 97 bl [binary]
[HTTP request -- Proxy to HITP Server]

POST http://server.url/ HITP/ 1.1

bj ect-Security: 0Ob 25

Body: 09 07 01 13 61 f7 Of d2 97 bl [binary]
[HTTP response -- HITP Server to Proxy]

HTTP/ 1.1 200 K

bj ect-Security: [enpty]

Body: 00 31 d1 fc f6 70 fb Oc 1d d5 ... [binary]

[CoAP response -- CoAP Server to Proxy]

2. 04 Changed

bj ect-Security: [enpty]

Payl oad: 00 31 d1 fc f6 70 fb Oc 1d d5 ... [binary]
[CoAP response -- After object security processing]

2. 05 Content

Payl oad: Extermni nate! Exterm nate!

Note that the HTTP Code 2.04 (Changed) in the next-to-last nessage is
the mappi ng of HTTP Status Code 200, whereas the CoAP Code 2.05
(Content) in the last nessage is the value that was encrypted within
the conpressed COSE object carried in the Body of the HTTP response.

Sel ander, et al. Expires April 28, 2018 [Page 35]

Internet-Draft OSCORE Cct ober 2017

11.

Security Considerations

In scenarios with internediary nodes such as proxies or brokers,
transport |ayer security such as (D) TLS only protects data hop-by-
hop. As a consequence, the internediary nodes can read and nodify
information. The trust nodel where all internmediate nodes are
considered trustworthy is problematic, not only froma privacy
perspective, but also froma security perspective, as the
intermediaries are free to delete resources on sensors and falsify
commands to actuators (such as "unl ock door", "start fire alarnt,
"raise bridge"). Even in the rare cases, where all the owners of the
intermedi ary nodes are fully trusted, attacks and data breaches make
such an architecture brittle.

(D) TLS protects hop-by-hop the entire nessage, including header
options, and payl oad. OSCORE protects end-to-end the payl oad, and
all information in the options and header, that is not required for
proxy operations (see Section 4). (D)TLS and OSCORE can be conbi ned,
t hereby enabling end-to-end security of the nessage payload, in
combi nation w th hop-by-hop protection of the entire nessage, during
transport between end-point and internediary node. The nessage

| ayer, however, cannot be protected end-to-end through internediary
devices since, even if the protocol itself isn't translated, the
paraneters Type, Message | D, Token, and Token Length may be changed
by a proxy.

The use of COSE to protect nessages as specified in this docunent
requires an established security context. The nethod to establish
the security context described in Section 3.2 is based on a common
shared secret material in client and server, which nay be obtai ned,
e.g., by using the ACE framework [I-D.ietf-ace-oauth-authz]. An
OSCORE profile of ACE is described in [I-D. seitz-ace-oscoap-profile].

Most AEAD al gorithns require a uni que nonce for each nessage, for
whi ch the sender sequence nunbers in the COSE nessage field "Partia
IV'" is used. |If the recipient accepts any sequence nunber |arger
than the one previously received, then the probl em of sequence nunber
synchroni zation is avoided. Wth reliable transport, it may be
defined that only messages with sequence nunber which are equal to
previ ous sequence nunber + 1 are accepted. The alternatives to
sequence nunbers have their issues: very constrained devices nay not
be able to support accurate tine, or to generate and store |arge
nunbers of random nonces. The requirenent to change key at counter
wap is a conmplication, but it also forces the user of this
specification to think about inplenmenting key renewal .

The maxi num sender sequence nunber is dependent on the AEAD
algorithm The maxi nrum sender sequence nunber SHALL be 2740 - 1, or

Sel ander, et al. Expires April 28, 2018 [Page 36]

Internet-Draft OSCORE Cct ober 2017

12.

any algorithmspecific lower lint, after which a new security
context rnust be generated. The mechanismto build the nonce

(Section 5.1) assunes that the nonce is at |east 56 bit-long, and the
Partial IVis at nost 40 bit-long. The nmandatory-to-inpl ement AEAD
al gorithm AES- CCMt 16- 64-128 is selected for conpatibility with CCW.

The inner block options enable the sender to split |arge nessages

i nt o OSCORE- protected bl ocks such that the receiving node can verify
bl ocks before having received the conpl ete nessage. The outer bl ock
options allow for arbitrary proxy fragnentati on operations that
cannot be verified by the endpoints, but can by policy be restricted
in size since the encrypted options allow for secure fragnmentation of
very | arge nessages. A naxi mum nessage size (above which the sending
endpoi nt fragments the message and the receiving endpoint discards
the message, if conplying to the policy) may be obtained as part of
nornmal resource discovery.

Privacy Considerations

Privacy threats executed through intermnmedi ate nodes are considerably
reduced by nmeans of OSCORE. End-to-end integrity protection and
encryption of the nessage payload and all options that are not used
for proxy operations, provide mitigation against attacks on sensor
and actuator conmuni cation, which may have a direct inmpact on the
personal sphere.

The unprotected options (Figure 4) may reveal privacy sensitive
information. In particular Uri-Host SHOULD NOT contain privacy
sensitive information.

CoAP headers sent in plaintext allow for exanple matching of CON and
ACK (CoAP Message ldentifier), matching of request and responses
(Token) and traffic anal ysis.

Usi ng the nechani sns described in Section 6.5 may reveal when a

devi ce goes through a reboot. This can be nitigated by the device
storing the precise state of sender sequence nunber and replay w ndow
on a cl ean shut down.

The | ength of nessage fields can reveal information about the
message. Applications nay use a padding schene to protect against
traffic analysis. As an exanple, the strings "YES' and "NO' even if
encrypted can be distinguished fromeach other as there is no padding
supplied by the current set of encryption algorithms. Some

i nformati on can be determined even from| ooking at boundary
conditions. An exanple of this would be returning an integer between
0 and 100 where lengths of 1, 2 and 3 will provide infornmation about
where in the range things are. Three different methods to deal with

Sel ander, et al. Expires April 28, 2018 [Page 37]

Internet-Draft OSCORE Cct ober 2017

13.

13.

13.

14.

this are: 1) ensure that all nessages are the sane | ength. For
exanple, using 0 and 1 instead of 'yes’ and 'no’. 2) Use a character
which is not part of the responses to pad to a fixed length. For
exanple, pad with a space to three characters. 3) Use the PKCS #7
styl e paddi ng schene where m bytes are appended each havi ng the val ue
of m For exanple, appending a 0 to "YES" and two 1's to "NO'. This
style of padding neans that all values need to be padded. Simlar
argunents apply to other nessage fields such as resource nanes

| ANA Consi der ati ons

Note to RFC Editor: Please replace all occurrences of "[[this
docunent]]" with the RFC nunber of this specification.

1. CoAP Option Nunbers Registry

The nject-Security option is added to the CoAP Opti on Numbers
registry:

[S, o B +
| Nurnber | Nane | Reference |
[S S S +
| TBD | Object-Security | [[this document]] |
o m e e oo o e e e oo - e e e e oo +

2. Header Field Registrations

The HTTP header field Object-Security is added to the Message Headers
registry:

T e e T +
| Header Field Name | Protocol | Status | Reference |
B Fom e - Fom e - B +
| Onject-Security | http | standard | [[this docunent]] |
- . . - +

Acknowl edgrent s

The follow ng individuals provided input to this docunent: Christian
Anmsuess, Tobi as Ander sson, Carsten Bormann, Joaki m Brorsson, Thonas
Fossati, Martin @nnarsson, Kl aus Hartke, Ji m Schaad, Dave Thal er,
Marco Tiloca, and Malisa Vuči ni ć .

Ludwi g Seitz and CGoeran Sel ander worked on this docunent as part of
the CelticPlus project CyberW, with funding from Vi nnova.

Sel ander, et al. Expires April 28, 2018 [Page 38]

Internet-Draft OSCORE Cct ober 2017

15. References
15. 1. Nor mati ve Ref erences

[1-D. anmsuess-core-repeat -request -tag]
Ansuess, C., Mattsson, J., and G Sel ander, "Repeat And
Request - Tag", draft-ansuess-core-repeat-request-tag-00
(work in progress), July 2017.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<https://ww. rfc-editor.org/info/rfc2119>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<https://www. rfc-editor.org/info/rfc4648>.

[RFC6347] Rescorla, E. and N. Mddadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DO 10.17487/ RFC6347,
January 2012, <https://www.rfc-editor.org/info/rfc6347>.

[RFC7049] Bormann, C. and P. Hof frman, "Concise Binary bject
Representation (CBOR)", RFC 7049, DA 10.17487/ RFC7049,
Cct ober 2013, <https://www. rfc-editor.org/info/rfc7049>.

[RFC7252] Shel by, Z., Hartke, K, and C. Bormann, "The Constrai ned
Application Protocol (CoAP)", RFC 7252,
DO 10.17487/ RFC7252, June 2014,
<https://ww. rfc-editor.org/info/rfc7252>.

[RFC7641] Hartke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", RFC 7641,
DO 10.17487/ RFC7641, Septenber 2015,
<https://www. rfc-editor.org/info/rfc7641>.

[RFC7959] Bormann, C. and Z. Shel by, Ed., "Block-Wse Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DA 10.17487/ RFC7959, August 2016,
<https://ww. rfc-editor.org/info/rfc7959>.

[RFC8075] Castellani, A, Loreto, S., Rahman, A., Fossati, T., and
E. Dijk, "Guidelines for Mapping |nplenmentations: HITP to
the Constrained Application Protocol (CoAP)", RFC 8075,
DO 10.17487/ RFC8075, February 2017,
<https://ww.rfc-editor.org/info/rfc8075>.

Sel ander, et al. Expires April 28, 2018 [Page 39]

Internet-Draft OSCORE Cct ober 2017

[RFC8132] van der Stok, P., Bormann, C., and A Sehgal, "PATCH and
FETCH Met hods for the Constrained Application Protocol
(CoAP)", RFC 8132, DA 10.17487/RFC8132, April 2017,
<https://ww.rfc-editor.org/info/rfc8132>.

[RFC8152] Schaad, J., "CBOR nject Signing and Encryption (COSE)",
RFC 8152, DO 10.17487/ RFC8152, July 2017,
<https://www. rfc-editor.org/info/rfc8152>.

[RFC8288] Nottingham M, "Wb Linking", RFC 8288,
DO 10. 17487/ RFC8288, Cctober 2017,
<https://ww. rfc-editor.org/info/rfc8288>.

15. 2. I nformati ve References

[1-D. bormann- 6l o- coap- 802- 15-i €]
Bormann, C., "Constrained Application Protocol (CoAP) over
| EEE 802.15.4 Information El enent for |ETF", draft-
bor mann- 61 o- coap- 802- 15-i e-00 (work in progress), April
2016.

[1-D. greevenbosch-appsawg- cbor - cddl]
Bi rkhol z, H, Vigano, C., and C. Bormann, "Concise data
definition | anguage (CDDL): a notational convention to
express CBOR data structures", draft-greevenbosch-appsawg-
cbor-cddl -11 (work in progress), July 2017.

[1-D. hartke-core-e2e-security-reqs]
Sel ander, G, Palonbini, F., and K Hartke, "Requirenents
for CoAP End-To-End Security", draft-hartke-core-e2e-
security-reqgs-03 (work in progress), July 2017.

[1-D.ietf-ace-oaut h-aut hz]
Seitz, L., Selander, G, Wahlstroem E., Erdtman, S., and
H. Tschofenig, "Authentication and Authorization for
Constrained Environnments (ACE)", draft-ietf-ace-oauth-
aut hz-07 (work in progress), August 2017.

[I-D.ietf-core-coap-tcp-tls]
Bormann, C., Lemmy, S., Tschofenig, H, Hartke, K,
Silverajan, B., and B. Raynor, "CoAP (Constrained
Application Protocol) over TCP, TLS, and WbSockets",
draft-ietf-core-coap-tcp-tls-09 (work in progress), My
2017.

Sel ander, et al. Expires April 28, 2018 [Page 40]

Internet-Draft OSCORE Cct ober 2017

[1-D. mattsson-core-coap-actuat ors]
Matt sson, J., Fornehed, J., Selander, G, and F.
Pal onbi ni, "Controlling Actuators with CoAP', draft-
mat t sson- cor e- coap-actuators-02 (work in progress),
Novenber 2016.

[1-D.seitz-ace-oscoap-profile]
Seitz, L., Palonmbini, F., and M GQGunnarsson, "OSCOAP
profile of the Authentication and Authorization for
Constrai ned Environnents Framework", draft-seitz-ace-
oscoap-profile-05 (work in progress), Cctober 2017.

[I-D.tiloca-core-nulticast-oscoap]
Tiloca, M, Selander, G, and F. Pal onbini, "Secure group
communi cati on for CoAP", draft-tiloca-core-nulticast-
oscoap-03 (work in progress), July 2017.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Ceneric Syntax", STD 66,
RFC 3986, DA 10.17487/ RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.

[RFC5869] Krawczyk, H and P. Eronen, "HMAC based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869,
DO 10.17487/ RFC5869, May 2010,
<https://www. rfc-editor.org/info/rfc5869>.

[RFC7228] Bormann, C., Ersue, M, and A Keranen, "Term nology for
Const r ai ned- Node Networks", RFC 7228,
DA 10. 17487/ RFC7228, May 2014,
<https://ww. rfc-editor.org/info/rfc7228>.

[RFC7515] Jones, M, Bradley, J., and N Sakinura, "JSON Wb
Signature (JW5)", RFC 7515, DO 10.17487/ RFC7515, May
2015, <https://ww.rfc-editor.org/info/rfc7515>.
Appendi x A. Test Vectors
TODO This section needs to be updated.
Appendi x B. Exanpl es
This section gives exanples of OSCORE. The nmessage exchanges are
made, based on the assunption that there is a security context
est abli shed between client and server. For sinplicity, these

exanples only indicate the content of the nessages w thout going into
detail of the (conpressed) COSE nessage fornat.

Sel ander, et al. Expires April 28, 2018 [Page 41]

Internet-Draft OSCORE Cct ober 2017

B.1. Secure Access to Sensor

This exanple targets the scenario in Section 3.1 of
[1-D. hartke-core-e2e-security-reqs] and illustrates a client
requesting the alarmstatus froma server

Client Proxy Server

R >| | Code: 0.02 (PCST)

| POST | [Token: 0x8c

| | | Object-Security: [kid:5f,Partial |V:42]

| | | Payl oad: {Code: 0.01

| | | Uri-Path:"alarmstatus"}

I I I

| R >| Code: 0.02 (PCST)

[| POST | Token: Ox7b

| | | Object-Security: [kid:5f,Partial |V:42]

| | | Payl oad: {Code: 0.01

| | | Uri-Path:"alarmstatus"}

I I I

| | <------ + Code: 2.04 (Changed)

[| 2.04 | Token: Ox7b

| | | Object-Security: -

| | | Payl oad: {Code: 2.05, "OFF"}

I I I

| <------ + | Code: 2.04 (Changed)

| 2.04 | | Token: 0x8c

[[| Ooject-Security: -

| | | Payl oad: {Code: 2.05, "OFF"}

I I I
Figure 8: Secure Access to Sensor. Square brackets [...] indicate
content of conpressed COSE object. Curly brackets { ... } indicate

encrypted data.

The request/response Codes are encrypted by OSCORE and only dumy
Codes (PCST/ Changed) are visible in the header of the OSCORE nessage.
The option Uri-Path ("alarmstatus") and payload ("OFF') are
encrypt ed.

The COSE header of the request contains an identifier (5f),
i ndi cating which security context was used to protect the nessage and
a Partial IV (42).

The server verifies that the Partial |V has not been recei ved before.
The client verifies that the response is bound to the request.

Sel ander, et al. Expires April 28, 2018 [Page 42]

Internet-Draft

B. 2.

OSCORE

Secure Subscribe to Sensor

Cct ober 2017

This exanple targets the scenario in Section 3.2 of
[1-D. hartke-core-e2e-security-reqs] and illustrates a client

requesting subscription to a bl ood sugar neasurenent
receiving the value 220 ng/dl

/glucose), first
val ue 180 ny/dl.

Cient

>|
I
I
I
|
I
I

Sel ander, et al.

Proxy Server

Code:

Token:

bserve:

bj ect-Security:
Payl oad:

Code:

Token:

Gbserve

Ohj ect-Security:
Payl oad:

+ Code:

Token:

Cbserve

bj ect-Security:
Payl oad:

Token:
bserve
bj ect-Security:

I

|

I

I

I

I

| Code:
|

I

I

| Payl oad:
I

+ Code:

Token:

bserve

hj ect-Security:
Payl oad:

Code:
Token:

Expires April 28,

resource (GET
and then a second

0. 05 (FETCH)

0x83

0

[kid:ca, Parti al

{Code: 0. 01,
Uri-Path:"glucose"}

| V: 15]

0. 05 (FETCH)

Oxbe

0

[kid:ca, Parti al

{Code: 0. 01,
Uri-Path:"glucose"}

| V: 15]

2.05 (Content)

Oxbe

7

[Partial [IV:32]

{ Code: 2. 05,
Content-Format: 0, "220"}
2.05 (Content)

0x83

7

[Partial [IV:32]

{ Code: 2. 05,
Content-Format: 0, "220"}
2.05 (Content)

Oxbe

8

[Partial 1V:36]

{ Code: 2. 05,
Content - Format : 0, "180"}
2.05 (Content)

0x83

2018 [Page 43]

Internet-Draft OSCORE Cct ober 2017

| | | bserve: 8

| | | Object-Security: [Partial |V:36]

| | | Payl oad: {Code: 2. 05,

[[[Content-Format: 0, "180"}
I I I

Figure 9: Secure Subscribe to Sensor. Square brackets [...]
i ndi cate content of conpressed COSE header. Curly brackets { ... }
i ndi cate encrypted dat a.

The request/response Codes are encrypted by OSCORE and only dummy
Codes (FETCH Content) are visible in the header of the OSCORE
message. The options Content-Format (0) and the payl oad ("220" and
"180"), are encrypted.

The COSE header of the request contains an identifier (ca),
i ndicating the security context used to protect the nessage and a
Partial IV (15). The COSE headers of the responses contains Parti al
I'Vs (32 and 36).
The server verifies that the Partial |1V has not been received before.
The client verifies that the responses are bound to the request and
that the Partial |1Vs are greater than any Partial |V previously
received in a response bound to the request.

Aut hors’ Addresses

Goer an Sel ander
Eri csson AB

Emai | : goran. sel ander @ri csson. com

John Mattsson
Eri csson AB

Emai | : j ohn. mattsson@ri csson. com
Francesca Pal onbi ni
Eri csson AB

Emai | : francesca. pal onbi ni @ri csson. com

Sel ander, et al. Expires April 28, 2018 [Page 44]

Internet-Draft OSCORE Cct ober 2017
Ludwig Seitz
SI CS Swedi sh I CT

Emai | : | udwi g@i cs. se

Sel ander, et al. Expires April 28, 2018 [Page 45]

