
Network Working Group J. Klensin
Internet-Draft
Updates: 5892, 5894 (if approved) P. Faltstrom
Intended status: Standards Track Netnod
Expires: April 11, 2018 October 8, 2017

 IDNA Update for Unicode 7.0 and Later Versions
 draft-klensin-idna-5892upd-unicode70-05

Abstract

 The current version of the IDNA specifications anticipated that each
 new version of Unicode would be reviewed to verify that no changes
 had been introduced that required adjustments to the set of rules
 and, in particular, whether new exceptions or backward compatibility
 adjustments were needed. The review for Unicode 7.0.0 first
 identified a potentially problematic new code point and then a much
 more general and difficult issue with Unicode normalization. This
 specification discusses those issues and proposes updates to IDNA
 and, potentially, the way the IETF handles comparison of identifiers
 more generally, especially when there is no associated language or
 language identification. It also applies an editorial clarification
 to RFC 5892 that was the subject of an earlier erratum and updates
 RFC 5894 to point to the issues involved.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 11, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Klensin & Faltstrom Expires April 11, 2018 [Page 1]

Internet-Draft IDNA Unicode Update October 2017

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Origins and Discovery of the Issue 4
 1.2. IDNA2008 and Special or Exceptional Cases 5
 1.3. Terminology . 7
 2. Document Aspirations . 8
 3. Problem Description . 8
 3.1. IDNA assumptions about Unicode normalization 8
 3.2. The discovery and the Arabic script cases 10
 3.2.1. New code point U+08A1, decomposition, and language
 dependency . 10
 3.2.2. Other examples of the same behavior within the Arabic
 Script . 11
 3.2.3. Hamza and Combining Sequences 11
 3.3. Precomposed characters without decompositions more
 generally . 12
 3.3.1. Description of the general problem 12
 3.3.2. Latin Examples and Cases 14
 3.3.2.1. The font exclusion and compatability
 relationships 14
 3.3.2.2. The phonetic notation characters and extensions . 14
 3.3.2.3. The stroke (solidus) ambiguity 14
 3.3.2.3.1. Combining dots and other shapes combine...
 unless... 15
 3.3.2.3.2. "Legacy" characters and new additions 16
 3.3.3. Unexpected Combining Sequances 16
 3.3.4. Examples and Cases from Other Scripts 17
 3.3.4.1. Scripts with precomposed preferences and ones
 with combining preferences 17
 3.3.4.2. The Han and Kangxu Cases 17
 3.4. Confusion and the Casual User 17
 4. Implementation options and issues: Unicode properties,
 exceptions, and the nature of stability 18
 4.1. Unicode Stability compared to IETF (and ICANN) Stability 18
 4.2. New Unicode Properties 19
 4.3. The need for exception lists 20
 5. Proposed/ Alternative Changes to RFC 5892 for the issues

Klensin & Faltstrom Expires April 11, 2018 [Page 2]

Internet-Draft IDNA Unicode Update October 2017

 first exposed by new code point U+08A1 20
 5.1. Disallow This New Code Point 20
 5.2. Disallow This New Code Point and All Future Precomposed
 Additions that Do Not Decompose 22
 5.3. Disallow the combining sequences for these characters . . 22
 5.4. Use Combinnig Classes to Develop Additional Contextual
 Rules . 23
 5.5. Disallow all Combining Characters for Specific Scripts . 23
 5.6. Do Nothing Other Than Warn 24
 5.7. Normalization Form IETF (NFI)) 25
 6. Editorial clarification to RFC 5892 26
 7. Acknowledgements . 26
 8. IANA Considerations . 26
 9. Security Considerations 27
 10. References . 28
 10.1. Normative References 28
 10.2. Informative References 30
 Appendix A. Change Log . 33
 A.1. Changes from version -00 (2014-07-21)to -01 33
 A.2. Changes from version -01 (2014-12-07) to -02 33
 A.3. Changes from version -02 (2014-12-07) to -03 33
 A.4. Changes from version -03 (2015-01-06) to -04 33
 A.5. Changes from version -04 (2015-03-11) to -05 34
 Authors’ Addresses . 34

1. Introduction

 Note in/about -04 and -05 Drafts: These two versions of the
 document contains a very large amount of new material as compared
 to the -03 version. The new material reflects an evolution of
 community understanding in the first quarter of 2015 and further
 evolution between then and mid-2017 from an assumption that the
 problem involved only a few code points and one combining
 character in a single script (Hamza Above and Arabic) to an
 understanding that the problem we have come to call "non-
 decomposing code points" and several closely related ones are
 quite pervasive and may represent fundamental misunderstandings or
 omissions from IDNA2008 (and, by extension, the basics of PRECIS
 [RFC8264]) that must be corrected if those protocols are going to
 be used in a way that supports internationalized identifiers on
 the Internet predictably (as seen by the end user) and securely.

 This version is still necessarily incomplete: not only is our
 understanding probably still not comprehensive, but there are a
 number of placeholders for text and references. Nonetheless, the
 document in its current form should be useful as both the
 beginning of a comprehensive overview is the issues and a source
 of references to other relevant materials.

Klensin & Faltstrom Expires April 11, 2018 [Page 3]

Internet-Draft IDNA Unicode Update October 2017

 This draft could almost certainly be better organized to improve
 its readability: specific suggestions would be welcome.

1.1. Origins and Discovery of the Issue

 The current version of the IDNA specifications, known as "IDNA2008"
 [RFC5890], anticipated that each new version of Unicode would be
 reviewed to verify that no changes had been introduced that required
 adjustments to IDNA’s rules and, in particular, whether new
 exceptions or backward compatibility adjustments were needed. When
 that review was carefully conducted for Unicode 7.0.0 [Unicode7],
 comparing it to prior versions including the text in Unicode 6.2
 [Unicode62], it identified a problematic new code point (U+08A1,
 ARABIC LETTER BEH WITH HAMZA ABOVE). The code point was added for
 Arabic Script use with the Fula (also known as Fulfulde, Pulaar, amd
 Pular’Fulaare) language. That language is apparently most often
 written in Latin characters today [Omniglot-Fula] [Dalby] [Daniels].

 The specific problem is discussed in detail in Section 3. In very
 broad terms, IDNA (and other IETF work) assume that, if one can
 represent "the same character" either as a combining sequence or as a
 single code point, strings that are identical except for those
 alternate forms will compare equal after normalization. Part of the
 difficulty that has characterized this discussion is that "the same"
 differs depending on the criteria that are chosen. It may be further
 complicated in practice by differences in preferred type styles or
 rendering, but Unicode code point choices are not supposed to depend
 on type style (font) variations and, again, IDNA has no mechanism for
 specifying language choices that might affect rendering.

 The behavior of the newly-added code point, while non-optimal for
 IDNA, follows that of a few code points that predate Unicode 7.x and
 even the IDNA 2008 specifications and Unicode 6.0. Those existing
 code points, which may not be easy to accurately characterize as a
 group, make the question of what, if anything, to do about this new
 exceedingly problematic one and, perhaps separately, what to do about
 existing sets of code points with the same behavior, because
 different reasonable criteria yield different decisions,
 specifically:

 o To disallow it (and future, but not existing, characters with
 similar characteristics) as an IDNA exception case creates
 inconsistencies with how those earlier code points were handled.

 o To disallow it and the similar code points as well would
 necessitate invalidating some potential labels that would have
 been valid under IDNA2008 until this time. Depending on how the

Klensin & Faltstrom Expires April 11, 2018 [Page 4]

Internet-Draft IDNA Unicode Update October 2017

 collection of similar code points is characterized, a few of them
 are almost certainly used in reasonable labels.

 o To permit the new code point to be treated as PVALID creates a
 situation in which it is possible, within the same script, to
 compose the same character symbol (glyph or grapheme) in two
 different ways that do not compare equal even after normalization.
 That condition would then apply to it and the earlier code points
 with the same behavior. That situation contradicts a fundamental
 assumption of IDNA that is discussed in more detail below.

 NOTE IN DRAFT:

 This working draft discusses six alternatives, including an idea
 (an IETF-specific normalization form) that seemed too drastic to
 be considered when IDNA2008 was designed or even when the review
 of Unicode 7.0 for IDAN purposes began. In retrospect, it not
 only would have been appropriate to discuss when the IDNA2008
 specifications were being developed but is appearing more
 attractive now. The authors suggest that the community discuss
 the relevant tradeoffs and make a decision and that the document
 then be revised to reflect that decision, with the other
 alternatives discussed as options not chosen. Because there is no
 ideal choice, the discussion of the issues in Section 3 is
 probably as or more important than the particular choice of how to
 handle this code point. In addition to providing information for
 this document, that section should be considered as an updating
 addendum to RFC 5894 [RFC5894] and should be incorporated into any
 future revision of that document.

 As the result of this version of the document containing several
 alternate proposals, some of the text is also a little bit
 redundant. That will be corrected in future versions.

1.2. IDNA2008 and Special or Exceptional Cases

 IDNA2008 contains several type of explicit provisions for characters
 (code points) that require special treatment when the requirements of
 the DNS cannot easily be met by calculations based on stable Unicode
 properties. Those provisions are
 [[CREF1: ... to be supplied]]

 As anticipated when IDNA2008, and RFC 5892 in particular, were
 written, exceptions and explicit updates are likely to be needed only
 if there is disagreement between the Unicode Consortium’s view about
 what is best for the Standard and its very diverse user community and
 the IETF’s view of what is best for IDNs, the DNS, and IDNA. It was
 hoped that a situation would never arise in which the the two

Klensin & Faltstrom Expires April 11, 2018 [Page 5]

Internet-Draft IDNA Unicode Update October 2017

 perspectives would disagree, but the possibility was anticipated and
 considerable mechanism added to RFC 5890 and 5982 as a result. It is
 probably important to note that a disagreement in this context does
 not imply that anyone is "wrong", only that the two different groups
 have different needs and therefore criteria about what is acceptable.
 In particular, it appears that the Unicode Consortium has made
 assumptions about the availability (by explicit designation or
 context) of information about applicable languages or other context
 for a give string that are not possible for IDNA. For that reason,
 the IETF has, in the past, allowed some characters for IDNA that
 active Unicode Technical Committee members suggested be disallowed to
 avoid a change in derived tables [RFC6452]. This document describes
 a set of cases for which the IETF must consider disallowing sets of
 characters that the various properties would otherwise treat as
 PVALID.

 This document provides the "flagging for the IESG" specified by
 Section 5.1 of RFC 5892. As specified there, the change itself
 requires IETF review because it alters the rules of Section 2 of that
 document.

 [[RFC Editor: please remove the following comment and note if they
 get to you.]]

 [[IESG: It might not be a bad idea to incorporate some version of
 the following into the Last Call announcement.]]

 NOTE IN DRAFT to IETF Reviewers: The issues in this document, and
 particularly the choices among options for either adding exception
 cases to RFC 5892 or ignoring the issue, warning people, and
 hoping the results do not include or enable serious problems, are
 fairly esoteric. Understanding them requires that one have at
 least some understanding of how scripts in which precomposed
 characters are preferred over combining sequences as a Unicode
 design and extension principle work. Those scripts include Arabic
 but, unlike the assumption when the issues were first discovered,
 are by no means limited to it. Readers should also understand the
 reasons the Unicode Standard gives various Arabic Script
 characters a fairly extended discussion [Unicode70-Arabic] but
 should treat that only as an example and note that most other
 cases are much less well documented. It also requires
 understanding of a number of Unicode principles, including the
 Normalization Stability rules [UAX15-Versioning] as applied to new
 precomposed characters and guidelines for adding new characters.
 There is considerable discussion of the issues in Section 3 and
 references are provided for those who want to pursue them, but
 potential reviewers should assume that the background needed to
 understand the reasons for this change is no less deep in the

Klensin & Faltstrom Expires April 11, 2018 [Page 6]

Internet-Draft IDNA Unicode Update October 2017

 subject matter than would be expected of someone reviewing a
 proposed change in, e.g., the fundamentals of BGP, TCP congestion
 control, or some cryptographic algorithm. Put more bluntly, one’s
 ability to read or speak languages other than English, or even one
 or more languages that use the Arabic script or other scripts
 similarly affected, does not make one an expert in these matters.

1.3. Terminology

 This document assumes that the reader is reasonably familiar with the
 terminology of IDNA [RFC5890] and Unicode [Unicode7] and with the
 IETF conventions for representing Unicode code points [RFC5137].
 Some terms used here may not be used in the same way in those two
 sets of documents. From one point of view, those differences may
 have been the results of, or led to, misunderstandings that may, in
 turn, be part of the root cause of the problems explored in this
 document. In particular, this document uses the term "precomposed
 character" to describe characters that could reasonably be composed
 by a combining sequence using code points with appropriate appearance
 in common type styles but for which a single code point that does not
 require combining sequences is available. That definition is
 strictly about mechanical composition and does not involve any
 considerations about how the character is used. It is closely
 related to this document’s definition of "identical". When a
 precomposed character exists and either applying NFC to the combining
 sequence does not yield that character or applying NFD to that
 character’s code point does not yield the combining sequence, it is
 referred to in this document as "non-decomposable".

 The document also uses some terms that are familiar to those who have
 been involved with IDNs and IDNA for a long time, but uses them more
 precisely than may be common in other quarters. For example, the
 term "Punycode" is not used at all in the rest of this document
 because it is the name of a very specific encoding algorithm
 [RFC3492] that does not incorporate the rules and algorithms for
 domain name labels that are produced by that encoding. Instead, the
 generic terms "ACE" or "ACE string" for "ASCII-compatible encoding"
 is used to refer to strings that abstractly contain characters
 outside the ASCII repertoire [RFC0020] but are encoded so that only
 ASCII characters appear in the string that would be encountered by a
 user or protocol and the terms "A-label" and "U-label", as defined in
 RFC 5890, to refer to the ACE and more conventional (or "native")
 character forms in which those non-ASCII characters appear in
 conventional Unicode encodings (typically UTF-8).

Klensin & Faltstrom Expires April 11, 2018 [Page 7]

Internet-Draft IDNA Unicode Update October 2017

2. Document Aspirations

 This document, in its present form, is not a proposal for a solution.
 Instead, it is intended to be (or evolve into) a comprehensive
 description of the issues and problems and to outline some possible
 approaches to a solution. A perfect solution -- one that would
 resolve all of the issues identified in this document -- would
 involve a relatively small set of relatively simple rules and hence
 would be comprehensible and predictable for and by non-expert end
 users, would not require code point by code point or even block by
 block exception lists, and would not leave uses of any script or
 language feeling that their particular writing system have been
 treated less fairly than others.

 Part of the reality we need to accept is that IDNA, in its present
 form, represents compromises that does not completely satisfy those
 criteria and whatever is done about these issues will probably make
 it (or the job of administering zones containing IDNs) more complex.
 Similarly, as the Unicode Standard suggests when it identifies ten
 Design Principles and the text then says "Not all of these principles
 can be satisfied simultaneously..." [Unicode70-Design], while there
 are guidelines and principles, a certain amount of subjective
 judgment is involved in making determinations about normalization,
 decomposition, and some property values. For Unicode itself, those
 issues are resolved by multiple statements (at least one cited below)
 that one needs to rely on per-code point information in the Unicode
 Character Database rather than on rules or principles. The design of
 IDNA and the effort to keep it largely independent of Unicode
 versions requires rules, categories, and principles that can be
 relied upon and applied algorithmically. There is obviously some
 tension between the two approaches.

3. Problem Description

3.1. IDNA assumptions about Unicode normalization

 IDNA makes several assumptions about Unicode, Unicode "characters",
 and the effects of normalization. Those assumptions were based on
 careful reading of the Unicode Standard at the time [Unicode5],
 guided by advice and commitments by members of the Unicode Technical
 Committee. Those assumptions, and the associated requirements, are
 necessitated by three properties of DNS labels that typically do not
 apply to blocks of running text:

 1. There is no language context for a label. While particular DNS
 zones may impose restrictions, including language or script
 restrictions, on what labels can be registered, neither the DNS
 nor IDNA impose either type of restriction or give the user of a

Klensin & Faltstrom Expires April 11, 2018 [Page 8]

Internet-Draft IDNA Unicode Update October 2017

 label any indication about the registration or other restrictions
 that may have been imposed.

 2. Labels are often mnemonics rather than words in any language.
 They may be abbreviations or acronyms or contain embedded digits
 and have other characteristics that are not typical of words.

 3. Labels are, in practice, usually short. Even when they are the
 maximum length allowed by the DNS and IDNA, they are typically
 too short to provide significant context. Statements that
 suggest that languages can almost always be determined from
 relatively short paragraphs or equivalent bodies of text do not
 apply to DNS labels because of their typical short length and
 because, as noted above, they are not required to be formed
 according to language-based rules.

 At the same time, because the DNS is an exact-match system, there
 must be no ambiguity about whether two labels are equal. Although
 there have been extensive discussions about "confusingly similar"
 characters, labels, and strings, such tests between scripts are
 always somewhat subjective: they are affected by choices of type
 styles and by what the user expects to see. In spite of the fact
 that the glyphs that represent many characters in different scripts
 are identical in appearance (e.g., basic Latin "a" (U+0061) and the
 identical-appearing Cyrillic character (U+0430), the most important
 test is that, if two glyphs are the same within a given script, they
 must represent the same character no matter how they are formed.

 Unicode normalization, as explained in [UAX15], is expected to
 resolve those "same script, same glyph, different formation methods"
 issues. Within the Latin script, the code point sequence for lower
 case "o" (U+006F) and combining diaeresis (U+0308) will, when
 normalized using the "NFC" method required by IDNA, produce the
 precomposed small letter o with diaeresis (U+00F6) and hence the two
 ways of forming the character will compare equal (and the combining
 sequence is effectively prohibited from U-labels).

 NFC was preferred over other normalization methods for IDNA because
 it is more compact, more likely to be produced on keyboards on which
 the relevant characters actually appeared, and because it does not
 lose substantive information (e.g., some types of compatibility
 equivalence involves judgment calls as to whether two characters are
 actually the same -- they may be "the same" in some contexts but not
 others -- while canonical equivalence is about different ways to
 produce the glyph for the same abstract character).

 IDNA also assumed that the extensive Unicode stability rules would be
 applied and work as specified when new code points were added. Those

Klensin & Faltstrom Expires April 11, 2018 [Page 9]

Internet-Draft IDNA Unicode Update October 2017

 rules, as described in The Unicode Standard and the normative annexes
 identified below, provide that:

 1. New code points representing precomposed characters that can be
 formed from combining sequences will not be added to Unicode
 unless neither the relevant base character nor required combining
 character(s) are part of the Standard within the relevant script
 [UAX15-Versioning].

 2. If circumstances require that principle be violated,
 normalization stability requires that the newly-added character
 decompose (even under NFC) to the previously-available combining
 sequence [UAX15-Exclusion].

 At least at the time IDNA2008 was being developed, there was no
 explicit provision in the Standard’s discussion of conditions for
 adding new code points, nor of normalization stability, for an
 exception based on different languages using the same script or
 ambiguities about the shape or positioning of combining characters.

3.2. The discovery and the Arabic script cases

 While the set of problems with normalization discussed above were
 discovered with a newly-added code point for the Arabic Script and
 some characteristics of Unicode handling of that script seem to make
 the problem more complex going forward, these are not issues specific
 to Arabic. This section describes the Arabic-specific problems;
 subsequent ones (starting with Section 3.3) discuss the problem more
 generally and include illustrations from other scripts.

3.2.1. New code point U+08A1, decomposition, and language dependency

 Unicode 7.0.0 introduces the new code point U+08A1, ARABIC LETTER BEH
 WITH HAMZA ABOVE. As can be deduced from the name, it is visually
 identical to the glyph that can be formed from a combining sequence
 consisting of the code point for ARABIC LETTER BEH (U+0628) and the
 code point for Combining Hamza Above (U+0654). The two rules
 summarized above (see the last part of Section 3.1) suggest that
 either the new code point should not be allocated at all or that it
 should have a decomposition to \u’0628’\u’0654’.

 Had the issues outlined in this document been better understood at
 the time, it probably would have been wise for RFC 5892 to disallow
 either the precomposed character or the combining sequence of each
 pair in those cases in which Unicode normalization rules do not cause
 the right thing to happen, i.e., the combining sequence and
 precomposed character to be treated as equivalent. Failure to do so
 at the time places an extra burden on registries to be sure that

Klensin & Faltstrom Expires April 11, 2018 [Page 10]

Internet-Draft IDNA Unicode Update October 2017

 conflicts (and the potential for confusion and attacks) do not exist.
 Oddly, had the exclusion been made part of the specification at that
 time, the preference for precomposed forms noted above would probably
 have dictated excluding the combining sequence, something not
 otherwise done in IDNA2008 because the NFC requirement serves the
 same purpose. Today, the only thing that can be excluded without the
 potential disruption of disallowing a previously-PVALID combining
 sequence is the to exclude the newly-added code point so whatever is
 done, or might have been contemplated with hindsight, will be
 somewhat inconsistent.

3.2.2. Other examples of the same behavior within the Arabic Script

 One of the things that complicates the issue with the new U+08A1 code
 point is that there are several other Arabic-script code points that
 behave in the same way for similar language-specific reasons.

 In particular, at least three other grapheme clusters that have been
 present for many version of Unicode can be seen as involving issues
 similar to those for the newly-added ARABIC LETTER BEH WITH HAMZA
 ABOVE. ARABIC LETTER HAH WITH HAMZA ABOVE (U+0681) and ARABIC LETTER
 REH WITH HAMZA ABOVE (U+076C) do not have decomposition forms and are
 preferred over combining sequences using HAMZA ABOVE (U+0654)
 [Unicode70-Hamza]. By contrast, ARABIC LETTER ALEF WITH HAMZA ABOVE
 (U+0623) decomposes into \u’0627’\u’0654’, ARABIC LETTER WAW WITH
 HAMZA ABOVE (U+0624) decomposes into \u’0648’\u’0654’, and ARABIC
 LETTER YEH WITH HAMZA ABOVE (U+0626) decomposes into \u’064A’\u’0654’
 so the precomposed character and combining sequences compare equal
 when both are normalized, as this specification prefers.

 There are other variations in which a precomposed character involving
 HAMZA ABOVE has a decomposition to a combining sequence that can form
 it. For example, ARABIC LETTER U WITH HAMZA ABOVE (U+0677) has a
 compatibility decomposition. but not a canonical one, into the
 combining sequence \u’06C7’\u’0674’.

3.2.3. Hamza and Combining Sequences

 As the Unicode Standard points out at some length [Unicode70-Arabic],
 Hamza is a problematic abstract character and the "Hamza Above"
 construction even more so [Unicode70-Hamza]. Those sections explain
 a distinction made by Unicode between the use of a Hamza mark to
 denote a glottal stop and one used as a diacritic mark to denote a
 separate letter. In the first case, the combining sequence is used.
 In the second, a precomposed character is assigned.

 Unlike Unicode generally and because of concerns about identifier
 spoofing and attacks based on similarities, character distinctions in

Klensin & Faltstrom Expires April 11, 2018 [Page 11]

Internet-Draft IDNA Unicode Update October 2017

 IDNA are based much more strictly on the appearance of characters;
 language and pronunciation distinctions within a script are not
 considered. So, for IDNA, BEH WITH HAMZA ABOVE is not-quite-
 tautologically the same as BEH WITH HAMZA ABOVE, even if one of them
 is written as U+08A1 (new to Unicode 7.0.0) and the other as the
 sequence \u’0628’\u’0654’ (feasible with Unicode 7.0.0 but also
 available in versions of Unicode going back at least to the version
 [Unicode32] used in the original version of IDNA [RFC3490]. Because
 the precomposed form and combining sequence are, for IDNA purposes,
 the same, IDNA expects that normalization (specifically the
 requirement that all U-labels be in NFC form) will cause them to
 compare equal.

 If Unicode also considered them the same, then the principle would
 apply that new precomposed ("composition") forms are not added unless
 one of the code points that could be used to construct it did not
 exist in an earlier version (and even then is discouraged)
 [UAX15-Versioning]. When exceptions are made, they are expected to
 conform to the rules and classes in the "Composition Exclusion
 Table", with class 2 being relevant to this case [UAX15-Exclusion].
 That rule essentially requires that the normalization for the old
 combining sequence to itself be retained (for stability) but that the
 newly-added character be treated as canonically decomposable and
 decompose back to the older sequence even under NFC. That was not
 done for this particular case, presumably because of the distinction
 about pronunciation modifiers versus separate letters noted above.
 Because, for IDNA and the DNS, there is a possibility that the
 composing sequence \u’0628’\u’0654’ already appears in labels, the
 only choice other than allowing an otherwise-identical, and
 identically-appearing, label with U+08A1 substituted to identify a
 different DNS entry is to DISALLOW the new character.

3.3. Precomposed characters without decompositions more generally

3.3.1. Description of the general problem

 As mentioned above, IDNA made a strong assumption that, if there were
 two ways to form the same abstract character in the same script,
 normalization would result in them comparing equal. Work on IDNA2008
 recognized that early version of Unicode might also contain some
 inconsistencies; see Section 3.3.2.3.2 below.

 Having precomposed code points exist that don’t have decompositions,
 or having code points of that nature allocated in the future, is
 problematic for those IDNA assumptions about character comparison.
 It seems to call for either excluding some set of code points that
 IDNA’s rules do not now identify, development and use of a
 normalization procedure that behaves as expected (those two options

Klensin & Faltstrom Expires April 11, 2018 [Page 12]

Internet-Draft IDNA Unicode Update October 2017

 may be nearly equivalent for many purposes), or deciding to accept a
 risk that, apparently, will only increase over time.

 It is not clear whether the reasons the IDNABIS WG did not understand
 and allow for these cases are important except insofar as they inform
 considerations about what to do in the future. It seemed (and still
 seems to some people) that the Unicode Standard is very clear on the
 matter (or at least was when IDNA2008 was being developed). In
 addition to the normalization stability rules cited in the last part
 of Section 3.1. the discussion in the Core Standard seems quite
 clear. For example, "Where characters are used in different ways in
 different languages, the relevant properties are normally defined
 outside the Unicode Standard" in Section 2.2, subsection titled
 "Semantics" [Unicode7] did not suggest to most readers that sometimes
 separate code points would be allocated within a script based on
 language considerations. Similarly, the same section of the Standard
 says, in a subsection titled "Unification", "The Unicode Standard
 avoids duplicate encoding of characters by unifying them within
 scripts across language" and does not list exceptions to that rule or
 limit it to a single script although it goes on to list "CJK" as an
 example. Another subsection, "Equivalent Sequences" indicates
 "Common precomposed forms ... are included for compatibility with
 current standards. For static precomposed forms, the standard
 provides a mapping to an equivalent dynamically composed sequence of
 characters". The latter appears to be precisely the "all precomposed
 characters decompose into the relevant combining sequences if the
 relevant base and combining characters exist in the Standard" rule
 that IDNA needs and assumed and, again, there is no mention of
 exceptions, language-dependent of otherwise. The summary of
 stability policies cited in the Standard [Unicode70-Stability] does
 not appear to shed any additional light on these issues.

 The Standard now contains a subsection titled "Non-decomposition of
 Overlaid Diacritics" [Unicode70-Overlay] that identifies a list of
 diacritics that do not normally form characters that have
 decompositions. The rule given has its own exceptions and the text
 clearly states that there is actually no way to know whether a code
 point has a decomposition other than consulting the Unicode Character
 Database entry for that code point. The subsequent section notes
 that this can be a security problem. While the issues with IDNA go
 well beyond what is normally considered security, that comment now
 seems clear. While that subsection is helpful in explaining the
 problem, especially for European scripts, it does not appear in the
 Unicode versions that were current when IDNA2008 was being developed.

Klensin & Faltstrom Expires April 11, 2018 [Page 13]

Internet-Draft IDNA Unicode Update October 2017

3.3.2. Latin Examples and Cases

 While this set of problems was discovered because of a code point
 added to the Arabic script in precombined form to support a
 particular language, there are actually far more examples for, e.g.,
 Latin script than there are for Arabic script. Many of them are
 associated with the "non-decomposition of combining diacriticals"
 issues mentioned above, but the next subsections describe other cases
 that are not directly bound to decomposition.

3.3.2.1. The font exclusion and compatability relationships

 Unicode contains a large collection of characters that are identified
 as "Mathematical Symbols". A large subset of them are basic or
 decorated Latin characters, differing from the ordinary ones only by
 their usage and, in appearance, by font or type styling (despite the
 general principle that font distinctions are not used as the basis
 for assigning separate code points. Most of these have canonical
 mappings to the base form, which eliminates them from IDNA, but
 others do not and, because the same marks that are used as phonetic
 diacritical markings in conventional alphabetical use have special
 mathematical meanings, applications that permit the use of these
 characters have their own issues with normalization and equality.

3.3.2.2. The phonetic notation characters and extensions

 Another example involves various Phonetic Alphabet and Extension
 characters. many of which, unlike the Mathematical ones, do not have
 normalizations that would make them compare equal to the basic
 characters with essentially identical representations. This would
 not be a problem for IDNA if they were identified with a specialized
 script or as symbols rather than letters, but neither is the case:
 they are generally identified as lower case Latin Script letters even
 when they are visually upper-case, another issue for IDNA.

3.3.2.3. The stroke (solidus) ambiguity

 Some combining characters have two or more forms. for example, in
 the case of the character popularly known as "slash", "stroke", or
 "solidus" (sometime prefixed by "forward"), there are "short" and
 "long" combining forms, U+0337 (COMBINING SHORT SOLIDUS OVERLAY) and
 U+0338 (COMBINING LONG SOLIDUS OVERLAY). It is not clear how long a
 short one needs to be to make it "long" or how short a long one needs
 to be to make it "short". Perhaps for that reason, U+00F8 has no
 decomposition and neither U+006F U+0337 nor U+006F U+0338 combine to
 it with NFC.

Klensin & Faltstrom Expires April 11, 2018 [Page 14]

Internet-Draft IDNA Unicode Update October 2017

 Adding to the confusion, at least when one attempts to use Unicode
 character names to identify places to look for problems, U+00F8 is
 formally called LATIN SMALL LETTER O WITH STROKE but, in combining
 character terminology, the term "stroke" refers to a horizontal bar,
 not an angled one, as in U+0335 and U+0336 (also short and long
 versions). However, when one overlays one of those on an "o"
 (U+006F), one gets U+0275, LATIN SMALL LETTER BARRED O, not "...o
 with stroke". That character, by the way, does not decompose either.
 This does illustrate the principle that it is not feasible to rely on
 Unicode code point names to identify confusable character sequences,
 even ones that produce the same, more or less font-independent,
 grapheme clusters.

3.3.2.3.1. Combining dots and other shapes combine... unless...

 The discussion of "Non-decomposition of Overlaid Diacritics"
 [Unicode70-Overlay] indirectly exhibits at least one reason why it
 has been difficult to characterize the problem. If one combines that
 subsection with others, one gets a set of rules that might be
 described as:

 1. If the precomposed character and the code points that make up the
 combining sequence exist, then canonical composition and
 decomposition work as expected, except...

 2. If the precomposed character was added to Unicode after the code
 points that make up the combining sequence, normalization
 stability for the combining sequences requires that NFC applied
 to the precomposed character decomposes rather than having the
 combining sequence compose to the new character, however...

 3. If the combining sequence involves a diacritic or other mark that
 actually touches the base character when composed, the
 precomposed character does not have a decomposition, unless...

 4. The combining diacritic involved is Cedilla (U+0327), Ogonek
 (U+0328), or Horn (U+031B), in which case the precomposed
 characters that contain them "regularly" (but presumably not
 always) decomposes, and...

 5. There are further exceptions for Hamza which does not overlay the
 associated base character in the same way the Latin-derived
 combining diacritics and other marks do. Those decisions to
 decompose a precomposed character (or not) are based on language
 or phonetic considerations, not the combining mechanism or
 appearance, or perhaps,...

Klensin & Faltstrom Expires April 11, 2018 [Page 15]

Internet-Draft IDNA Unicode Update October 2017

 6. Some characters have compatibility decompositions rather than
 canonical ones [Unicode70-CompatDecomp]. Because compatibility
 relationships are treated differently by IDNA, PRECIS [RFC8264],
 and, potentially, other protocols involving identifiers for
 Internet use, the existence of compatibility relationship may or
 may not be helpful. Finally,...

 7. There is no reason to believe the above list is complete. In
 particular, if whether a precomposed character decomposes or not
 is determined by language or phonetic distinctions or by a
 decision that all new characters for some scripts will be
 precomposed while new ones for others will be added (if needed)
 as combining sequences, one may need additional rules on a per-
 script and/or per-character basis.

 The above list only covers the cases involving combining sequences.
 It does not cover cases such as those in Section 3.3.2.1 and
 Section 3.3.2.2 and there may be additional groups of cases not yet
 identified.

3.3.2.3.2. "Legacy" characters and new additions

 The development of categories and rules for IDNA recognized that
 early version of Unicode might contain some inconsistencies if
 evaluated using more contemporary rules about code point assignments
 and stability. In particular, there might be some exceptions from
 different practices in early version of Unicode or anomalies caused
 by copying existing single- or dual-script standards into Unicode as
 block rather than individual character additions to the repertoire.
 The possibility of such "legacy" exceptions was one reason why the
 IDNA category rules include explicit provisions for exception lists
 (even though no such code points were identified prior to 2014).

3.3.3. Unexpected Combining Sequances

 Most combining characters have the script property "Inherited" or
 "Common", i.e., are not members of any particular script and will not
 cause rules against mixed-script labels to be triggered.
 Normalization rules are generally structured around the base
 character, so unexpected combinations of base characters with
 combining ones may lead to cases where normalization might normally
 be expected to produce a precombined character but does not do so (in
 the most common situation because no such precombined character
 exists. For example, the Latin script characters "a" and "a with
 acute accent" are both coded (as U+0061 and U+00E1). If the latter
 is coded as the combining sequence U+0061 U+0301, NFC will turn that
 sequence into U+00E1 and everything will work as users expect.
 However, the Cyrillic "a" character (U+0430) is notoriously similar

Klensin & Faltstrom Expires April 11, 2018 [Page 16]

Internet-Draft IDNA Unicode Update October 2017

 in appearance in most type styles to U+0061 and the U+0439 U+0301 and
 that sequence does not normalize to anything else. Because thre is
 no code point assigned for Cyrillic small letter a with acute accent
 and unlike many of the other examples in this document, that is
 Unicode working exactly as would be expected. Whether it is an issue
 or not depends on the questions that are being asked and what rules
 are being applied.

3.3.4. Examples and Cases from Other Scripts

 Research into these issues has not yet turned up a comprehensive list
 of affected scripts and code points. As discussed elsewhere in this
 document, it is clear that Arabic and Latin Scripts are significantly
 affected, that some Han and Kangxu radicals and ideographs are
 affected, and that other examples do exist -- it is just not known
 how many of those examples there are and what patterns, if any,
 characterize them.

3.3.4.1. Scripts with precomposed preferences and ones with combining
 preferences

 While the authors have been unable to find an explanation for the
 differentiation in the Unicode Standard, we have been told that there
 are differences among scripts as to whether the action preference is
 to add new combining sequences only (and resist adding precomposed
 characters) as suggested in Section 3.3.2.3.1 or to add precomposed
 characters, often ones that do not have decompositions. If those
 difference in preference do exist, it is probably important to have
 them documented so that they can be reflected in IDNA review
 procedures and elsewhere. It will also require IETF discussion of
 whether combining sequences should be deprecated when the
 corresponding precomposed characters are added or to disallow
 combining sequences entirely for those scripts (as has been
 implicitly suggested for Arabic language use [RFC5564]).

 [[CREF2: The above isn’t quite right and probably needs additional
 discussion and text.]]

3.3.4.2. The Han and Kangxu Cases

 [[CREF3: .. to be supplied ..]]

3.4. Confusion and the Casual User

 To the extent to which predictability for relatively casual users is
 a desired and important feather of relevant application or
 application support protocols, it is probably worth observing that
 the complex of rules and cases suggested or implied above is almost

Klensin & Faltstrom Expires April 11, 2018 [Page 17]

Internet-Draft IDNA Unicode Update October 2017

 certainly too involved for the typical such user to develop a good
 intuitive understanding of how things behave and what relationships
 exist. Conversely, the nature of writing systems for natural
 languages, especially those that have evolved and diverged over
 centuries, implies that no set of rules about allowable characters
 will guarantee complete safety (however that is defined).

4. Implementation options and issues: Unicode properties, exceptions,
 and the nature of stability

4.1. Unicode Stability compared to IETF (and ICANN) Stability

 The various stability rules in Unicode [Unicode70-Stability] all
 appear to be based on the model that once a value is assigned, it can
 never be changed. That is probably appropriate for a character
 coding system with multiple uses and applications. It is probably
 the only option when normative relationships are expressed in tables
 of values rather than by rules. One consequence of such a model is
 that it is difficult or impossible to fix mistakes (for some
 stability rules, the Unicode Standard does provide for exceptions)
 and even harder to make adjustments that would normally be dictated
 by evolution.

 "No changes" provides a very strong and predictable type of
 stability. There are many reasons to take that path. As in some of
 the cases that motivated this document, the difficulty is that simply
 adding new code points (in Unicode) or features (in a protocol or
 application) may be destabilizing. One then has complete stability
 for systems that never use or allow the new code points or features,
 but rough edges for newer systems that see the discrepancies and
 rough edges. IDNA2003 (inadvertently) took that approach by freezing
 on Unicode 3.2 -- if no code points added after Unicode 3.2 had ever
 been allowed, we would have had complete stability even as Unicode
 libraries changed. Unicode has been quite ingenious about working
 around those difficulties with such provisions as having code points
 for newly-added precomposed characters decompose rather than altering
 the normalization for the combining sequences. Other cases, such as
 newly-added precomposed characters that do not decompose for, e.g.,
 language or phonetic reasons, are more problematic.

 The IETF (and ICANN and standards development bodies such as ISO and
 ISO/IEC JTC1) have generally adopted a different type of stability
 model, one which considers experience in use and the ill effects of
 not making changes as well as the disruptive effects of doing so. In
 the IETF model, if an earlier decision is causing sufficient harm and
 there is consensus in the communities that are most affected that a
 change is desirable enough to make transition costs acceptable, then
 the change is made.

Klensin & Faltstrom Expires April 11, 2018 [Page 18]

Internet-Draft IDNA Unicode Update October 2017

 The difference and its implications are perhaps best illustrated by a
 disagreement when IDNA2008 was being approved. IDNA2003 had
 effectively prevented some characters, notably (measured by intensity
 of the protests) the Sharp S character (U+00DF) from being used in
 DNS labels by mapping them to other characters before conversion to
 ACE form. It has also prohibited some other code points, notably ZWJ
 (U+200D) and ZWNJ (U+200C), by discarding them. In both cases, there
 were strong voices from the relevant language communities, supported
 by the registry communities, that the characters were important
 enough that it was more desirable to undergo the short-term pain of a
 transition and some uncertainty than to continue to exclude those
 characters and the IDNA2008 rules and repertoire are consistent with
 that preference. The Unicode Consortium apparently believed that
 stability --elimination of any possibility of label invalidation or
 different interpretations of the same string-- was more important
 than those writing system requirements and community preferences.
 That view was expressed through what was effectively a fork in (or
 attempt to nullify) the IETF Standard [UTS46] a result that has
 probably been worse for the overall Internet than either of the
 possible decision choices.

4.2. New Unicode Properties

 One suggestion about the way out of these problems would be to create
 one or more new Unicode properties, maintained along with the rest of
 Unicode, and then incorporated into new or modified rules or
 categories in IDNA. Given the analysis in this document, it appears
 that that property (or properties) would need to provide:

 1. Identification of combining characters that, when used in
 combining sequences, do not produce decomposable characters.
 [[CREF4: Wording on the above is not quite right but, for the
 present, maybe the intent is clear.]]

 2. Identification of precomposed characters that might reasonably be
 expected to decompose, but that do not.

 3. Identification of character forms that are distinct only because
 of language or phonetic distinctions within a script.

 4. Identification of scripts for which precomposed forms are
 strongly preferred and combining sequences should either be
 viewed as temporary mechanisms until precomposed characters are
 assigned or banned entirely.

 5. Identification of code points that represent symbols for
 specific, non-language, purposes even if identified as letters or
 numerals by their General Property. This would include all

Klensin & Faltstrom Expires April 11, 2018 [Page 19]

Internet-Draft IDNA Unicode Update October 2017

 characters given separate code points because of specialized
 "mathematical" and "phonetic" characters (see Section 3.3.2.2 and
 Section 3.3.2.1), but there are probably additional cases.

 Some of these properties (or characteristics or values of a single
 property) would be suitable for disallowing characters, code points,
 or contextual sequences that otherwise might be allowed by IDNA.
 Others would be more suitable for making equality comparisons come
 out as needed by IDNA, particularly to eliminate distinctions based
 on language context.

 While it would appear that appropriate rules and categories could be
 developed for IDNA (and, presumably, for PRECIS, etc.) if the problem
 areas are those identified in this document, it is not yet known
 whether the list is complete (and, hence, whether additional
 properties or information would be needed).

 Even with such properties, IDNA would still almost certainly need
 exception lists. In addition, it is likely that stability rules for
 those properties would need to reflect IETF norms with arrangements
 for bringing the IETF and other communities into the discussion when
 tradeoffs are reviewed.

4.3. The need for exception lists

 [[CREF5: Note in draft: this section is a partial placeholder and may
 need more elaboration.]]
 Issues with exception lists and the requirements for them are
 discussed in Section 2 above and in RFC 5894 [RFC5894].

5. Proposed/ Alternative Changes to RFC 5892 for the issues first
 exposed by new code point U+08A1

 NOTE IN DRAFT: See the comments in the Introduction, Section 1 and
 the first paragraph of each Subsection below for the status of the
 Subsections that follow. Each one, in combination with the material
 in Section 3 above, also provides information about the reasons why
 that particular strategy might or might not be appropriate.

 When the term "Category" followed by an upper-case letter appears
 below, it is s reference to a rule in RFC 5892.

5.1. Disallow This New Code Point

 This option is almost certainly too Arabic-specific and does not
 solve, or even address, the underlying problem. It also does not
 inherently generalize to non-decomposing precomposed code points that
 might be added in the future (whether to Arabic or other scripts)

Klensin & Faltstrom Expires April 11, 2018 [Page 20]

Internet-Draft IDNA Unicode Update October 2017

 even though one could add more code points to Category F in the same
 way.

 If chosen by the community, this subsection would update the portion
 of the IDNA2008 specification that identifies rules for what
 characters are permitted [RFC5892] to disallow that code point.

 With the publication of this document, Section 2.6 ("Exceptions (F)")
 of RFC 5892 [RFC5892] is updated by adding 08A1 to the rule in
 Category F so that the rule itself reads:

 F: cp is in {00B7, 00DF, 0375, 03C2, 05F3, 05F4, 0640, 0660,
 0661, 0662, 0663, 0664, 0665, 0666, 0667, 0668,
 0669, 06F0, 06F1, 06F2, 06F3, 06F4, 06F5, 06F6,
 06F7, 06F8, 06F9, 06FD, 06FE, 07FA, 08A1, 0F0B,
 3007, 302E, 302F, 3031, 3032, 3033, 3034, 3035,
 303B, 30FB}

 and then add to the subtable designated
 "DISALLOWED -- Would otherwise have been PVALID"
 after the line that begins "07FA", the additional line:

 08A1; DISALLOWED # ARABIC LETTER BEH WITH HAMZA ABOVE

 This has the effect of making the cited code point DISALLOWED
 independent of application of the rest of the IDNA rule set to the
 current version of Unicode. Those wishing to create domain name
 labels containing Beh with Hamza Above may continue to use the
 sequence

 U+0628, ARABIC LETTER BEH
 followed by

 U+0654, ARABIC HAMZA ABOVE

 which was valid for IDNA purposes in Unicode 5.0 and earlier and
 which continues to be valid.

 In principle, much the same thing could be accomplished by using the
 IDNA "BackwardCompatible" category (IDNA Category G, RFC 5892
 Section 5.3). However, that category is described as applying only
 when "property values in versions of Unicode after 5.2 have changed
 in such a way that the derived property value would no longer be
 PVALID or DISALLOWED". Because U+08A1 is a newly-added code point in
 Unicode 7.0.0 and no property values of code points in prior versions
 have changed, category G does not apply. If that section of RFC 5892
 were to be replaced in the future, perhaps consideration should be

Klensin & Faltstrom Expires April 11, 2018 [Page 21]

Internet-Draft IDNA Unicode Update October 2017

 given to adding Normalization Stability and other issues to that
 description but, at present, it is not relevant.

5.2. Disallow This New Code Point and All Future Precomposed Additions
 that Do Not Decompose

 At least in principle, the approach suggested above (Section 5.1)
 could be expanded to disallow all future allocations of non-
 decomposing precomposed characters. This would probably require
 either a new Unicode property to identify such characters and/or more
 emphasis on the manual, individual code point, checking of the new
 Unicode version review proces (i.e,. not just application of the
 existing rules and algorithm). It might require either a new rule in
 IDNA or a modification to the structure of Category F to make
 additions less tedious. It would do nothing for different ways to
 form identical characters within the same script that were not
 associated with decomposition and so would have to be used in
 conjunction with other appropaches. Finally, for scripts (such as
 Arabic) where there is a very strong preference to avoid combining
 sequences, this approach would exclude exactly the wrong set of
 characters.

5.3. Disallow the combining sequences for these characters

 As in the approach discussed in Section 5.1, this approach is too
 Arabic-specific to address the more general problem. However, it
 illustrates a single-script approach and a possible mechanism for
 excluding combining sequences whose handling is connected to language
 information (information that, as discussed above, is not relevant to
 the DNS).

 If chosen by the community, this subsection would update the portion
 of the IDNA2008 specification that identifies contextual rules
 [RFC5892] to prohibit (combining) Hamza Above (U+0654) in conjunction
 with Arabic BEH (U+0628), HAH (U+062D), and REH (U+0631). Note that
 the choice of this option is consistent with the general preference
 for precomposed characters discussed above but would ban some labels
 that are valid today and that might, in principle, be in use.

 The required prohibition could be imposed by creating a new
 contextual rule in RFC 5892 to constrain combining sequences
 containing Hamza Above.

 As the Unicode Standard points out at some length [Unicode70-Arabic],
 Hamza is a problematic abstract character and the "Hamza Above"
 construction even more so. IDNA has historically associated
 characters whose use is reasonable in some contexts but not others
 with the special derived property "CONTEXTO" and then specified

Klensin & Faltstrom Expires April 11, 2018 [Page 22]

Internet-Draft IDNA Unicode Update October 2017

 specific, context-dependent, rules about where they may be used.
 Because Hamza Above is problematic (and spawns edge cases, as
 discussed in the Unicode Standard section cited above), it was
 suggested that a contextual rule might be appropriate. There are at
 least two reasons why a contextual rule would not be suitable for the
 present situation.

 1. As discussed above, the present situation is a normalization
 stability and predictability problem, not a contextual one. Had
 the same issues arisen with a newly-added precomposed character
 that could previously be constructed from non-problematic base
 and combining characters, it would be even more clearly a
 normalization issue and, following the principles discussed there
 and particularly in UAX 15 [UAX15-Exclusion], might not have been
 assigned at all.

 2. The contextual rule sets are designed around restricting the use
 of code points to a particular script or adjacent to particular
 characters within that script. Neither of these cases applies to
 the newly-added character even if one could imagine rules for the
 use of Hamza Above (U+0654) that would reflect the considerations
 of Chapter 8 of Unicode 6.2. Even had the latter been desired,
 it would be somewhat late now -- Hamza Above has been present as
 a combining character (U+0654) in many versions of Unicode.
 While that section of the Unicode Standard describes the issues,
 it does not provide actionable guidance about what to do about it
 for cases going forward or when visual identity is important.

5.4. Use Combinnig Classes to Develop Additional Contextual Rules

 This option may not be of any practical use, but Unicode supports a
 property called "Combining_Class". That property has been used in
 IDNA only to construct a contextual rule for Zero-Width Non-Joiner
 [RFC5892, Appendix A.1] but speculation has arisen during discussions
 of work on Arabic combining characters and rendering [UTR53] as to
 whether Combining Classes could be used to build additional
 contextual rules that would restrict problematic cases. Unless such
 rules were applied only to new code points, they would also not be
 backward compatable.

 The question of whether Combining Classes could be used to reduce the
 number of problematic labels is at least worth examination.

5.5. Disallow all Combining Characters for Specific Scripts

 [[CREF6: This subsection needs to be turned into prose, but the
 follow bullet points are probably sufficient to identify the
 issues.]]

Klensin & Faltstrom Expires April 11, 2018 [Page 23]

Internet-Draft IDNA Unicode Update October 2017

 o Might work for Arabic and other "precomposed preference" scripts
 if those can be identified in an orderly and stable way (see
 Section 3.3.4.1; recommended by the Arabic language community for
 IDNs [RFC5564]).

 o Unworkable for Latin because many characters that do not decompose
 are, at least in part, historical accidents resulting from
 combining prior national standards (this probably may exist for
 other scripts as well).

 o No effect at all on special-use representations of identical
 characters within a script (see Section 3.3.2.1 and
 Section 3.3.2.2).

 o Not backwards compatible.

5.6. Do Nothing Other Than Warn

 A recommendation from UTC and others has been to simply warn
 registries, at all levels of the tree, to be careful with this set of
 characters. Doing that well would probably require making language
 distinctions within zones, which would violate the important IDNA
 principles that labels are not necessarily "words", do not carry
 language information, and may, at the protocol level, even
 deliberately mix languages and scripts. It is also problematic
 because the relevant set of characters is not easily defined in a
 precise way. This suggestion is problematic because the DNS and IDNA
 cannot make or enforce language distinctions, but it would avoid
 having the IETF either invalidate label strings that are potentially
 now in use or creating inconsistencies among the characters that
 combine with selected base characters but that also have precomposed
 forms that do not have decompositions. The potential would still
 exist for registries to respect the warning and deprecate such labels
 if they existed.

 More generally, while there are already requirements in IDNA for
 registries to be knowledgeable and responsible about the labels they
 register (a separate document discusses that requirement
 [Klensin-rfc5891bis]), experience indicates that those requirements
 are often ignored. At least as important, warning registries about
 what should or should not be registered and even calling out specific
 code points as dangerous and in need of extra attention
 [Freytag-dangerous] does nothing to address the many cases in which
 lookup-time checking for IDNA conformance and deliberately misleading
 label constructions is important.

Klensin & Faltstrom Expires April 11, 2018 [Page 24]

Internet-Draft IDNA Unicode Update October 2017

5.7. Normalization Form IETF (NFI))

 The most radical possibility for the comparison issue would be to
 decide that none of the Unicode Normalization Forms specified in UAX
 15 [UAX15] are adequate for use with the DNS because, contrary to
 their apparent descriptions, normalization tables are actually
 determined using language information. However, use of language
 information is unacceptable for IDNA for reasons described elsewhere
 in this document. The remedy would be to define an IETF-specific (or
 DNS-specific) normalization form (sometimes called "NFI" in
 discussions), building on NFC but adhering strictly to the rule that
 normalization causes two different forms of the same character (glyph
 image) within the same script to be treated as equal. In practice
 such a form could be implemented for IDNA purposes as an additional
 rule within RFC 5892 (and its successors) that constituted an
 exception list for the NFC tables. For this set of characters, the
 special IETF normalization form would be equivalent to the exclusion
 discussed in Section 5.3 above.

 An Internet-identifier-specific normalization form, especially if
 specified somewhat separately from the IDNA core, would have a small
 marginal advantage over the other strategies in this section (or in
 combination with some of them), even though most of the end result
 and much of the implementation would be the same in practice. While
 the design of IDNA requires that strings be normalized as part of the
 process of determining label validity (and hence before either
 storage of values in the DNS or name resolution), there is an ongoing
 debate about whether normalization should be performed before storing
 a string or putting it on the wire or only when the string is
 actually compared or otherwise used.

 If a normalization procedure with the right properties for the IETF
 was defined, that argument could be bypassed and the best decisions
 made for different circumstances. The separation would also allow
 better comparison of strings that lack language context in
 applications environments in which the additional processing and
 character classifications of IDNA and/or PRECIS were not applicable.
 Having such a normalization procedure defined outside IDNA would also
 minimize changes to IDNA itself, which is probably an advantage.

 If the new normalizstion form were, in practice, simply an overlay on
 NFC with modifications dictated by exception and/or property lists,
 keeping its definition separate from IDNA would also avoid
 interweaving those exceptions and property lists with the rules and
 categories of IDNA itself, avoiding some unnecessary complexity.

Klensin & Faltstrom Expires April 11, 2018 [Page 25]

Internet-Draft IDNA Unicode Update October 2017

6. Editorial clarification to RFC 5892

 Verified RFC Editor Erratum 3312 [RFC5892Erratum] provides a
 clarification to Appendix A and Section A.1 of RFC 5892. This
 section of this document updates the RFC to apply that clarification.

 1. In Appendix A, add a new paragraph after the paragraph that
 begins "The code point...". The new paragraph should read:

 "For the rule to be evaluated to True for the label, it MUST be
 evaluated separately for every occurrence of the Code point in
 the label; each of those evaluations must result in True."

 2. In Appendix A, Section A.1, replace the "Rule Set" by

 Rule Set:
 False;
 If Canonical_Combining_Class(Before(cp)) .eq. Virama Then True;
 If cp .eq. \u200C And
 RegExpMatch((Joining_Type:{L,D})(Joining_Type:T)*cp
 (Joining_Type:T)*(Joining_Type:{R,D})) Then True;

7. Acknowledgements

 The Unicode 7.0.0 changes were extensively discussed within the IAB’s
 Internationalization Program. The authors are grateful for the
 discussions and feedback there, especially from Andrew Sullivan and
 David Thaler. Additional information was requested and received from
 Mark Davis and Ken Whistler and while they probably do not agree with
 the necessity of excluding this code point or taking even more
 drastic action as their responsibility is to look at the Unicode
 Consortium requirements for stability, the decision would not have
 been possible without their input. Thanks to Bill McQuillan and Ted
 Hardie for reading versions of the document carefully enough to
 identify and report some confusing typographical errors. Several
 experts and reviewers who prefer to remain anonymous also provided
 helpful input and comments on preliminary versions of this document.

8. IANA Considerations

 When the IANA registry and tables are updated to reflect Unicode
 7.0.0, changes should be made according to the decisions the IETF
 makes about Section 5.

Klensin & Faltstrom Expires April 11, 2018 [Page 26]

Internet-Draft IDNA Unicode Update October 2017

9. Security Considerations

 From at least one point of view, this document is entirely a
 discussion of a security issue or set of such issues. While the
 "similar-looking characters" issue that has been a concern since the
 earliest days of IDNs [HomographAttack] and that has driven assorted
 "character confusion" projects [ICANN-VIP], if a user types in a
 string on one device and can get different results that do not
 compare equal when it is typed on a different device (with both
 behaving correctly and both keyboards appearing to be the same and
 for the same script) then all security mechanism that depend on the
 underlying identifiers, including the practical applications of DNS
 response integrity checks via DNSSEC [RFC4033] and DNS-embedded
 public key mechanisms [RFC6698], are at risk if different parties, at
 least one of them malicious, obtain or register some of the
 identical-appearing and identically-typed strings and get them into
 appropriate zones.

 Mechanisms that depend on trusting registration systems (e.g.,
 registries and registrars in the DNS IDN case, see Section 5.6 above)
 are likely to be of only limited utility because fully-qualified
 domains that may be perfectly reasonable at the first level or two of
 the DNS may have differences of this type deep in the tree, into
 levels where name management, and often accountability, are weak.
 Similar issues obviously apply when names are user-selected or
 unmanaged.

 When the issue is not a deliberate attack but simple accidental
 confusion among similar strings, most of our strategies depend on the
 acceptability of false negatives on matching if there is low risk of
 false positives (see, for example, the discussion of false negatives
 in identifier comparison in Section 2.1 of RFC 6943 [RFC6943]).
 Aspects of that issue appear in, for example, RFC 3986 [RFC3986] and
 the PRECIS effort [RFC8264]. However, because the cases covered here
 are connected, not just to what the user sees but to what is typed
 and where, there is an increased risk of false positives (accidental
 as well as deliberate).

 [[CREF7: Note in Draft: The paragraph that follows was written for a
 much earlier version of this document. It is obsolete, but is being
 retained as a placeholder for future developments.]]

 This specification excludes a code point for which the Unicode-
 specified normalization behavior could result in two ways to form a
 visually-identical character within the same script not comparing
 equal. That behavior could create a dream case for someone intending
 to confuse the user by use of a domain name that looked identical to

Klensin & Faltstrom Expires April 11, 2018 [Page 27]

Internet-Draft IDNA Unicode Update October 2017

 another one, was entirely in the same script, but was still
 considered different.

 Internet Security in areas that involve internationalized identifiers
 that might contain the relevant characters is therefore significantly
 dependent on some effective resolution for the issues identified in
 this document, not just hand waving, devout wishes, or appointment of
 study committees about it.

10. References

10.1. Normative References

 [RFC5137] Klensin, J., "ASCII Escaping of Unicode Characters",
 BCP 137, RFC 5137, DOI 10.17487/RFC5137, February 2008,
 <https://www.rfc-editor.org/info/rfc5137>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",
 RFC 5892, DOI 10.17487/RFC5892, August 2010,
 <https://www.rfc-editor.org/info/rfc5892>.

 [RFC5892Erratum]
 "RFC5892, "The Unicode Code Points and Internationalized
 Domain Names for Applications (IDNA)", August 2010, Errata
 ID: 3312", Errata ID 3312, August 2012,
 <http://www.rfc-editor.org/errata_search.php?rfc=5892>.

 [RFC5894] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Background, Explanation, and
 Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010,
 <https://www.rfc-editor.org/info/rfc5894>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <https://www.rfc-editor.org/info/rfc6943>.

 [RFC8264] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 8264, DOI 10.17487/RFC8264, October 2017,
 <https://www.rfc-editor.org/info/rfc8264>.

Klensin & Faltstrom Expires April 11, 2018 [Page 28]

Internet-Draft IDNA Unicode Update October 2017

 [UAX15] Davis, M., Ed., "Unicode Standard Annex #15: Unicode
 Normalization Forms", June 2014,
 <http://www.unicode.org/reports/tr15/>.

 [UAX15-Exclusion]
 "Unicode Standard Annex #15: ob. cit., Section 5",
 <http://www.unicode.org/reports/
 tr15/#Primary_Exclusion_List_Table>.

 [UAX15-Versioning]
 "Unicode Standard Annex #15, ob. cit., Section 3",
 <http://www.unicode.org/reports/tr15/#Versioning>.

 [Unicode5]
 The Unicode Consortium, "The Unicode Standard, Version
 5.0", ISBN 0-321-48091-0, 2007.

 Boston, MA, USA: Addison-Wesley. ISBN 0-321-48091-0.
 This printed reference has now been updated online to
 reflect additional code points. For code points, the
 reference at the time RFC 5890-5894 were published is to
 Unicode 5.2.

 [Unicode62]
 The Unicode Consortium, "The Unicode Standard, Version
 6.2.0", ISBN 978-1-936213-07-8, 2012,
 <http://www.unicode.org/versions/Unicode6.2.0/>.

 Preferred citation: The Unicode Consortium. The Unicode
 Standard, Version 6.2.0, (Mountain View, CA: The Unicode
 Consortium, 2012. ISBN 978-1-936213-07-8)

 [Unicode7]
 The Unicode Consortium, "The Unicode Standard, Version
 7.0.0", ISBN 978-1-936213-09-2, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/>.

 Preferred Citation: The Unicode Consortium. The Unicode
 Standard, Version 7.0.0, (Mountain View, CA: The Unicode
 Consortium, 2014. ISBN 978-1-936213-09-2)

 [Unicode70-Arabic]
 "The Unicode Standard, Version 7.0.0, ob.cit., Chapter
 9.2: Arabic", Chapter 9, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/ch09.pdf>.

 Subsection titled "Encoding Principles", paragraph
 numbered 4, starting on page 362.

Klensin & Faltstrom Expires April 11, 2018 [Page 29]

Internet-Draft IDNA Unicode Update October 2017

 [Unicode70-CompatDecomp]
 "The Unicode Standard, Version 7.0.0, ob.cit., Chapter
 2.3: Compatibility Characters", Chapter 2, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/ch02.pdf>.

 Subsection titled "Compatibility Decomposable Characters"
 starting on page 26.

 [Unicode70-Design]
 "The Unicode Standard, Version 7.0.0, ob.cit., Chapter
 2.2: Unicode Design Principles", Chapter 2, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/ch02.pdf>.

 [Unicode70-Hamza]
 "The Unicode Standard, Version 7.0.0, ob.cit., Chapter
 9.2: Arabic", Chapter 9, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/ch09.pdf>.

 Subsection titled "Combining Hamza Above" starting on page
 378.

 [Unicode70-Overlay]
 "The Unicode Standard, Version 7.0.0, ob.cit., Chapter
 2.2: Unicode Design Principles", Chapter 2, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/ch02.pdf>.

 Subsection titled "Non-decomposition of Overlaid
 Diacritics" starting on page 64.

 [Unicode70-Stability]
 "The Unicode Standard, Version 7.0.0, ob.cit., Chapter
 2.2: Unicode Design Principles", Chapter 2, 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/ch02.pdf>.

 Subsection titled "Stability" starting on page 23 and
 containing a link to http://www.unicode.org/policies/
 stability_policy.html..

 [UTS46] Davis, M. and M. Suignard, "Unicode Technical Standard
 #46: Unicode IDNA Compatibility Processing",
 Version 7.0.0, June 2014,
 <http://unicode.org/reports/tr46/>.

10.2. Informative References

 [Dalby] Dalby, A., "Dictionary of Languages: The definitive
 reference to more than 400 languages", Columbia Univeristy
 Press , 2004.

Klensin & Faltstrom Expires April 11, 2018 [Page 30]

Internet-Draft IDNA Unicode Update October 2017

 pages 206-207

 [Daniels] Daniels, P. and W. Bright, "The World’s Writing Systems",
 Oxford University Press , 1986.

 page 744
 [Freytag-dangerous]
 Freytag, A., Klensin, J., and A. Sullivan, "Those
 Troublesome Characters: A Registry of Unicode Code Points
 Needing Special Consideration When Used in Network
 Identifiers", June 2017,
 <https://datatracker.ietf.org/doc/
 draft-freytag-troublesome-characters/>.

 [HomographAttack]
 Gabrilovich, E. and A. Gontmakher, "The Homograph Attack",
 Communications of the ACM 45(2):128, February 2002,
 <http://www.cs.technion.ac.il/˜gabr/papers/
 homograph_full.pdf>.

 [ICANN-VIP]
 ICANN, "The IDN Variant Issues Project: A Study of Issues
 Related to the Management of IDN Variant TLDs (Integrated
 Issues Report)", February 2012,
 <https://www.icann.org/en/system/files/files/
 idn-vip-integrated-issues-final-clean-20feb12-en.pdf>.

 [Klensin-rfc5891bis]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Registry Restrictions and
 Recommendations", September 2017,
 <https://datatracker.ietf.org/doc/
 draft-klensin-idna-rfc5891bis/>.

 [Omniglot-Fula]
 Ager, S., "Omniglot: Fula (Fulfulde, Pulaar,
 Pular’Fulaare)",
 <http://www.omniglot.com/writing/fula.htm>.

 Captured 2015-01-07

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

Klensin & Faltstrom Expires April 11, 2018 [Page 31]

Internet-Draft IDNA Unicode Update October 2017

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, DOI 10.17487/RFC3490, March 2003,
 <https://www.rfc-editor.org/info/rfc3490>.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC5564] El-Sherbiny, A., Farah, M., Oueichek, I., and A. Al-Zoman,
 "Linguistic Guidelines for the Use of the Arabic Language
 in Internet Domains", RFC 5564, DOI 10.17487/RFC5564,
 February 2010, <https://www.rfc-editor.org/info/rfc5564>.

 [RFC6452] Faltstrom, P., Ed. and P. Hoffman, Ed., "The Unicode Code
 Points and Internationalized Domain Names for Applications
 (IDNA) - Unicode 6.0", RFC 6452, DOI 10.17487/RFC6452,
 November 2011, <https://www.rfc-editor.org/info/rfc6452>.

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [Unicode32]
 The Unicode Consortium, "The Unicode Standard, Version
 3.2.0".

 The Unicode Standard, Version 3.2.0 is defined by The
 Unicode Standard, Version 3.0 (Reading, MA, Addison-
 Wesley, 2000. ISBN 0-201-61633-5), as amended by the
 Unicode Standard Annex #27: Unicode 3.1
 (http://www.unicode.org/reports/tr27/) and by the Unicode
 Standard Annex #28: Unicode 3.2
 (http://www.unicode.org/reports/tr28/).

Klensin & Faltstrom Expires April 11, 2018 [Page 32]

Internet-Draft IDNA Unicode Update October 2017

 [UTR53] Unicode Consortium, "Proposed Draft: Unicode Technical
 Report #53: Unicode Arabic Mark Ordering Algorithm",
 August 2017, <http://www.unicode.org/reports/tr53/>.

 Note: this is a Proposed Draft, out for public review when
 this version of the current I-D is posted, and should not
 be considered either an approved/ final document or a
 stable reference.

Appendix A. Change Log

 RFC Editor: Please remove this appendix before publication.

A.1. Changes from version -00 (2014-07-21)to -01

 o Version 01 of this document is an extensive rewrite and
 reorganization, reflecting discussions with UTC members and adding
 three more options for discussion to the original proposal to
 simply disallow the new code point.

A.2. Changes from version -01 (2014-12-07) to -02

 Corrected a typographical error in which Hamza Above was incorrectly
 listed with the wrong code point.

A.3. Changes from version -02 (2014-12-07) to -03

 Corrected a typographical error in the Abstract in which RFC 5892 was
 incorrectly shown as 5982.

A.4. Changes from version -03 (2015-01-06) to -04

 o Explicitly identified the applicability of U+08A1 with Fula and
 added references that discuss that language and how it is written.

 o Updated several Unicode 6.2 references to point to Unicode 7.0
 since the latter is now available in stable form (it was done when
 work on this I-D started).

 o Extensively revised to discuss the non-Arabic cases, non-
 decomposing diacritics, other types of characters that don’t
 compare equal after normalization, and more general problem and
 approaches.

Klensin & Faltstrom Expires April 11, 2018 [Page 33]

Internet-Draft IDNA Unicode Update October 2017

A.5. Changes from version -04 (2015-03-11) to -05

 o Modified a few citation labels to make them more obvious.

 o Restructured Section 1 and added additional terminology comments.

 o Added discussion about non-decomposable character cases, including
 the "slash" example, and associated references for which -04
 contained only placeholders.

 o The examples and discussion of Latin script issues has been
 expanded considerably. It is unfortunate that many readers in the
 IETF community apparently cannot understand examples well enough
 to believe a problem is significant unless they is a discussion of
 Latin script examples, but, at least for this working draft, that
 is the way it is.

 o Rewrote the discussion of several of the alternatives and added
 the discussion of combining classes.

 o Rewrote and extended the discussion of the "warn only"
 alternative.

 o Several other sections modified to improve technical or editorial
 clarity.

 o Note that, while some references have been updated, others have
 not. In particular, Unicode references are still tied to versions
 6 or 7. In some cases, those non-historical references are and
 will remain appropriate; others will best be replaced with
 information about current versions of documents.

Authors’ Addresses

 John C Klensin
 1770 Massachusetts Ave, Ste 322
 Cambridge, MA 02140
 USA

 Phone: +1 617 245 1457
 Email: john-ietf@jck.com

Klensin & Faltstrom Expires April 11, 2018 [Page 34]

Internet-Draft IDNA Unicode Update October 2017

 Patrik Faltstrom
 Netnod
 Franzengatan 5
 Stockholm 112 51
 Sweden

 Phone: +46 70 6059051
 Email: paf@netnod.se

Klensin & Faltstrom Expires April 11, 2018 [Page 35]

