
Networking Working Group T. Przygienda
Internet-Draft Juniper Networks
Intended status: Standards Track A. Sharma
Expires: May 1, 2018 Comcast
 J. Drake
 A. Atlas
 Juniper Networks
 October 28, 2017

 RIFT: Routing in Fat Trees
 draft-przygienda-rift-03

Abstract

 This document outlines a specialized, dynamic routing protocol for
 Clos and fat-tree network topologies. The protocol (1) deals with
 automatic construction of fat-tree topologies based on detection of
 links, (2) minimizes the amount of routing state held at each level,
 (3) automatically prunes the topology distribution exchanges to a
 sufficient subset of links, (4) supports automatic disaggregation of
 prefixes on link and node failures to prevent black-holing and
 suboptimal routing, (5) allows traffic steering and re-routing
 policies and ultimately (6) provides mechanisms to synchronize a
 limited key-value data-store that can be used after protocol
 convergence to e.g. bootstrap higher levels of functionality on
 nodes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2018.

Przygienda, et al. Expires May 1, 2018 [Page 1]

Internet-Draft RIFT October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 2. Reference Frame . 4
 2.1. Terminology . 4
 2.2. Topology . 6
 3. Requirement Considerations 8
 4. RIFT: Routing in Fat Trees 10
 4.1. Overview . 10
 4.2. Specification . 10
 4.2.1. Transport . 10
 4.2.2. Link (Neighbor) Discovery (LIE Exchange) 11
 4.2.3. Topology Exchange (TIE Exchange) 11
 4.2.3.1. Topology Information Elements 12
 4.2.3.2. South- and Northbound Representation 12
 4.2.3.3. Flooding . 14
 4.2.3.4. TIE Flooding Scopes 15
 4.2.3.5. Initial and Periodic Database Synchronization . . 17
 4.2.3.6. Purging . 17
 4.2.3.7. Southbound Default Route Origination 18
 4.2.3.8. Optional Automatic Flooding Reduction and
 Partitioning 18
 4.2.4. Policy-Guided Prefixes 19
 4.2.4.1. Ingress Filtering 20
 4.2.4.2. Applying Policy 21
 4.2.4.3. Store Policy-Guided Prefix for Route Computation
 and Regeneration 22
 4.2.4.4. Re-origination 22
 4.2.4.5. Overlap with Disaggregated Prefixes 23
 4.2.5. Reachability Computation 23
 4.2.5.1. Northbound SPF 23
 4.2.5.2. Southbound SPF 24

Przygienda, et al. Expires May 1, 2018 [Page 2]

Internet-Draft RIFT October 2017

 4.2.5.3. East-West Forwarding Within a Level 24
 4.2.6. Attaching Prefixes 24
 4.2.7. Attaching Policy-Guided Prefixes 26
 4.2.8. Automatic Disaggregation on Link & Node Failures . . 27
 4.2.9. Optional Autoconfiguration 30
 4.3. Further Mechanisms 30
 4.3.1. Overload Bit . 30
 4.3.2. Optimized Route Computation on Leafs 31
 4.3.3. Key/Value Store 31
 4.3.4. Interactions with BFD 31
 4.3.5. Leaf to Leaf Procedures 32
 4.3.6. Other End-to-End Services 32
 4.3.7. Address Family and Multi Topology Considerations . . 33
 4.3.8. Reachability of Internal Nodes in the Fabric 33
 4.3.9. One-Hop Healing of Levels with East-West Links . . . 33
 5. Examples . 33
 5.1. Normal Operation . 33
 5.2. Leaf Link Failure . 35
 5.3. Partitioned Fabric 36
 5.4. Northbound Partitioned Router and Optional East-West
 Links . 37
 6. Implementation and Operation: Further Details 38
 6.1. Considerations for Leaf-Only Implementation 39
 6.2. Adaptations to Other Proposed Data Center Topologies . . 39
 6.3. Originating Non-Default Route Southbound 40
 7. Security Considerations 40
 8. Information Elements Schema 40
 8.1. common.thrift . 41
 8.2. encoding.thrift . 44
 9. IANA Considerations . 49
 10. Security Considerations 49
 11. Acknowledgments . 49
 12. References . 49
 12.1. Normative References 49
 12.2. Informative References 51
 Authors’ Addresses . 52

1. Introduction

 Clos [CLOS] and Fat-Tree [FATTREE] have gained prominence in today’s
 networking, primarily as a result of a the paradigm shift towards a
 centralized data-center based architecture that is poised to deliver
 a majority of computation and storage services in the future. The
 existing set of dynamic routing protocols was geared originally
 towards a network with an irregular topology and low degree of
 connectivity and consequently several attempts to adapt those have
 been made. Most successfully BGP [RFC4271] [RFC7938] has been
 extended to this purpose, not as much due to its inherent suitability

Przygienda, et al. Expires May 1, 2018 [Page 3]

Internet-Draft RIFT October 2017

 to solve the problem but rather because the perceived capability to
 modify it "quicker" and the immanent difficulties with link-state
 [DIJKSTRA] based protocols to fulfill certain of the resulting
 requirements.

 In looking at the problem through the very lens of its requirements
 an optimal approach does not seem to be a simple modification of
 either a link-state (distributed computation) or distance-vector
 (diffused computation) approach but rather a mixture of both,
 colloquially best described as ’link-state towards the spine’ and
 ’distance vector towards the leafs’. The balance of this document
 details the resulting protocol.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Reference Frame

2.1. Terminology

 This section presents the terminology used in this document. It is
 assumed that the reader is thoroughly familiar with the terms and
 concepts used in OSPF [RFC2328] and IS-IS [RFC1142], [ISO10589] as
 well as the according graph theoretical concepts of shortest path
 first (SPF) [DIJKSTRA] computation and directed acyclic graphs (DAG).

 Level: Clos and Fat Tree networks are trees and ’level’ denotes the
 set of nodes at the same height in such a network, where the
 bottom level is level 0. A node has links to nodes one level down
 and/or one level up. Under some circumstances, a node may have
 links to nodes at the same level. As footnote: Clos terminology
 uses often the concept of "stage" but due to the folded nature of
 the Fat Tree we do not use it to prevent misunderstandings.

 Spine/Aggregation/Edge Levels: Traditional names for Level 2, 1 and
 0 respectively. Level 0 is often called leaf as well.

 Point of Delivery (PoD): A self-contained vertical slice of a Clos
 or Fat Tree network containing normally only level 0 and level 1
 nodes. It communicates with nodes in other PoDs via the spine.

 Spine: The set of nodes that provide inter-PoD communication. These
 nodes are also organized into levels (typically one, three, or
 five levels). Spine nodes do not belong to any PoD and are
 assigned the PoD value 0 to indicate this.

Przygienda, et al. Expires May 1, 2018 [Page 4]

Internet-Draft RIFT October 2017

 Leaf: A node at level 0.

 Connected Spine: In case a spine level represents a connected graph
 (discounting links terminating at different levels), we call it a
 "connected spine", in case a spine level consists of multiple
 partitions, we call it a "disconnected" or "partitioned spine".
 In other terms, a spine without east-west links is disconnected
 and is the typical configuration for Clos and Fat Tree networks.

 South/Southbound and North/Northbound (Direction): When describing
 protocol elements and procedures, we will be using in different
 situations the directionality of the compass. I.e., ’south’ or
 ’southbound’ mean moving towards the bottom of the Clos or Fat
 Tree network and ’north’ and ’northbound’ mean moving towards the
 top of the Clos or Fat Tree network.

 Northbound Link: A link to a node one level up or in other words,
 one level further north.

 Southbound Link: A link to a node one level down or in other words,
 one level further south.

 East-West Link: A link between two nodes at the same level. East-
 west links are normally not part of Clos or "fat-tree" topologies.

 Leaf shortcuts (L2L): East-west links at leaf level will need to be
 differentiated from East-west links at other levels.

 Southbound representation: Information sent towards a lower level
 representing only limited amount of information.

 TIE: This is an acronym for a "Topology Information Element". TIEs
 are exchanged between RIFT nodes to describe parts of a network
 such as links and address prefixes. It can be thought of as
 largely equivalent to ISIS LSPs or OSPF LSA. We will talk about
 N-TIEs when talking about TIEs in the northbound representation
 and S-TIEs for the southbound equivalent.

 Node TIE: This is an acronym for a "Node Topology Information
 Element", largely equivalent to OSPF Node LSA, i.e. it contains
 all neighbors the node discovered and information about node
 itself.

 Prefix TIE: This is an acronym for a "Prefix Topology Information
 Element" and it contains all prefixes directly attached to this
 node in case of a N-TIE and in case of S-TIE the necessary default
 and de-aggregated prefixes the node passes southbound.

Przygienda, et al. Expires May 1, 2018 [Page 5]

Internet-Draft RIFT October 2017

 Policy-Guided Information: Information that is passed in either
 southbound direction or north-bound direction by the means of
 diffusion and can be filtered via policies. Policy-Guided
 Prefixes and KV Ties are examples of Policy-Guided Information.

 Key Value TIE: A S-TIE that is carrying a set of key value pairs
 [DYNAMO]. It can be used to distribute information in the
 southbound direction within the protocol.

 TIDE: Topology Information Description Element, equivalent to CSNP
 in ISIS.

 TIRE: Topology Information Request Element, equivalent to PSNP in
 ISIS. It can both confirm received and request missing TIEs.

 PGP: Policy-Guided Prefixes allow to support traffic engineering
 that cannot be achieved by the means of SPF computation or normal
 node and prefix S-TIE origination. S-PGPs are propagated in south
 direction only and N-PGPs follow northern direction strictly.

 De-aggregation/Disaggregation: Process in which a node decides to
 advertise certain prefixes it received in N-TIEs to prevent black-
 holing and suboptimal routing upon link failures.

 LIE: This is an acronym for a "Link Information Element", largely
 equivalent to HELLOs in IGPs and exchanged over all the links
 between systems running RIFT to form adjacencies.

 FL: Flooding Leader for a specific system has a dedicated role to
 flood TIEs of that system.

2.2. Topology

Przygienda, et al. Expires May 1, 2018 [Page 6]

Internet-Draft RIFT October 2017

 . +--------+ +--------+
 . | | | | ^ N
 . |Spine 21| |Spine 22| |
 .Level 2 ++-+--+-++ ++-+--+-++ <-*-> E/W
 . | | | | | | | | |
 . P111/2| |P121 | | | | S v
 . ^ ^ ^ ^ | | | |
 . | | | | | | | |
 . +--------------+ | +-----------+ | | | +---------------+
 . | | | | | | | |
 . South +-----------------------------+ | | ^
 . | | | | | | | All TIEs
 . 0/0 0/0 0/0 +-----------------------------+ |
 . v v v | | | | |
 . | | +-+ +<-0/0----------+ | |
 . | | | | | | | |
 .+-+----++ optional +-+----++ ++----+-+ ++-----++
 .| | E/W link | | | | | |
 .|Node111+----------+Node112| |Node121| |Node122|
 .+-+---+-+ ++----+-+ +-+---+-+ ++---+--+
 . | | | South | | | |
 . | +---0/0--->-----+ 0/0 | +----------------+ |
 . 0/0 | | | | | | |
 . | +---<-0/0-----+ | v | +--------------+ | |
 . v | | | | | | |
 .+-+---+-+ +--+--+-+ +-+---+-+ +---+-+-+
 .| | (L2L) | | | | Level 0 | |
 .|Leaf111˜˜˜˜˜˜˜˜˜˜˜˜Leaf112| |Leaf121| |Leaf122|
 .+-+-----+ +-+---+-+ +--+--+-+ +-+-----+
 . + + \ / + +
 . Prefix111 Prefix112 \ / Prefix121 Prefix122
 . multi-homed
 . Prefix
 .+---------- Pod 1 ---------+ +---------- Pod 2 ---------+

 Figure 1: A two level spine-and-leaf topology

 We will use this topology (called commonly a fat tree/network in
 modern DC considerations [VAHDAT08] as homonym to the original
 definition of the term [FATTREE]) in all further considerations. It
 depicts a generic "fat-tree" and the concepts explained in three
 levels here carry by induction for further levels and higher degrees
 of connectivity.

Przygienda, et al. Expires May 1, 2018 [Page 7]

Internet-Draft RIFT October 2017

3. Requirement Considerations

 [RFC7938] gives the original set of requirements augmented here based
 upon recent experience in the operation of fat-tree networks.

 REQ1: The control protocol should discover the physical links
 automatically and be able to detect cabling that violates
 fat-tree topology constraints. It must react accordingly to
 such mis-cabling attempts, at a minimum preventing
 adjacencies between nodes from being formed and traffic from
 being forwarded on those mis-cabled links. E.g. connecting
 a leaf to a spine at level 2 should be detected and ideally
 prevented.

 REQ2: A node without any configuration beside default values
 should come up as leaf in any PoD it is introduced into.
 Optionally, it must be possible to configure nodes to
 restrict their participation to the PoD(s) targeted at any
 level.

 REQ3: Optionally, the protocol should allow to provision data
 centers where the individual switches carry no configuration
 information and are all deriving their level from a "seed".
 Observe that this requirement may collide with the desire to
 detect cabling misconfiguration and with that only one of
 the requirements can be fully met in a chosen configuration
 mode.

 REQ4: The solution should allow for minimum size routing
 information base and forwarding tables at leaf level for
 speed, cost and simplicity reasons. Holding excessive
 amount of information away from leaf nodes simplifies
 operation and lowers cost of the underlay.

 REQ5: Very high degree of ECMP (and ideally non equal cost) must
 be supported. Maximum ECMP is currently understood as the
 most efficient routing approach to maximize the throughput
 of switching fabrics [MAKSIC2013].

 REQ6: Traffic engineering should be allowed by modification of
 prefixes and/or their next-hops.

 REQ7: The solution should allow for access to link states of the
 whole topology to enable efficient support for modern
 control architectures like SPRING [RFC7855] or PCE
 [RFC4655].

Przygienda, et al. Expires May 1, 2018 [Page 8]

Internet-Draft RIFT October 2017

 REQ8: The solution should easily accommodate opaque data to be
 carried throughout the topology to subsets of nodes. This
 can be used for many purposes, one of them being a key-value
 store that allows bootstrapping of nodes based right at the
 time of topology discovery.

 REQ9: Nodes should be taken out and introduced into production
 with minimum wait-times and minimum of "shaking" of the
 network, i.e. radius of propagation (often called "blast
 radius") of changed information should be as small as
 feasible.

 REQ10: The protocol should allow for maximum aggregation of carried
 routing information while at the same time automatically de-
 aggregating the prefixes to prevent black-holing in case of
 failures. The de-aggregation should support maximum
 possible ECMP/N-ECMP remaining after failure.

 REQ11: Reducing the scope of communication needed throughout the
 network on link and state failure, as well as reducing
 advertisements of repeating, idiomatic or policy-guided
 information in stable state is highly desirable since it
 leads to better stability and faster convergence behavior.

 REQ12: Once a packet traverses a link in a "southbound" direction,
 it must not take any further "northbound" steps along its
 path to delivery to its destination under normal conditions.
 Taking a path through the spine in cases where a shorter
 path is available is highly undesirable.

 REQ13: Parallel links between same set of nodes must be
 distinguishable for SPF, failure and traffic engineering
 purposes.

 REQ14: The protocol must not rely on interfaces having discernible
 unique addresses, i.e. it must operate in presence of
 unnumbered links (even parallel ones) or links of a single
 node having same addresses.

 Following list represents possible requirements and requirements
 under discussion:

 PEND1: Supporting anything but point-to-point links is a non-
 requirement. Questions remain: for connecting to the
 leaves, is there a case where multipoint is desirable? One
 could still model it as point-to-point links; it seems there
 is no need for anything more than a NBMA-type construct.

Przygienda, et al. Expires May 1, 2018 [Page 9]

Internet-Draft RIFT October 2017

 PEND2: What is the maximum scale of number leaf prefixes we need to
 carry. Is 500’000 enough ?

 Finally, following are the non-requirements:

 NONREQ1: Broadcast media support is unnecessary.

 NONREQ2: Purging is unnecessary given its fragility and complexity
 and today’s large memory size on even modest switches and
 routers.

 NONREQ3: Special support for layer 3 multi-hop adjacencies is not
 part of the protocol specification. Such support can be
 easily provided by using tunneling technologies the same
 way IGPs today are solving the problem.

4. RIFT: Routing in Fat Trees

 Derived from the above requirements we present a detailed outline of
 a protocol optimized for Routing in Fat Trees (RIFT) that in most
 abstract terms has many properties of a modified link-state protocol
 [RFC2328][RFC1142] when "pointing north" and path-vector [RFC4271]
 protocol when "pointing south". Albeit an unusual combination, it
 does quite naturally exhibit the desirable properties we seek.

4.1. Overview

 The novel property of RIFT is that it floods northbound "flat" link-
 state information so that each level understands the full topology of
 levels south of it. In contrast, in the southbound direction the
 protocol operates like a path vector protocol or rather a distance
 vector with implicit split horizon since the topology constraints
 make a diffused computation front propagating in all directions
 unnecessary.

4.2. Specification

4.2.1. Transport

 All protocol elements are carried over UDP. Once QUIC [QUIC]
 achieves the desired stability in deployments it may prove a valuable
 candidate for TIE transport.

 All packet formats are defined in Thrift models in Section 8.

Przygienda, et al. Expires May 1, 2018 [Page 10]

Internet-Draft RIFT October 2017

4.2.2. Link (Neighbor) Discovery (LIE Exchange)

 LIE exchange happens over well-known administratively locally scoped
 IPv4 multicast address [RFC2365] or link-local multicast scope for
 IPv6 [RFC4291] and SHOULD be sent with a TTL of 1 to prevent RIFT
 information reaching beyond a single link in the topology. LIEs are
 exchanged over all links running RIFT.

 Each node is provisioned with the level at which it is operating and
 its PoD. A default level and PoD of zero are assumed, meaning that
 leafs do not need to be configured with a level (or even PoD). Nodes
 in the spine are configured with a PoD of zero. This information is
 propagated in the LIEs exchanged. Adjacencies are formed if and only
 if

 1. the node is in the same PoD or either the node or the neighbor
 advertises "any" PoD membership (PoD# = 0) AND

 2. the neighboring node is at most one level away AND

 3. the neighboring node is running the same MAJOR schema version AND

 4. the neighbor is not member of some PoD while the node has a
 northbound adjacency already joining another PoD AND

 5. the advertised MTUs match on both sides.

 A node configured with "any" PoD membership MUST, after building
 first northbound adjacency making it participant in a PoD, advertise
 that PoD as part of its LIEs.

 LIEs arriving with a TTL larger than 1 MUST be ignored.

 LIE exchange uses three-way handshake mechanism [RFC5303]. Precise
 final state machines will be provided in later versions of this
 specification. LIE packets contain nonces and may contain an SHA-1
 [RFC6234] over nonces and some of the LIE data which prevents
 corruption and replay attacks. TIE flooding reuses those nonces to
 prevent mismatches and can use those for security purposes in case it
 is using QUIC [QUIC]. Section 7 will address the precise security
 mechanisms in the future.

4.2.3. Topology Exchange (TIE Exchange)

Przygienda, et al. Expires May 1, 2018 [Page 11]

Internet-Draft RIFT October 2017

4.2.3.1. Topology Information Elements

 Topology and reachability information in RIFT is conveyed by the
 means of TIEs which have good amount of commonalities with LSAs in
 OSPF.

 TIE exchange mechanism uses port indicated by each node in the LIE
 exchange and the interface on which the adjacency has been formed as
 destination. It SHOULD use TTL of 1 as well.

 TIEs contain sequence numbers, lifetimes and a type. Each type has a
 large identifying number space and information is spread across
 possibly many TIEs of a certain type by the means of a hash function
 that a node or deployment can individually determine. One extreme
 side of the scale is a prefix per TIE which leads to BGP-like
 behavior vs. dense packing into few TIEs leading to more traditional
 IGP trade-off with fewer TIEs. An implementation may even rehash at
 the cost of significant amount of re-advertisements of TIEs.

 More information about the TIE structure can be found in the schema
 in Section 8.

4.2.3.2. South- and Northbound Representation

 As a central concept to RIFT, each node represents itself differently
 depending on the direction in which it is advertising information.
 More precisely, a spine node represents two different databases to
 its neighbors depending whether it advertises TIEs to the north or to
 the south/sideways. We call those differing TIE databases either
 south- or northbound (S-TIEs and N-TIEs) depending on the direction
 of distribution.

 The N-TIEs hold all of the node’s adjacencies, local prefixes and
 northbound policy-guided prefixes while the S-TIEs hold only all of
 the node’s neighbors and the default prefix with necessary
 disaggregated prefixes and southbound policy-guided prefixes. We
 will explain this in detail further in Section 4.2.8 and
 Section 4.2.4.

 The TIEs are symmetric in both directions and Table 1 provides a
 quick reference to the different TIE types including direction and
 their function.

Przygienda, et al. Expires May 1, 2018 [Page 12]

Internet-Draft RIFT October 2017

 TIE-Type Content
 ------------ ---
 node N-TIE node properties and adjacencies
 node S-TIE same content as node N-TIE
 Prefix N-TIE contains nodes’ directly reachable prefixes
 Prefix S-TIE contains originated defaults and de-aggregated prefixes
 PGP N-TIE contains nodes north PGPs
 PGP S-TIE contains nodes south PGPs
 KV N-TIE contains nodes northbound KVs
 KV S-TIE contains nodes southbound KVs

 Table 1: TIE Types

 As an example illustrating a databases holding both representations,
 consider the topology in Figure 1 with the optional link between node
 111 and node 112 (so that the flooding on an east-west link can be
 shown). This example assumes unnumbered interfaces. First, here are
 the TIEs generated by some nodes. For simplicity, the key value
 elements and the PGP elements which may be included in their S-TIEs
 or N-TIEs are not shown.

 Spine21 S-TIEs:
 Node S-TIE:
 NodeElement(layer=2, neighbors((Node111, layer 1, cost 1),
 (Node112, layer 1, cost 1), (Node121, layer 1, cost 1),
 (Node122, layer 1, cost 1)))
 Prefix S-TIE:
 SouthPrefixesElement(prefixes(0/0, cost 1), (::/0, cost 1))

 Node111 S-TIEs:
 Node S-TIE:
 NodeElement(layer=1, neighbors((Spine21,layer 2,cost 1),
 (Spine22, layer 2, cost 1), (Node112, layer 1, cost 1),
 (Leaf111, layer 0, cost 1), (Leaf112, layer 0, cost 1)))
 Prefix S-TIE:
 SouthPrefixesElement(prefixes(0/0, cost 1), (::/0, cost 1))

 Node111 N-TIEs:
 Node N-TIE:
 NodeLinkElement(layer=1,
 neighbors((Spine21, layer 2, cost 1, links(...)),
 (Spine22, layer 2, cost 1, links(...)),
 (Node112, layer 1, cost 1, links(...)),
 (Leaf111, layer 0, cost 1, links(...)),
 (Leaf112, layer 0, cost 1, links(...))))
 Prefix N-TIE:
 NorthPrefixesElement(prefixes(Node111.loopback)

Przygienda, et al. Expires May 1, 2018 [Page 13]

Internet-Draft RIFT October 2017

 Node121 S-TIEs:
 Node S-TIE:
 NodeElement(layer=1, neighbors((Spine21,layer 2,cost 1),
 (Spine22, layer 2, cost 1), (Leaf121, layer 0, cost 1),
 (Leaf122, layer 0, cost 1)))
 Prefix S-TIE:
 SouthPrefixesElement(prefixes(0/0, cost 1), (::/0, cost 1))

 Node121 N-TIEs:
 Node N-TIE:
 NodeLinkElement(layer=1,
 neighbors((Spine21, layer 2, cost 1, links(...)),
 (Spine22, layer 2, cost 1, links(...)),
 (Leaf121, layer 0, cost 1, links(...)),
 (Leaf122, layer 0, cost 1, links(...))))
 Prefix N-TIE:
 NorthPrefixesElement(prefixes(Node121.loopback)

 Leaf112 N-TIEs:
 Node N-TIE:
 NodeLinkElement(layer=0,
 neighbors((Node111, layer 1, cost 1, links(...)),
 (Node112, layer 1, cost 1, links(...))))
 Prefix N-TIE:
 NorthPrefixesElement(prefixes(Leaf112.loopback, Prefix112,
 Prefix_MH))

 Figure 2: example TIES generated in a 2 level spine-and-leaf topology

4.2.3.3. Flooding

 The mechanism used to distribute TIEs is the well-known (albeit
 modified in several respects to address fat tree requirements)
 flooding mechanism used by today’s link-state protocols. Albeit
 initially more demanding to implement it avoids many problems with
 diffused computation update style used by path vector. As described
 before, TIEs themselves are transported over UDP with the ports
 indicates in the LIE exchanges and using the destination address (for
 unnumbered IPv4 interfaces same considerations apply as in equivalent
 OSPF case) on which the LIE adjacency has been formed.

 Precise final state machines and procedures will be provided in later
 versions of this specification.

Przygienda, et al. Expires May 1, 2018 [Page 14]

Internet-Draft RIFT October 2017

4.2.3.4. TIE Flooding Scopes

 In a somewhat analogous fashion to link-local, area and domain
 flooding scopes, RIFT defines several complex "flooding scopes"
 depending on the direction and type of TIE propagated.

 Every N-TIE is flooded northbound, providing a node at a given level
 with the complete topology of the Clos or Fat Tree network underneath
 it, including all specific prefixes. This means that a packet
 received from a node at the same or lower level whose destination is
 covered by one of those specific prefixes may be routed directly
 towards the node advertising that prefix rather than sending the
 packet to a node at a higher level.

 A node’s node S-TIEs, consisting of all node’s adjacencies and prefix
 S-TIEs with default IP prefix and disaggregated prefixes, are flooded
 southbound in order to allow the nodes one level down to see
 connectivity of the higher level as well as reachability to the rest
 of the fabric. In order to allow a E-W disconnected node in a given
 level to receive the S-TIEs of other nodes at its level, every *NODE*
 S-TIE is "reflected" northbound to level from which it was received.
 It should be noted that east-west links are included in South TIE
 flooding; those TIEs need to be flooded to satisfy algorithms in
 Section 4.2.5. In that way nodes at same level can learn about each
 other without a more southern level, e.g. in case of leaf level. The
 precise flooding scopes are given in Table 2. Those rules govern in
 a symmetric fashion what SHOULD be included in TIDEs towards
 neighbors.

 Node S-TIE "reflection" allows to support disaggregation on failures
 describes in Section 4.2.8 and flooding reduction in Section 4.2.3.8.

Przygienda, et al. Expires May 1, 2018 [Page 15]

Internet-Draft RIFT October 2017

 Packet Type South North East-West
 vs. Peer
 Direction
 ------------ ------------------------- -------------------- ---------
 node S-TIE flood own only flood if TIE same as
 originator’s level South
 is higher than own
 level
 other S-TIE flood own only flood only if TIE same as
 originator is equal South
 peer
 all N-TIEs never flood flood always same as
 South
 TIDE include TIEs in flooding include TIEs in same as
 scope flooding scope South
 TIRE include all N-TIEs and include only if TIE same as
 all peer’s self- originator is equal South
 originated TIEs and all peer
 node S-TIEs

 Table 2: Flooding Scopes

 As an example to illustrate these rules, consider using the topology
 in Figure 1, with the optional link between node 111 and node 112,
 and the associated TIEs given in Figure 2. The flooding from
 particular nodes of the TIEs is given in Table 3.

Przygienda, et al. Expires May 1, 2018 [Page 16]

Internet-Draft RIFT October 2017

 Router Neighbor TIEs
 floods to
 ------------ -------- ---
 Leaf111 Node112 Leaf111 N-TIEs, Node111 node S-TIE
 Leaf111 Node111 Leaf111 N-TIEs, Node112 node S-TIE

 Node111 Leaf111 Node111 S-TIEs
 Node111 Leaf112 Node111 S-TIEs
 Node111 Node112 Node111 S-TIEs
 Node111 Spine21 Node111 N-TIEs, Leaf111 N-TIEs, Leaf112 N-TIEs,
 Spine22 node S-TIE
 Node111 Spine22 Node111 N-TIEs, Leaf111 N-TIEs, Leaf112 N-TIEs,
 Spine21 node S-TIE

 Spine21 Node111 Spine21 S-TIEs
 Spine21 Node112 Spine21 S-TIEs
 Spine21 Node121 Spine21 S-TIEs
 Spine21 Node122 Spine21 S-TIEs

 Table 3: Flooding some TIEs from example topology

4.2.3.5. Initial and Periodic Database Synchronization

 The initial exchange of RIFT is modeled after ISIS with TIDE being
 equivalent to CSNP and TIRE playing the role of PSNP. The content of
 TIDEs and TIREs is governed by Table 2.

4.2.3.6. Purging

 RIFT does not purge information that has been distributed by the
 protocol. Purging mechanisms in other routing protocols have proven
 through many years of experience to be complex and fragile. Abundant
 amounts of memory are available today even on low-end platforms. The
 information will age out and all computations will deliver correct
 results if a node leaves the network due to the new information
 distributed by its adjacent nodes.

 Once a RIFT node issues a TIE with an ID, it MUST preserve the ID as
 long as feasible (also when the protocol restarts), even if the TIE
 looses all content. The re-advertisement of empty TIE fulfills the
 purpose of purging any information advertised in previous versions.
 The originator is free to not re-originate the according empty TIE
 again or originate an empty TIE with relatively short lifetime to
 prevent large number of long-lived empty stubs polluting the network.
 Each node will timeout and clean up the according empty TIEs
 independently.

Przygienda, et al. Expires May 1, 2018 [Page 17]

Internet-Draft RIFT October 2017

4.2.3.7. Southbound Default Route Origination

 Under certain conditions nodes issue a default route in their South
 Prefix TIEs.

 A node X that

 1. is NOT overloaded AND

 2. has southbound or east-west adjacencies

 originates in its south prefix TIE such a default route IIF

 1. all other nodes at X’s’ level are overloaded OR

 2. all other nodes at X’s’ level have NO northbound adjacencies OR

 3. X has computed reachability to a default route during N-SPF.

 The term "all other nodes at X’s’ level" describes obviously just the
 nodes at the same level in the POD with a viable lower layer
 (otherwise the node S-TIEs cannot be reflected and the nodes in e.g.
 POD 1 nad POD 2 are "invisible" to each other).

 A node originating a southbound default route MUST install a default
 discard route if it did not compute a default route during N-SPF.

4.2.3.8. Optional Automatic Flooding Reduction and Partitioning

 Several nodes can, but strictly only under conditions defined below,
 run a hashing function based on TIE originator value and partition
 flooding between them.

 Steps for flooding reduction and partitioning:

 1. select all nodes in the same level for which node S-TIEs have
 been received and which have precisely the same non-empty sets of
 respectively north and south neighbor adjacencies and support
 flooding reduction (overload bits are ignored) and then

 2. run on the chosen set a hash algorithm using nodes flood
 priorities and IDs to select flooding leader and backup per TIE
 originator ID, i.e. each node floods immediately through to all
 its necessary neighbors TIEs that it received with an originator
 ID that makes it the flooding leader or backup for this
 originator. The preference (higher is better) is computed as
 XOR(TIE-ORIGINATOR-ID<<1,˜OWN-SYSTEM-ID)), whereas << is a non-
 circular shift and ˜ is bit-wise NOT.

Przygienda, et al. Expires May 1, 2018 [Page 18]

Internet-Draft RIFT October 2017

 3. In the very unlikely case of hash collisions on either of the two
 nodes with highest values (i.e. either does NOT produce unique
 hashes as compared to all other hash values), the node running
 the election does not attempt to reduce flooding.

 Additional rules for flooding reduction and partitioning:

 1. A node always floods its own TIEs

 2. A node generates TIDEs as usual but when receiving TIREs with
 requests for TIEs for a node for which it is not a flooding
 leader or backup it ignores such TIDEs on first request only.
 Normally, the flooding leader should satisfy the requestor and
 with that no further TIREs for such TIEs will be generated.
 Otherwise, the next set of TIDEs and TIREs will lead to flooding
 independent of the flooding leader status.

 3. A node receiving a TIE originated by a node for which it is not a
 flooding leader floods such TIEs only when receiving an out-of-
 date TIDE for them, except for the first one.

 The mechanism can be implemented optionally in each node. The
 capability is carried in the node S-TIE (and for symmetry purposes in
 node N-TIE as well but it serves no purpose there currently).

 Obviously flooding reduction does NOT apply to self originated TIEs.
 Observe further that all policy-guided information consists of self-
 originated TIEs.

4.2.4. Policy-Guided Prefixes

 In a fat tree, it can be sometimes desirable to guide traffic to
 particular destinations or keep specific flows to certain paths. In
 RIFT, this is done by using policy-guided prefixes with their
 associated communities. Each community is an abstract value whose
 meaning is determined by configuration. It is assumed that the
 fabric is under a single administrative control so that the meaning
 and intent of the communities is understood by all the nodes in the
 fabric. Any node can originate a policy-guided prefix.

 Since RIFT uses distance vector concepts in a southbound direction,
 it is straightforward to add a policy-guided prefix to an S-TIE. For
 easier troubleshooting, the approach taken in RIFT is that a node’s
 southbound policy-guided prefixes are sent in its S-TIE and the
 receiver does inbound filtering based on the associated communities
 (an egress policy is imaginable but would lead to different S-TIEs
 per neighbor possibly which is not considered in RIFT protocol
 procedures). A southbound policy-guided prefix can only use links in

Przygienda, et al. Expires May 1, 2018 [Page 19]

Internet-Draft RIFT October 2017

 the south direction. If an PGP S-TIE is received on an east-west or
 northbound link, it must be discarded by ingress filtering.

 Conceptually, a southbound policy-guided prefix guides traffic from
 the leaves up to at most the north-most layer. It is also necessary
 to to have northbound policy-guided prefixes to guide traffic from
 the north-most layer down to the appropriate leaves. Therefore, RIFT
 includes northbound policy-guided prefixes in its N PGP-TIE and the
 receiver does inbound filtering based on the associated communities.
 A northbound policy-guided prefix can only use links in the northern
 direction. If an N PGP TIE is received on an east-west or southbound
 link, it must be discarded by ingress filtering.

 By separating southbound and northbound policy-guided prefixes and
 requiring that the cost associated with a PGP is strictly
 monotonically increasing at each hop, the path cannot loop. Because
 the costs are strictly increasing, it is not possible to have a loop
 between a northbound PGP and a southbound PGP. If east-west links
 were to be allowed, then looping could occur and issues such as
 counting to infinity would become an issue to be solved. If complete
 generality of path - such as including east-west links and using both
 north and south links in arbitrary sequence - then a Path Vector
 protocol or a similar solution must be considered.

 If a node has received the same prefix, after ingress filtering, as a
 PGP in an S-TIE and in an N-TIE, then the node determines which
 policy-guided prefix to use based upon the advertised cost.

 A policy-guided prefix is always preferred to a regular prefix, even
 if the policy-guided prefix has a larger cost. Section 8 provides
 normative indication of prefix preferences.

 The set of policy-guided prefixes received in a TIE is subject to
 ingress filtering and then re-originated to be sent out in the
 receiver’s appropriate TIE. Both the ingress filtering and the re-
 origination use the communities associated with the policy-guided
 prefixes to determine the correct behavior. The cost on re-
 advertisement MUST increase in a strictly monotonic fashion.

4.2.4.1. Ingress Filtering

 When a node X receives a PGP S-TIE or a PGP N-TIE that is originated
 from a node Y which does not have an adjacency with X, all PGPs in
 such a TIE MUST be filtered. Similarly, if node Y is at the same
 layer as node X, then X MUST filter out PGPs in such S- and N-TIEs to
 prevent loops.

Przygienda, et al. Expires May 1, 2018 [Page 20]

Internet-Draft RIFT October 2017

 Next, policy can be applied to determine which policy-guided prefixes
 to accept. Since ingress filtering is chosen rather than egress
 filtering and per-neighbor PGPs, policy that applies to links is done
 at the receiver. Because the RIFT adjacency is between nodes and
 there may be parallel links between the two nodes, the policy-guided
 prefix is considered to start with the next-hop set that has all
 links to the originating node Y.

 A policy-guided prefix has or is assigned the following attributes:

 cost: This is initialized to the cost received

 community_list: This is initialized to the list of the communities
 received.

 next_hop_set: This is initialized to the set of links to the
 originating node Y.

4.2.4.2. Applying Policy

 The specific action to apply based upon a community is deployment
 specific. Here are some examples of things that can be done with
 communities. The length of a community is a 64 bits number and it
 can be written as a single field M or as a multi-field (S = M[0-31],
 T = M[32-63]) in these examples. For simplicity, the policy-guided
 prefix is referred to as P, the processing node as X and the
 originator as Y.

 Prune Next-Hops: Community Required: For each next-hop in
 P.next_hop_set, if the next-hop does not have the community, prune
 that next-hop from P.next_hop_set.

 Prune Next-Hops: Avoid Community: For each next-hop in
 P.next_hop_set, if the next-hop has the community, prune that
 next-hop from P.next_hop_set.

 Drop if Community: If node X has community M, discard P.

 Drop if not Community: If node X does not have the community M,
 discard P.

 Prune to ifIndex T: For each next-hop in P.next_hop_set, if the
 next-hop’s ifIndex is not the value T specified in the community
 (S,T), then prune that next-hop from P.next_hop_set.

 Add Cost T: For each appearance of community S in P.community_list,
 if the node X has community S, then add T to P.cost.

Przygienda, et al. Expires May 1, 2018 [Page 21]

Internet-Draft RIFT October 2017

 Accumulate Min-BW T: Let bw be the sum of the bandwidth for
 P.next_hop_set. If that sum is less than T, then replace (S,T)
 with (S, bw).

 Add Community T if Node matches S: If the node X has community S,
 then add community T to P.community_list.

4.2.4.3. Store Policy-Guided Prefix for Route Computation and
 Regeneration

 Once a policy-guided prefix has completed ingress filtering and
 policy, it is almost ready to store and use. It is still necessary
 to adjust the cost of the prefix to account for the link from the
 computing node X to the originating neighbor node Y.

 There are three different policies that can be used:

 Minimum Equal-Cost: Find the lowest cost C next-hops in
 P.next_hop_set and prune to those. Add C to P.cost.

 Minimum Unequal-Cost: Find the lowest cost C next-hop in
 P.next_hop_set. Add C to P.cost.

 Maximum Unequal-Cost: Find the highest cost C next-hop in
 P.next_hop_set. Add C to P.cost.

 The default policy is Minimum Unequal-Cost but well-known communities
 can be defined to get the other behaviors.

 Regardless of the policy used, a node MUST store a PGP cost that is
 at least 1 greater than the PGP cost received. This enforces the
 strictly monotonically increasing condition that avoids loops.

 Two databases of PGPs - from N-TIEs and from S-TIEs are stored. When
 a PGP is inserted into the appropriate database, the usual tie-
 breaking on cost is performed. Observe that the node retains all PGP
 TIEs due to normal flooding behavior and hence loss of the best
 prefix will lead to re-evaluation of TIEs present and re-
 advertisement of a new best PGP.

4.2.4.4. Re-origination

 A node must re-originate policy-guided prefixes and retransmit them.
 The node has its database of southbound policy-guided prefixes to
 send in its S-TIE and its database of northbound policy-guided
 prefixes to send in its N-TIE.

Przygienda, et al. Expires May 1, 2018 [Page 22]

Internet-Draft RIFT October 2017

 Of course, a leaf does not need to re-originate southbound policy-
 guided prefixes.

4.2.4.5. Overlap with Disaggregated Prefixes

 PGPs may overlap with prefixes introduced by automatic de-
 aggregation. The topic is under further discussion. The break in
 connectivity that leads to infeasibility of a PGP is mirrored in
 adjacency tear-down and according removal of such PGPs.
 Nevertheless, the underlying link-state flooding will be likely
 reacting significantly faster than a hop-by-hop redistribution and
 with that the preference for PGPs may cause intermittent black-holes.

4.2.5. Reachability Computation

 A node has three sources of relevant information. A node knows the
 full topology south from the received N-TIEs. A node has the set of
 prefixes with associated distances and bandwidths from received
 S-TIEs. A node can also have a set of PGPs.

 To compute reachability, a node runs conceptually a northbound and a
 southbound SPF. We call that N-SPF and S-SPF.

 Since neither computation can "loop" (with due considerations given
 to PGPs), it is possible to compute non-equal-cost or even k-shortest
 paths [EPPSTEIN] and "saturate" the fabric to the extent desired.

4.2.5.1. Northbound SPF

 N-SPF uses northbound and east-west adjacencies in North Node TIEs
 when progressing Dijkstra. Observe that this is really just a one
 hop variety since South Node TIEs are not re-flooded southbound
 beyond a single level (or east-west) and with that the computation
 cannot progress beyond adjacent nodes.

 Default route found when crossing an E-W link is used IIF

 1. the node itself does NOT have any northbound adjacencies AND

 2. the adjacent node has one or more northbound adjacencies

 This rule forms a "one-hop default route split-horizon" and prevents
 looping over default routes while allowing for "one-hop protection"
 of nodes that lost all northbound adjacencies.

 Other south prefixes found when crossing E-W link MAY be used IIF

 1. no north neighbors are advertising same or supersuming prefix AND

Przygienda, et al. Expires May 1, 2018 [Page 23]

Internet-Draft RIFT October 2017

 2. the node does not originate a supersuming prefix itself.

 i.e. the E-W link can be used as the gateway of last resort for a
 specific prefix only. Using south prefixes across E-W link can be
 beneficial e.g. on automatic de-aggregation in pathological fabric
 partitioning scenarios.

 A detailed example can be found in Section 5.4.

 For N-SPF we are using the South Node TIEs to find according
 adjacencies to verify backlink connectivity. Just as in case of IS-
 IS or OSPF, two unidirectional links are associated together to
 confirm bidirectional connectivity.

4.2.5.2. Southbound SPF

 S-SPF uses only the southbound adjacencies in the south node TIEs,
 i.e. progresses towards nodes at lower levels. Observe that E-W
 adjacencies are NEVER used in the computation. This enforces the
 requirement that a packet traversing in a southbound direction must
 never change its direction.

 S-SPF uses northbound adjacencies in north node TIEs to verify
 backlink connectivity.

4.2.5.3. East-West Forwarding Within a Level

 Ultimately, it should be observed that in presence of a "ring" of E-W
 links in a level neither SPF will provide a "ring protection" scheme
 since such a computation would have to deal necessarily with breaking
 of "loops" in generic Dijkstra sense; an application for which RIFT
 is not intended. It is outside the scope of this document how an
 underlay can be used to provide a full-mesh connectivity between
 nodes in the same layer that would allow for N-SPF to provide
 protection for a single node loosing all its northbound adjacencies
 (as long as any of the other nodes in the level are northbound
 connected).

 Using south prefixes over horizontal links is optional and can
 protect against pathological fabric partitioning cases that leave
 only paths to destinations that would necessitate multiple changes of
 forwarding direction between north and south.

4.2.6. Attaching Prefixes

 After the SPF is run, it is necessary to attach according prefixes.
 For S-SPF, prefixes from an N-TIE are attached to the originating
 node with that node’s next-hop set and a distance equal to the

Przygienda, et al. Expires May 1, 2018 [Page 24]

Internet-Draft RIFT October 2017

 prefix’s cost plus the node’s minimized path distance. The RIFT
 route database, a set of (prefix, type=spf, path_distance, next-hop
 set), accumulates these results. Obviously, the prefix retains its
 type which is used to tie-break between the same prefix advertised
 with different types.

 In case of N-SPF prefixes from each S-TIE need to also be added to
 the RIFT route database. The N-SPF is really just a stub so the
 computing node needs simply to determine, for each prefix in an S-TIE
 that originated from adjacent node, what next-hops to use to reach
 that node. Since there may be parallel links, the next-hops to use
 can be a set; presence of the computing node in the associated Node
 S-TIE is sufficient to verify that at least one link has
 bidirectional connectivity. The set of minimum cost next-hops from
 the computing node X to the originating adjacent node is determined.

 Each prefix has its cost adjusted before being added into the RIFT
 route database. The cost of the prefix is set to the cost received
 plus the cost of the minimum cost next-hop to that neighbor. Then
 each prefix can be added into the RIFT route database with the
 next_hop_set; ties are broken based upon type first and then
 distance. RIFT route preferences are normalized by the according
 thrift model type.

 An exemplary implementation for node X follows:

Przygienda, et al. Expires May 1, 2018 [Page 25]

Internet-Draft RIFT October 2017

 for each S-TIE
 if S-TIE.layer > X.layer
 next_hop_set = set of minimum cost links to the S-TIE.originator
 next_hop_cost = minimum cost link to S-TIE.originator
 end if
 for each prefix P in the S-TIE
 P.cost = P.cost + next_hop_cost
 if P not in route_database:
 add (P, type=DistVector, P.cost, next_hop_set) to route_database
 end if
 if (P in route_database) and
 (route_database[P].type is not PolicyGuided):
 if route_database[P].cost > P.cost):
 update route_database[P] with (P, DistVector, P.cost, next_hop_set)
 else if route_database[P].cost == P.cost
 update route_database[P] with (P, DistVector, P.cost,
 merge(next_hop_set, route_database[P].next_hop_set))
 else
 // Not preferred route so ignore
 end if
 end if
 end for
 end for

 Figure 3: Adding Routes from S-TIE Prefixes

4.2.7. Attaching Policy-Guided Prefixes

 Each policy-guided prefix P has its cost and next_hop_set already
 stored in the associated database, as specified in Section 4.2.4.3;
 the cost stored for the PGP is already updated to considering the
 cost of the link to the advertising neighbor. By definition, a
 policy-guided prefix is preferred to a regular prefix.

Przygienda, et al. Expires May 1, 2018 [Page 26]

Internet-Draft RIFT October 2017

 for each policy-guided prefix P:
 if P not in route_database:
 add (P, type=PolicyGuided, P.cost, next_hop_set)
 end if
 if P in route_database :
 if (route_database[P].type is not PolicyGuided) or
 (route_database[P].cost > P.cost):
 update route_database[P] with (P, PolicyGuided, P.cost, next_hop_set
)
 else if route_database[P].cost == P.cost
 update route_database[P] with (P, PolicyGuided, P.cost,
 merge(next_hop_set, route_database[P].next_hop_set))
 else
 // Not preferred route so ignore
 end if
 end if
 end for

 Figure 4: Adding Routes from Policy-Guided Prefixes

4.2.8. Automatic Disaggregation on Link & Node Failures

 Under normal circumstances, node’s S-TIEs contain just the
 adjacencies, a default route and policy-guided prefixes. However, if
 a node detects that its default IP prefix covers one or more prefixes
 that are reachable through it but not through one or more other nodes
 at the same level, then it MUST explicitly advertise those prefixes
 in an S-TIE. Otherwise, some percentage of the northbound traffic
 for those prefixes would be sent to nodes without according
 reachability, causing it to be black-holed. Even when not black-
 holing, the resulting forwarding could ’backhaul’ packets through the
 higher level spines, clearly an undesirable condition affecting the
 blocking probabilities of the fabric.

 We refer to the process of advertising additional prefixes as ’de-
 aggregation’ or ’dis-aggregation’.

 A node determines the set of prefixes needing de-aggregation using
 the following steps:

 1. A DAG computation in the southern direction is performed first,
 i.e. the N-TIEs are used to find all of prefixes it can reach and
 the set of next-hops in the lower level for each. Such a
 computation can be easily performed on a fat tree by e.g. setting
 all link costs in the southern direction to 1 and all northern
 directions to infinity. We term set of those prefixes |R, and
 for each prefix, r, in |R, we define its set of next-hops to

Przygienda, et al. Expires May 1, 2018 [Page 27]

Internet-Draft RIFT October 2017

 be |H(r). Observe that policy-guided prefixes are NOT affected
 since their scope is controlled by configuration.

 2. The node uses reflected S-TIEs to find all nodes at the same
 level in the same PoD and the set of southbound adjacencies for
 each. The set of nodes at the same level is termed |N and for
 each node, n, in |N, we define its set of southbound adjacencies
 to be |A(n).

 3. For a given r, if the intersection of |H(r) and |A(n), for any n,
 is null then that prefix r must be explicitly advertised by the
 node in an S-TIE.

 4. Identical set of de-aggregated prefixes is flooded on each of the
 node’s southbound adjacencies. In accordance with the normal
 flooding rules for an S-TIE, a node at the lower level that
 receives this S-TIE will not propagate it south-bound. Neither
 is it necessary for the receiving node to reflect the
 disaggregated prefixes back over its adjacencies to nodes at the
 level from which it was received.

 To summarize the above in simplest terms: if a node detects that its
 default route encompasses prefixes for which one of the other nodes
 in its level has no possible next-hops in the level below, it has to
 disaggregate it to prevent black-holing or suboptimal routing. Hence
 a node X needs to determine if it can reach a different set of south
 neighbors than other nodes at the same level, which are connected to
 it via at least one common south or east-west neighbor. If it can,
 then prefix disaggregation may be required. If it can’t, then no
 prefix disaggregation is needed. An example of disaggregation is
 provided in Section 5.3.

 A possible algorithm is described last:

 1. Create partial_neighbors = (empty), a set of neighbors with
 partial connectivity to the node X’s layer from X’s perspective.
 Each entry is a list of south neighbor of X and a list of nodes
 of X.layer that can’t reach that neighbor.

 2. A node X determines its set of southbound neighbors
 X.south_neighbors.

 3. For each S-TIE originated from a node Y that X has which is at
 X.layer, if Y.south_neighbors is not the same as
 X.south_neighbors but the nodes share at least one southern
 neighbor, for each neighbor N in X.south_neighbors but not in
 Y.south_neighbors, add (N, (Y)) to partial_neighbors if N isn’t
 there or add Y to the list for N.

Przygienda, et al. Expires May 1, 2018 [Page 28]

Internet-Draft RIFT October 2017

 4. If partial_neighbors is empty, then node X does not to
 disaggregate any prefixes. If node X is advertising
 disaggregated prefixes in its S-TIE, X SHOULD remove them and re-
 advertise its according S-TIEs.

 A node X computes its SPF based upon the received N-TIEs. This
 results in a set of routes, each categorized by (prefix,
 path_distance, next-hop-set). Alternately, for clarity in the
 following procedure, these can be organized by next-hop-set as (
 (next-hops), {(prefix, path_distance)}). If partial_neighbors isn’t
 empty, then the following procedure describes how to identify
 prefixes to disaggregate.

 disaggregated_prefixes = {empty }
 nodes_same_layer = { empty }
 for each S-TIE
 if (S-TIE.layer == X.layer and
 X shares at least one S-neighbor with X)
 add S-TIE.originator to nodes_same_layer
 end if
 end for

 for each next-hop-set NHS
 isolated_nodes = nodes_same_layer
 for each NH in NHS
 if NH in partial_neighbors
 isolated_nodes = intersection(isolated_nodes,
 partial_neighbors[NH].nodes)
 end if
 end for

 if isolated_nodes is not empty
 for each prefix using NHS
 add (prefix, distance) to disaggregated_prefixes
 end for
 end if
 end for

 copy disaggregated_prefixes to X’s S-TIE
 if X’s S-TIE is different
 schedule S-TIE for flooding
 end if

 Figure 5: Computation to Disaggregate Prefixes

Przygienda, et al. Expires May 1, 2018 [Page 29]

Internet-Draft RIFT October 2017

 Each disaggregated prefix is sent with the accurate path_distance.
 This allows a node to send the same S-TIE to each south neighbor.
 The south neighbor which is connected to that prefix will thus have a
 shorter path.

 Finally, to summarize the less obvious points partially omitted in
 the algorithms to keep them more tractable:

 1. all neighbor relationships MUST perform backlink checks.

 2. overload bits as introduced in Section 4.3.1 have to be respected
 during the computation.

 3. all the lower level nodes are flooded the same disaggregated
 prefixes since we don’t want to build an S-TIE per node and
 complicate things unnecessarily. The PoD containing the prefix
 will prefer southbound anyway.

 4. disaggregated prefixes do NOT have to propagate to lower levels.
 With that the disturbance in terms of new flooding is contained
 to a single level experiencing failures only.

 5. disaggregated prefix S-TIEs are not "reflected" by the lower
 layer, i.e. nodes within same level do NOT need to be aware
 which node computed the need for disaggregation.

 6. The fabric is still supporting maximum load balancing properties
 while not trying to send traffic northbound unless necessary.

4.2.9. Optional Autoconfiguration

 RIFT nodes can operate in an optional mode where the levels in the
 fabric are being elected fully automatically. Future version of this
 document will render more detailed specification of the necessary
 protocol extensions.

4.3. Further Mechanisms

4.3.1. Overload Bit

 Overload Bit MUST be respected in all according reachability
 computations. A node with overload bit set SHOULD NOT advertise any
 reachability prefixes southbound except locally hosted ones.

 The leaf node SHOULD set the ’overload’ bit on its node TIEs, since
 if the spine nodes were to forward traffic not meant for the local
 node, the leaf node does not have the topology information to prevent
 a routing/forwarding loop.

Przygienda, et al. Expires May 1, 2018 [Page 30]

Internet-Draft RIFT October 2017

4.3.2. Optimized Route Computation on Leafs

 Since the leafs do see only "one hop away" they do not need to run a
 full SPF but can simply gather prefix candidates from their neighbors
 and build the according routing table.

 A leaf will have no N-TIEs except its own and optionally from its
 east-west neighbors. A leaf will have S-TIEs from its neighbors.

 Instead of creating a network graph from its N-TIEs and neighbor’s
 S-TIEs and then running an SPF, a leaf node can simply compute the
 minimum cost and next_hop_set to each leaf neighbor by examining its
 local interfaces, determining bi-directionality from the associated
 N-TIE, and specifying the neighbor’s next_hop_set set and cost from
 the minimum cost local interfaces to that neighbor.

 Then a leaf attaches prefixes as in Section 4.2.6 as well as the
 policy-guided prefixes as in Section 4.2.7.

4.3.3. Key/Value Store

 The protocol supports a southbound distribution of key-value pairs
 that can be used to e.g. distribute configuration information during
 topology bring-up. The KV TIEs (which are always S-TIEs) can arrive
 from multiple nodes and need tie-breaking per key uses the following
 rules

 1. Only KV TIEs originated by a node to which the receiver has an
 adjacency are considered.

 2. Within all valid KV S-TIEs containing the key, the value of the
 S-TIE with the highest level and within the same level highest
 originator ID is preferred.

 Observe that if a node goes down, the node south of it looses
 adjacencies to it and with that the KVs will be disregarded and on
 tie-break changes new KV re-advertised to prevent stale information
 being used by nodes further south. KV information is not result of
 independent computation of every node but a diffused computation.

4.3.4. Interactions with BFD

 RIFT MAY incorporate BFD [RFC5881] to react quickly to link failures.
 In such case following procedures are introduced:

 After RIFT 3-way hello adjacency convergence a BFD session MAY be
 formed automatically between the RIFT endpoints without further
 configuration.

Przygienda, et al. Expires May 1, 2018 [Page 31]

Internet-Draft RIFT October 2017

 In case RIFT looses 3-way hello adjacency, the BFD session should
 be brought down until 3-way adjacency is formed again.

 In case established BFD session goes Down after it was Up, RIFT
 adjacency should be re-initialized from scratch.

 In case of parallel links between nodes each link may run its own
 independent BFD session.

 In case RIFT changes link identifiers both the hello as well as
 the BFD sessions will be brought down and back up again.

4.3.5. Leaf to Leaf Procedures

 RIFT can be optionally relaxed to allow leaf East-West adjacencies
 under additional set of rules. The leaf supporting those procedures
 MUST:

 Only nodes supporting Leaf to Leaf Procedures CAN advertise LIEs
 on E-W links at level 0 and MUST in such a case advertise the
 according flag in node capabilities as "true".

 The overload bit MUST be set on all leaf’s node TIEs.

 Only node’s own north and south TIEs are flooded over E-W leaf
 adjacency.

 E-W leaf adjacency is always used in both north as well as south
 computation.

 Any advertised aggregate in leaf’s south TIE MUST install a
 discard route.

 This will allow the E-W leaf nodes to exchange traffic strictly for
 the prefixes advertised in each other’s north prefix TIEs (since the
 southbound computation will find the reverse direction in the other
 node’s TIE and install its north prefixes).

4.3.6. Other End-to-End Services

 Losing full, flat topology information at every node will have an
 impact on some of the end-to-end network services. This is the price
 paid for minimal disturbance in case of failures and reduced flooding
 and memory requirements on nodes lower south in the level hierarchy.

Przygienda, et al. Expires May 1, 2018 [Page 32]

Internet-Draft RIFT October 2017

4.3.7. Address Family and Multi Topology Considerations

 Multi-Topology (MT)[RFC5120] and Multi-Instance (MI)[RFC6822] is used
 today in link-state routing protocols to support several domains on
 the same physical topology. RIFT supports this capability by
 carrying transport ports in the LIE protocol exchanges. Multiplexing
 of LIEs can be achieved by either choosing varying multicast
 addresses or ports on the same address.

 BFD interactions in Section 4.3.4 are implementation dependent when
 multiple RIFT instances run on the same link.

4.3.8. Reachability of Internal Nodes in the Fabric

 RIFT does not precondition that its nodes have reachable addresses
 albeit for operational purposes this is clearly desirable. Under
 normal operating conditions this can be easily achieved by e.g.
 injecting the node’s loopback address into North Prefix TIEs.

 Things get more interesting in case a node looses all its northbound
 adjacencies but is not at the top of the fabric. In such a case a
 node that detects that some other members at its level are
 advertising northbound adjacencies MAY inject its loopback address
 into southbound PGP TIE and become reachable "from the south" that
 way. Further, a solution may be implemented where based on e.g. a
 "well known" community such a southbound PGP is reflected at level 0
 and advertised as northbound PGP again to allow for "reachability
 from the north" at the cost of additional flooding.

4.3.9. One-Hop Healing of Levels with East-West Links

 Based on the rules defined in Section 4.2.5, Section 4.2.3.7 and
 given presence of E-W links, RIFT can provide a one-hop protection of
 nodes that lost all their northbound links or in other complex link
 set failure scenarios. Section 5.4 explains the resulting behavior
 based on one such example.

5. Examples

5.1. Normal Operation

 This section describes RIFT deployment in the example topology
 without any node or link failures. We disregard flooding reduction
 for simplicity’s sake.

 As first step, the following bi-directional adjacencies will be
 created (and any other links that do not fulfill LIE rules in
 Section 4.2.2 disregarded):

Przygienda, et al. Expires May 1, 2018 [Page 33]

Internet-Draft RIFT October 2017

 1. Spine 21 (PoD 0) to Node 111, Node 112, Node 121, and Node 122

 2. Spine 22 (PoD 0) to Node 111, Node 112, Node 121, and Node 122

 3. Node 111 to Leaf 111, Leaf 112

 4. Node 112 to Leaf 111, Leaf 112

 5. Node 121 to Leaf 121, Leaf 122

 6. Node 122 to Leaf 121, Leaf 122

 Consequently, N-TIEs would be originated by Node 111 and Node 112 and
 each set would be sent to both Spine 21 and Spine 22. N-TIEs also
 would be originated by Leaf 111 (w/ Prefix 111) and Leaf 112 (w/
 Prefix 112 and the multi-homed prefix) and each set would be sent to
 Node 111 and Node 112. Node 111 and Node 112 would then flood these
 N-TIEs to Spine 21 and Spine 22.

 Similarly, N-TIEs would be originated by Node 121 and Node 122 and
 each set would be sent to both Spine 21 and Spine 22. N-TIEs also
 would be originated by Leaf 121 (w/ Prefix 121 and the multi-homed
 prefix) and Leaf 122 (w/ Prefix 122) and each set would be sent to
 Node 121 and Node 122. Node 121 and Node 122 would then flood these
 N-TIEs to Spine 21 and Spine 22.

 At this point both Spine 21 and Spine 22, as well as any controller
 to which they are connected, would have the complete network
 topology. At the same time, Node 111/112/121/122 hold only the
 N-ties of level 0 of their respective PoD. Leafs hold only their own
 N-TIEs.

 S-TIEs with adjacencies and a default IP prefix would then be
 originated by Spine 21 and Spine 22 and each would be flooded to Node
 111, Node 112, Node 121, and Node 122. Node 111, Node 112, Node 121,
 and Node 122 would each send the S-TIE from Spine 21 to Spine 22 and
 the S-TIE from Spine 22 to Spine 21. (S-TIEs are reflected up to
 level from which they are received but they are NOT propagated
 southbound.)

 An S Tie with a default IP prefix would be originated by Node 111 and
 Node 112 and each would be sent to Leaf 111 and Leaf 112. Leaf 111
 and Leaf 112 would each send the S-TIE from Node 111 to Node 112 and
 the S-TIE from Node 112 to Node 111.

 Similarly, an S Tie with a default IP prefix would be originated by
 Node 121 and Node 122 and each would be sent to Leaf 121 and Leaf
 122. Leaf 121 and Leaf 122 would each send the S-TIE from Node 121

Przygienda, et al. Expires May 1, 2018 [Page 34]

Internet-Draft RIFT October 2017

 to Node 122 and the S-TIE from Node 122 to Node 121. At this point
 IP connectivity with maximum possible ECMP has been established
 between the leafs while constraining the amount of information held
 by each node to the minimum necessary for normal operation and
 dealing with failures.

5.2. Leaf Link Failure

 . | | | |
 .+-+---+-+ +-+---+-+
 .| | | |
 .|Node111| |Node112|
 .+-+---+-+ ++----+-+
 . | | | |
 . | +---------------+ X
 . | | | X Failure
 . | +-------------+ | X
 . | | | |
 .+-+---+-+ +--+--+-+
 .| | | |
 .|Leaf111| |Leaf112|
 .+-------+ +-------+
 . + +
 . Prefix111 Prefix112

 Figure 6: Single Leaf link failure

 In case of a failing leaf link between node 112 and leaf 112 the
 link-state information will cause re-computation of the necessary SPF
 and the higher levels will stop forwarding towards prefix 112 through
 node 112. Only nodes 111 and 112, as well as both spines will see
 control traffic. Leaf 111 will receive a new S-TIE from node 112 and
 reflect back to node 111. Node 111 will de-aggregate prefix 111 and
 prefix 112 but we will not describe it further here since de-
 aggregation is emphasized in the next example. It is worth observing
 however in this example that if leaf 111 would keep on forwarding
 traffic towards prefix 112 using the advertised south-bound default
 of node 112 the traffic would end up on spine 21 and spine 22 and
 cross back into pod 1 using node 111. This is arguably not as bad as
 black-holing present in the next example but clearly undesirable.
 Fortunately, de-aggregation prevents this type of behavior except for
 a transitory period of time.

Przygienda, et al. Expires May 1, 2018 [Page 35]

Internet-Draft RIFT October 2017

5.3. Partitioned Fabric

 . +--------+ +--------+ S-TIE of Spine21
 . | | | | received by
 . |Spine 21| |Spine 22| reflection of
 . ++-+--+-++ ++-+--+-++ Nodes 112 and 111
 . | | | | | | | |
 . | | | | | | | 0/0
 . | | | | | | | |
 . | | | | | | | |
 . +--------------+ | +--- XXXXXX + | | | +---------------+
 . | | | | | | | |
 . | +-----------------------------+ | | |
 . 0/0 | | | | | | |
 . | 0/0 0/0 +- XXXXXXXXXXXXXXXXXXXXXXXXX -+ |
 . | 1.1/16 | | | | | |
 . | | +-+ +-0/0-----------+ | |
 . | | | 1.1./16 | | | |
 .+-+----++ +-+-----+ ++-----0/0 ++----0/0
 .| | | | | 1.1/16 | 1.1/16
 .|Node111| |Node112| |Node121| |Node122|
 .+-+---+-+ ++----+-+ +-+---+-+ ++---+--+
 . | | | | | | | |
 . | +---------------+ | | +----------------+ |
 . | | | | | | | |
 . | +-------------+ | | | +--------------+ | |
 . | | | | | | | |
 .+-+---+-+ +--+--+-+ +-+---+-+ +---+-+-+
 .| | | | | | | |
 .|Leaf111| |Leaf112| |Leaf121| |Leaf122|
 .+-+-----+ ++------+ +-----+-+ +-+-----+
 . + + + +
 . Prefix111 Prefix112 Prefix121 Prefix122
 . 1.1/16

 Figure 7: Fabric partition

 Figure 7 shows the arguably most catastrophic but also the most
 interesting case. Spine 21 is completely severed from access to
 Prefix 121 (we use in the figure 1.1/16 as example) by double link
 failure. However unlikely, if left unresolved, forwarding from leaf
 111 and leaf 112 to prefix 121 would suffer 50% black-holing based on
 pure default route advertisements by spine 21 and spine 22.

 The mechanism used to resolve this scenario is hinging on the
 distribution of southbound representation by spine 21 that is
 reflected by node 111 and node 112 to spine 22. Spine 22, having

Przygienda, et al. Expires May 1, 2018 [Page 36]

Internet-Draft RIFT October 2017

 computed reachability to all prefixes in the network, advertises with
 the default route the ones that are reachable only via lower level
 neighbors that spine 21 does not show an adjacency to. That results
 in node 111 and node 112 obtaining a longest-prefix match to prefix
 121 which leads through spine 22 and prevents black-holing through
 spine 21 still advertising the 0/0 aggregate only.

 The prefix 121 advertised by spine 22 does not have to be propagated
 further towards leafs since they do no benefit from this information.
 Hence the amount of flooding is restricted to spine 21 reissuing its
 S-TIEs and reflection of those by node 111 and node 112. The
 resulting SPF in spine 22 issues a new prefix S-TIEs containing
 1.1/16. None of the leafs become aware of the changes and the
 failure is constrained strictly to the level that became partitioned.

 To finish with an example of the resulting sets computed using
 notation introduced in Section 4.2.8, spine 22 constructs the
 following sets:

 |R = Prefix 111, Prefix 112, Prefix 121, Prefix 122

 |H (for r=Prefix 111) = Node 111, Node 112

 |H (for r=Prefix 112) = Node 111, Node 112

 |H (for r=Prefix 121) = Node 121, Node 122

 |H (for r=Prefix 122) = Node 121, Node 122

 |A (for Spine 21) = Node 111, Node 112

 With that and |H (for r=prefix 121) and |H (for r=prefix 122) being
 disjoint from |A (for spine 21), spine 22 will originate an S-TIE
 with prefix 121 and prefix 122, that is flooded to nodes 112, 112,
 121 and 122.

5.4. Northbound Partitioned Router and Optional East-West Links

Przygienda, et al. Expires May 1, 2018 [Page 37]

Internet-Draft RIFT October 2017

 . + + +
 . X N1 | N2 | N3
 . X | |
 .+--+----+ +--+----+ +--+-----+
 .| |0/0> <0/0| |0/0> <0/0| |
 .| A01 +----------+ A02 +----------+ A03 | Level 1
 .++-+-+--+ ++--+--++ +---+-+-++
 . | | | | | | | | |
 . | | +----------------------------------+ | | |
 . | | | | | | | | |
 . | +-------------+ | | | +--------------+ |
 . | | | | | | | | |
 . | +----------------+ | +-----------------+ |
 . | | | | | | | | |
 . | | +------------------------------------+ | |
 . | | | | | | | | |
 .++-+-+--+ | +---+---+ | +-+---+-++
 .| | +-+ +-+ | |
 .| L01 | | L02 | | L03 | Level 0
 .+-------+ +-------+ +--------+

 Figure 8: North Partitioned Router

 Figure 8 shows a part of a fabric where level 1 is horizontally
 connected and A01 lost its only northbound adjacency. Based on N-SPF
 rules in Section 4.2.5.1 A01 will compute northbound reachability by
 using the link A01 to A02 (whereas A02 will NOT use this link during
 N-SPF). Hence A01 will still advertise the default towards level 0
 and route unidirectionally using the horizontal link. Moreover,
 based on Section 4.3.8 it may advertise its loopback address as south
 PGP to remain reachable "from the south" for operational purposes.
 This is necessary since A02 will NOT route towards A01 using the E-W
 link (doing otherwise may form routing loops).

 As further consideration, the moment A02 looses link N2 the situation
 evolves again. A01 will have no more northbound reachability while
 still seeing A03 advertising northbound adjacencies in its south node
 tie. With that it will stop advertising a default route due to
 Section 4.2.3.7. Moreover, A02 may now inject its loopback address
 as south PGP.

6. Implementation and Operation: Further Details

Przygienda, et al. Expires May 1, 2018 [Page 38]

Internet-Draft RIFT October 2017

6.1. Considerations for Leaf-Only Implementation

 Ideally RIFT can be stretched out to the lowest level in the IP
 fabric to integrate ToRs or even servers. Since those entities would
 run as leafs only, it is worth to observe that a leaf only version is
 significantly simpler to implement and requires much less resources:

 1. Under normal conditions, the leaf needs to support a multipath
 default route only. In worst partitioning case it has to be
 capable of accommodating all the leaf routes in its own POD to
 prevent black-holing.

 2. Leaf nodes hold only their own N-TIEs and S-TIEs of Level 1 nodes
 they are connected to; so overall few in numbers.

 3. Leaf node does not have to support flooding reduction and de-
 aggregation.

 4. Unless optional leaf-2-leaf procedures are desired default route
 origination, S-TIE origination is unnecessary.

6.2. Adaptations to Other Proposed Data Center Topologies

 . +-----+ +-----+
 . | | | |
 .+-+ S0 | | S1 |
 .| ++---++ ++---++
 .| | | | |
 .| | +------------+ |
 .| | | +------------+ |
 .| | | | |
 .| ++-+--+ +--+-++
 .| | | | |
 .| | A0 | | A1 |
 .| +-+--++ ++---++
 .| | | | |
 .| | +------------+ |
 .| | +-----------+ | |
 .| | | | |
 .| +-+-+-+ +--+-++
 .+-+ | | |
 . | L0 | | L1 |
 . +-----+ +-----+

 Figure 9: Level Shortcut

Przygienda, et al. Expires May 1, 2018 [Page 39]

Internet-Draft RIFT October 2017

 Strictly speaking, RIFT is not limited to Clos variations only. The
 protocol preconditions only a sense of ’compass rose direction’
 achieved by configuration of levels and other topologies are possible
 within this framework. So, conceptually, one could include leaf to
 leaf links and even shortcut between layers but certain requirements
 in Section 3 will not be met anymore. As an example, shortcutting
 levels illustrated in Figure 9 will lead either to suboptimal routing
 when L0 sends traffic to L1 (since using S0’s default route will lead
 to the traffic being sent back to A0 or A1) or the leafs need each
 other’s routes installed to understand that only A0 and A1 should be
 used to talk to each other.

 Whether such modifications of topology constraints make sense is
 dependent on many technology variables and the exhausting treatment
 of the topic is definitely outside the scope of this document.

6.3. Originating Non-Default Route Southbound

 Obviously, an implementation may choose to originate southbound
 instead of a strict default route (as described in Section 4.2.3.7) a
 shorter prefix P’ but in such a scenario all addresses carried within
 the RIFT domain must be contained within P’.

7. Security Considerations

 The protocol has provisions for nonces and can include authentication
 mechanisms in the future comparable to [RFC5709] and [RFC7987].

 One can consider additionally attack vectors where a router may
 reboot many times while changing its system ID and pollute the
 network with many stale TIEs or TIEs are sent with very long
 lifetimes and not cleaned up when the routes vanishes. Those attack
 vectors are not unique to RIFT. Given large memory footprints
 available today those attacks should be relatively benign. Otherwise
 a node can implement a strategy of e.g. discarding contents of all
 TIEs of nodes that were not present in the SPF tree over a certain
 period of time. Since the protocol, like all modern link-state
 protocols, is self-stabilizing and will advertise the presence of
 such TIEs to its neighbors, they can be re-requested again if a
 computation finds that it sees an adjacency formed towards the system
 ID of the discarded TIEs.

8. Information Elements Schema

 This section introduces the schema for information elements.

 On schema changes that

Przygienda, et al. Expires May 1, 2018 [Page 40]

Internet-Draft RIFT October 2017

 1. change field numbers or

 2. add new required fields or

 3. change lists into sets, unions into structures or

 4. change multiplicity of fields or

 5. change datatypes of any field or

 6. changes default value of any field

 major version of the schema MUST increase. All other changes MUST
 increase minor version within the same major.

 Thrift serializer/deserializer MUST not discard optional, unknown
 fields but preserve and serialize them again when re-flooding.

 All signed integer as forced by Thrift support must be cast for
 internal purposes to equivalent unsigned values without discarding
 the signedness bit. An implementation SHOULD try to avoid using the
 signedness bit when generating values.

 The schema is normative.

8.1. common.thrift

 /**
 Thrift file for common definitions in RIFT
 */

 namespace * models

 typedef i64 SystemIDType
 typedef i32 IPv4Address
 /** this has to be of length long enough to accommodate prefix */
 typedef binary IPv6Address
 typedef i16 UDPPortType
 typedef i32 TIENrType
 typedef i32 MTUSizeType
 typedef i32 SeqNrType
 /** lifetime in seconds */
 typedef i32 LifeTimeInSecType
 typedef i16 LevelType
 typedef i16 PodType
 typedef i16 VersionType
 typedef i32 MetricType

Przygienda, et al. Expires May 1, 2018 [Page 41]

Internet-Draft RIFT October 2017

 typedef string KeyIDType
 /** node local, unique identification for a link (interface/tunnel
 * etc. Basically anything RIFT runs on). This is kept
 * at 32 bits so it aligns with BFD [RFC5880] discriminator size.
 */
 typedef i32 LinkIDType
 typedef string KeyNameType
 typedef i8 PrefixLenType
 /** timestamp in seconds since the epoch */
 typedef i64 TimestampInSecsType
 /** security nonce */
 typedef i64 NonceType
 /** adjacency holdtime */
 typedef i16 HoldTimeInSecType

 /** fixed leaf level that will not participate in election */
 const LevelType leaf_level = 0
 const LevelType default_level = 0
 const PodType default_pod = 0
 const LinkIDType undefined_linkid = 0
 const MetricType default_distance = 1
 /** any distance larger than this will be considered infinity */
 const MetricType infinite_distance = 0x70000000
 /** any element with 0 distance will be ignored,
 * missing metrics will be replaced with default_distance
 */
 const MetricType invalid_distance = 0
 const bool overload_default = false
 const bool flood_reduction_default = true
 const bool leaf_2_leaf_procedures_default = false
 const HoldTimeInSecType default_holdtime = 3
 /** 0 is illegal for SystemID */
 const SystemIDType IllegalSystemID = 0

 /** indicates whether the direction is northbound/east-west
 * or southbound */
 enum TieDirectionType {
 Illegal = 0,
 South = 1,
 North = 2,
 DirectionMaxValue = 3,
 }

 enum AddressFamilyType {
 Illegal = 0,
 AddressFamilyMinValue = 1,
 IPv4 = 2,
 IPv6 = 3,

Przygienda, et al. Expires May 1, 2018 [Page 42]

Internet-Draft RIFT October 2017

 AddressFamilyMaxValue = 4,
 }

 struct IPv4PrefixType {
 1: required IPv4Address address;
 2: required PrefixLenType prefixlen;
 }

 struct IPv6PrefixType {
 1: required IPv6Address address;
 2: required PrefixLenType prefixlen;
 }

 union IPAddressType {
 1: optional IPv4Address ipv4address;
 2: optional IPv6Address ipv6address;
 }

 union IPPrefixType {
 1: optional IPv4PrefixType ipv4prefix;
 2: optional IPv6PrefixType ipv6prefix;
 }

 enum TIETypeType {
 Illegal = 0,
 TIETypeMinValue = 1,
 /** first legal value */
 NodeTIEType = 2,
 PrefixTIEType = 3,
 PGPrefixTIEType = 4,
 KeyValueTIEType = 5,
 TIETypeMaxValue = 6,
 }

 /** @note: route types which MUST be ordered on preference
 * PGP prefixes are most preferred attracting
 * traffic north (towards spine)
 * normal prefixes are attracting traffic south (towards leafs),
 * i.e. prefix in NORTH PREFIX TIE is preferred
 */
 enum RouteType {
 Illegal = 0,
 RouteTypeMinValue = 1,
 /** First legal value. */
 /** Discard routes are most preferred */
 Discard = 2,

 /** Local prefixes are directly attached prefixes on the

Przygienda, et al. Expires May 1, 2018 [Page 43]

Internet-Draft RIFT October 2017

 * system such as e.g. interface routes.
 */
 LocalPrefix = 3,
 /** advertised in S-TIEs */
 SouthPGPPrefix = 4,
 /** advertised in N-TIEs */
 NorthPGPPrefix = 5,
 /** advertised in N-TIEs */
 NorthPrefix = 6,
 /** advertised in S-TIEs */
 SouthPrefix = 7,
 RouteTypeMaxValue = 8
 }

8.2. encoding.thrift

/**
 Thrift file for packet encodings for RIFT
*/

include "common.thrift"

namespace * models

/**
 Thrift file for packet encodings for RIFT
*/

include "common.thrift"

namespace rs models
namespace py encoding

/** represents protocol major version */
const i32 protocol_major_version = 3
/** represents protocol minor version */
const i32 protocol_minor_version = 0

/** common RIFT packet header */
struct PacketHeader {
 1: required common.VersionType major_version = protocol_major_version;
 2: required common.VersionType minor_version = protocol_minor_version;
 /** this is the node sending the packet, in case of LIE/TIRE/TIDE
 also the originator of it */
 3: required common.SystemIDType sender;
 /** level of the node sending the packet, required on anything but LIEs.
 * Lack of presence on LIEs indicates auto-election of level.

Przygienda, et al. Expires May 1, 2018 [Page 44]

Internet-Draft RIFT October 2017

 */
 4: optional common.LevelType level;
}

/** Community serves as community for PGP purposes */
struct Community {
 1: required i32 top;
 2: required i32 bottom;
}

/** Neighbor structure */
struct Neighbor {
 1: required common.SystemIDType originator;
 2: required common.LinkIDType remote_id;
}

/** Capabilities the node supports */
struct NodeCapabilities {
 /** can this node participate in flood reduction,
 only relevant at level > 0 */
 1: optional bool flood_reduction = common.flood_reduction_default;
 /** does this node support leaf-2-leaf procedures,
 only relevant in case node has no southbound
 adjacencies, otherwise ignored */
 2: optional bool leaf_2_leaf_procedures = common.leaf_2_leaf_procedu
res_default;
}

/** RIFT LIE packet

 @note this node’s level is already included on the packet header */
struct LIEPacket {
 /** optional node or adjacency name */
 1: optional string name;
 /** local link ID */
 2: required common.LinkIDType local_id;
 /** UDP port to which we can flood TIEs, same address
 as the hello TX this hello has been received on
 */
 3: required common.UDPPortType flood_port;
 /** layer 3 MTU */
 4: required common.MTUSizeType link_mtu_size;
 /** this will reflect the neighbor once received */
 5: optional Neighbor neighbor;
 6: optional common.PodType pod = common.default_pod;
 /** optional nonce used for security computations */
 7: optional common.NonceType nonce;
 /** optional node capabilities shown in the LIE. The capabilies
 MUST match the capabilities shown in the Node TIEs, otherwise

Przygienda, et al. Expires May 1, 2018 [Page 45]

Internet-Draft RIFT October 2017

 the behavior is unspecified. A node detecting the mismatch
 SHOULD generate according error.
 */
 8: optional NodeCapabilities capabilities;
 /** required holdtime of the adjacency, i.e. how much time
 MUST expire without LIE for the adjacency to drop
 */
 9: required common.HoldTimeInSecType holdtime = common.default_holdtime;
}

/** LinkID pair describes one of parallel links between two nodes */
struct LinkIDPair {
 /** node-wide unique value for the local link */
 1: required common.LinkIDType local_id;
 /** received remote link ID for this link */
 2: required common.LinkIDType remote_id;
 /** more properties of the link can go in here */
}

/** ID of a TIE

 @note: TIEID space is a total order achieved by comparing the elements
 in sequence defined and comparing each value as an unsigned integer
 of according length
*/
struct TIEID {
 /** indicates direction of the TIE */
 1: required common.TieDirectionType direction;
 /** indicates originator of the TIE */
 2: required common.SystemIDType originator;
 3: required common.TIETypeType tietype;
 4: required common.TIENrType tie_nr;
}

/** Header of a TIE */
struct TIEHeader {
 2: required TIEID tieid;
 3: required common.SeqNrType seq_nr;
 /** lifetime expires down to 0 just like in ISIS */
 4: required common.LifeTimeInSecType lifetime;
}

/** A sorted TIDE packet, if unsorted, behavior is undefined */
struct TIDEPacket {
 /** all 00s marks starts */
 1: required TIEID start_range;
 /** all FFs mark end */
 2: required TIEID end_range;

Przygienda, et al. Expires May 1, 2018 [Page 46]

Internet-Draft RIFT October 2017

 /** _sorted_ list of headers */
 3: required list<TIEHeader> headers;
}

/** A TIRE packet */
struct TIREPacket {
 1: required set<TIEHeader> headers;
}

/** Neighbor of a node */
struct NodeNeighborsTIEElement {
 2: required common.LevelType level;
 /** Cost to neighbor.

 @note: All parallel links to same node
 incur same cost, in case the neighbor has multiple
 parallel links at different cost, the largest distance
 (highest numerical value) MUST be advertised */
 3: optional common.MetricType cost = common.default_distance;
 /** can carry description of multiple parallel links in a TIE */
 4: optional set<LinkIDPair> link_ids;
}

/** Flags the node sets */
struct NodeFlags {
 /** node is in overload, do not transit traffic through it */
 1: optional bool overload = common.overload_default;
}

/** Description of a node.

 It may occur multiple times in different TIEs but if either
 * capabilities values do not match or
 * flags values do not match
 * neighbors repeat with different values
 the behavior is undefined and a warning
 SHOULD be generated.

 @note: observe that absence of fields implies defined defaults
*/
struct NodeTIEElement {
 1: required common.LevelType level;
 2: optional NodeCapabilities capabilities;
 3: optional NodeFlags flags;
 /** optional node name for easier operations */
 4: optional string name;
 /** if neighbor systemID repeats in other node TIEs of same node
 the behavior is undefined */

Przygienda, et al. Expires May 1, 2018 [Page 47]

Internet-Draft RIFT October 2017

 5: required map<common.SystemIDType,NodeNeighborsTIEElement> neighbors;
}

/** multiple prefixes */
struct PrefixTIEElement {
 /** prefixes with the associated cost.
 if the same prefix repeats in multiple TIEs of same node
 or with different metrics, behavior is unspecified */
 1: required map<common.IPPrefixType,common.MetricType> prefixes;
}

/** keys with their values */
struct KeyValueTIEElement {
 /** if the same key repeats in multiple TIEs of same node
 or with different values, behavior is unspecified */
 1: required map<common.KeyIDType,string> keyvalues;
}

/** single element in a TIE. enum common.TIETypeType
 in TIEID indicates which elements MUST be present
 in the TIEElement. In case of mismatch the unexpected
 elements MUST be ignored.
 */
union TIEElement {
 /** in case of enum common.TIETypeType.NodeTIEType */
 1: optional NodeTIEElement node;
 /** in case of enum common.TIETypeType.PrefixTIEType */
 2: optional PrefixTIEElement prefixes;
 3: optional KeyValueTIEElement keyvalues;
 /** @todo: policy guided prefixes */
}

/** @todo: flood header separately in UDP to allow caching to TIEs
 while changing lifetime?
 */
struct TIEPacket {
 1: required TIEHeader header;
 2: required TIEElement element;
}

union PacketContent {
 1: optional LIEPacket lie;
 2: optional TIDEPacket tide;
 3: optional TIREPacket tire;
 4: optional TIEPacket tie;
}

/** protocol packet structure */

Przygienda, et al. Expires May 1, 2018 [Page 48]

Internet-Draft RIFT October 2017

struct ProtocolPacket {
 1: required PacketHeader header;
 2: required PacketContent content;
}

9. IANA Considerations

 This specification will request at an opportune time multiple
 registry points to exchange protocol packets in a standardized way,
 amongst them multicast address assignments and standard port numbers.
 The schema itself defines many values and codepoints which can be
 considered registries themselves.

10. Security Considerations

 Security mechanisms will be addressed in upcoming versions of this
 specification.

11. Acknowledgments

 Many thanks to Naiming Shen for some of the early discussions around
 the topic of using IGPs for routing in topologies related to Clos.
 Adrian Farrel, Joel Halpern and Jeffrey Zhang provided thoughtful
 comments that improved the readability of the document and found good
 amount of corners where the light failed to shine. Kris Price was
 first to mention single router, single arm default considerations.
 Jeff Tantsura helped out with some initial thoughts on BFD
 interactions while Jeff Haas corrected several misconceptions about
 BFD’s finer points. Artur Makutunowicz pointed out many possible
 improvements and acted as sounding board in regard to modern protocol
 implementation techniques RIFT is exploring.

12. References

12.1. Normative References

 [ISO10589]
 ISO "International Organization for Standardization",
 "Intermediate system to Intermediate system intra-domain
 routeing information exchange protocol for use in
 conjunction with the protocol for providing the
 connectionless-mode Network Service (ISO 8473), ISO/IEC
 10589:2002, Second Edition.", Nov 2002.

 [RFC1142] Oran, D., Ed., "OSI IS-IS Intra-domain Routing Protocol",
 RFC 1142, DOI 10.17487/RFC1142, February 1990,
 <https://www.rfc-editor.org/info/rfc1142>.

Przygienda, et al. Expires May 1, 2018 [Page 49]

Internet-Draft RIFT October 2017

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <https://www.rfc-editor.org/info/rfc2328>.

 [RFC2365] Meyer, D., "Administratively Scoped IP Multicast", BCP 23,
 RFC 2365, DOI 10.17487/RFC2365, July 1998,
 <https://www.rfc-editor.org/info/rfc2365>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <https://www.rfc-editor.org/info/rfc4271>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
 Topology (MT) Routing in Intermediate System to
 Intermediate Systems (IS-ISs)", RFC 5120,
 DOI 10.17487/RFC5120, February 2008,
 <https://www.rfc-editor.org/info/rfc5120>.

 [RFC5303] Katz, D., Saluja, R., and D. Eastlake 3rd, "Three-Way
 Handshake for IS-IS Point-to-Point Adjacencies", RFC 5303,
 DOI 10.17487/RFC5303, October 2008,
 <https://www.rfc-editor.org/info/rfc5303>.

 [RFC5709] Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
 Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
 Authentication", RFC 5709, DOI 10.17487/RFC5709, October
 2009, <https://www.rfc-editor.org/info/rfc5709>.

 [RFC5881] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
 (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881,
 DOI 10.17487/RFC5881, June 2010,
 <https://www.rfc-editor.org/info/rfc5881>.

Przygienda, et al. Expires May 1, 2018 [Page 50]

Internet-Draft RIFT October 2017

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6822] Previdi, S., Ed., Ginsberg, L., Shand, M., Roy, A., and D.
 Ward, "IS-IS Multi-Instance", RFC 6822,
 DOI 10.17487/RFC6822, December 2012,
 <https://www.rfc-editor.org/info/rfc6822>.

 [RFC7855] Previdi, S., Ed., Filsfils, C., Ed., Decraene, B.,
 Litkowski, S., Horneffer, M., and R. Shakir, "Source
 Packet Routing in Networking (SPRING) Problem Statement
 and Requirements", RFC 7855, DOI 10.17487/RFC7855, May
 2016, <https://www.rfc-editor.org/info/rfc7855>.

 [RFC7938] Lapukhov, P., Premji, A., and J. Mitchell, Ed., "Use of
 BGP for Routing in Large-Scale Data Centers", RFC 7938,
 DOI 10.17487/RFC7938, August 2016,
 <https://www.rfc-editor.org/info/rfc7938>.

 [RFC7987] Ginsberg, L., Wells, P., Decraene, B., Przygienda, T., and
 H. Gredler, "IS-IS Minimum Remaining Lifetime", RFC 7987,
 DOI 10.17487/RFC7987, October 2016,
 <https://www.rfc-editor.org/info/rfc7987>.

12.2. Informative References

 [CLOS] Yuan, X., "On Nonblocking Folded-Clos Networks in Computer
 Communication Environments", IEEE International Parallel &
 Distributed Processing Symposium, 2011.

 [DIJKSTRA]
 Dijkstra, E., "A Note on Two Problems in Connexion with
 Graphs", Journal Numer. Math. , 1959.

 [DYNAMO] De Candia et al., G., "Dynamo: amazon’s highly available
 key-value store", ACM SIGOPS symposium on Operating
 systems principles (SOSP ’07), 2007.

 [EPPSTEIN]
 Eppstein, D., "Finding the k-Shortest Paths", 1997.

 [FATTREE] Leiserson, C., "Fat-Trees: Universal Networks for
 Hardware-Efficient Supercomputing", 1985.

Przygienda, et al. Expires May 1, 2018 [Page 51]

Internet-Draft RIFT October 2017

 [MAKSIC2013]
 Maksic et al., N., "Improving Utilization of Data Center
 Networks", IEEE Communications Magazine, Nov 2013.

 [QUIC] Iyengar et al., J., "QUIC: A UDP-Based Multiplexed and
 Secure Transport", 2016.

 [VAHDAT08]
 Al-Fares, M., Loukissas, A., and A. Vahdat, "A Scalable,
 Commodity Data Center Network Architecture", SIGCOMM ,
 2008.

Authors’ Addresses

 Tony Przygienda
 Juniper Networks
 1194 N. Mathilda Ave
 Sunnyvale, CA 94089
 US

 Email: prz@juniper.net

 Alankar Sharma
 Comcast
 1800 Bishops Gate Blvd
 Mount Laurel, NJ 08054
 US

 Email: Alankar_Sharma@comcast.com

 John Drake
 Juniper Networks
 1194 N. Mathilda Ave
 Sunnyvale, CA 94089
 US

 Email: jdrake@juniper.net

 Alia Atlas
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 US

 Email: akatlas@juniper.net

Przygienda, et al. Expires May 1, 2018 [Page 52]

