
IETF A. Freytag
Internet-Draft ASMUS, Inc.
Intended status: Standards Track J. Klensin
Expires: December 31, 2018
 A. Sullivan
 Oracle Corp.
 June 29, 2018

Those Troublesome Characters: A Registry of Unicode Code Points Needing
 Special Consideration When Used in Network Identifiers
 draft-freytag-troublesome-characters-02

Abstract

 Unicode’s design goal is to be the universal character set for all
 applications. The goal entails the inclusion of very large numbers
 of characters. It is also focused on written language in general;
 special provisions have always been needed for identifiers. The
 sheer size of the repertoire increases the possibility of accidental
 or intentional use of characters that can cause confusion among
 users, particularly where linguistic context is ambiguous,
 unavailable, or impossible to determine. A registry of code points
 that can be sometimes especially problematic may be useful to guide
 system administrators in setting parameters for allowable code points
 or combinations in an identifier system, and to aid applications in
 creating security aids for users.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2018.

Freytag, et al. Expires December 31, 2018 [Page 1]

Internet-Draft Troublesome Characters June 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Unicode code points and identifiers 3
 2. Background and Conventions 5
 3. Techniques already in place 5
 4. A registry of code points requiring special attention 7
 4.1. Description . 7
 4.2. Maintenance . 10
 4.3. Scope . 10
 5. Registry initial contents 11
 5.1. Overview . 11
 5.2. Interchangeable Code Points 12
 5.3. Excludable Code Points 13
 5.4. Combining Marks . 14
 5.5. Mitigation . 15
 5.5.1. Mitigation Strategies 16
 5.5.2. Limits of Mitigation 18
 5.6. Notes . 19
 6. Table of Code Points . 19
 6.1. References for Registry 27
 7. IANA Considerations . 28
 8. Security Considerations 29
 9. References . 29
 9.1. Normative References 29
 9.2. Informative References 30
 Appendix A. Additional Background 31
 A.1. The Theory of Inclusion 31
 A.2. The Difference Between Theory and Practice 33
 A.2.1. Confusability . 33
 Appendix B. Examples . 34
 Appendix C. Discussion Venue 37
 Appendix D. Change History 37
 Authors’ Addresses . 38

Freytag, et al. Expires December 31, 2018 [Page 2]

Internet-Draft Troublesome Characters June 2018

1. Unicode code points and identifiers

 Unicode [Unicode] is a coded character set that aims to support every
 writing system. Writing systems evolve over time and are sometimes
 influenced by one another. As a result, Unicode encodes many
 characters that, to a reader, appear to be the same thing; but that
 are encoded differently from one another. This sort of difference is
 usually not important in written texts, because competent readers and
 writers of a language are able to compensate for the selection of the
 "wrong" character when reading or writing. Finally, the goal of
 supporting every writing system also implies that Unicode is designed
 to properly represent written language; special provisions are needed
 for identifiers.

 Identifiers that are used in a network or, especially, an Internet
 context present several special problems because of the above feature
 of Unicode:

 [[CREF1: AF: This whole business of language context seems
 unconnected from the data we have in the registry: that data is about
 code points and sequences that look the same, and many examples are
 in the same language. For example the duplicated shapes for digit /
 letter pairs. In very few cases would knowing the language context
 make a difference. In some cases, if you knew the script (not for
 the label, but the code point) you might be able to distinguish two
 labels, but that is it. I think we should further rewrite this
 summary so it matches better with the what the proposed registry
 contains.]]

 1. In many (perhaps most) uses of identifiers, they are neither
 constrained to words in a particular language, nor would it be
 possible to ascertain reliably the language context in which the
 identifier is being or will be used. In the case of an
 internationalized domain name, for instance, each label could in
 principle represent a new locus of control, because there could
 be a delegation there. A new locus of control means that the
 administrator of the resulting zone could speak, read, or intend
 a different language context than the one from the parent.
 Moreover, at least some domains (such as the root) have an
 Internet-wide context and therefore do not really have a language
 context as such. In any case, the language context is simply not
 available as part of a DNS lookup, so there is no way to make the
 DNS sensitive to this sort of issue. Even in the case of email
 local-parts, where a sender is likely to know at least one of the
 languages of the receiver, the language context that was in use
 at the time the identifier was created is often unknown.

Freytag, et al. Expires December 31, 2018 [Page 3]

Internet-Draft Troublesome Characters June 2018

 2. Identifiers on the network are in general exact-match systems,
 because an ambiguous identifier is problematic. Sometimes, but
 not always, there are facilities for aliasing such that multiple
 identifiers can be put together as a single identity; the DNS,
 for example, does not have such an aliasing capability, because
 in the DNS all aliases are one-way pointers. Aliasing techniques
 are in any case just an extension of the exact-match approach,
 and do not work the way a competent human reader does when
 interpolating the "right" character upon seeing the "wrong" one.

 3. Because there are many characters that may appear to be the same
 (or even, that are defined in such a way that they are all but
 guaranteed to be rendered by the same glyphs), it is fairly easy
 to create an identifier either by accident or on purpose that is
 likely to be confused with some other identifier even by
 competent readers and writers of a language. In some cases
 knowing the language context would be of no help to recognition,
 for example, in cases where a language uses the same shape for a
 letter as for one of the digits.

 4. For some scripts their repertoire of shapes overlaps with one or
 more other scripts, so that there are cases where two strings
 look identical to each other, even though all the code points in
 the first string are of one script, and all the code points in
 the second string are of another script. In these cases, the
 strings cannot be distinguished by a reader, and the whole
 strings are confusable.

 5. For some scripts, both users and rendering systems do not expect
 to encounter code points in arbitrary sequence. Most code points
 normally occur only in specific locations within a syllable. If
 random labels were permitted, some would not display as expected
 (including having some features misplaced or not displayed) while
 others would present recognition problems to users experienced
 with the script. Some devices may also not support arbitrary
 input.

 Beyond these issues, human perception is easily tricked, so that
 entirely unrelated character sequences can become confusable -- for
 example "rn" being confused with "m". Humans read strings, not
 characters, and they will mostly see what they expect to see. Some
 additional discussion of the background can be found in Appendix A.

 The remainder of this document discusses techniques that can be used
 to design the label generation rules for a particular zone so they
 ameliorate or avoid entirely some of the issues caused by the
 interaction between the Unicode Standard and identifiers. The

Freytag, et al. Expires December 31, 2018 [Page 4]

Internet-Draft Troublesome Characters June 2018

 registry is intended to highlight code points that require such
 techniques.

2. Background and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 A reader needs to be familiar with Unicode [Unicode], IDNA2008
 [RFC5890] [RFC5891] [RFC5892] [RFC5893] [RFC5894], PRECIS (at least
 the framework, [RFC7564]), and conventions for discussion of
 internationalization in the IETF (see [RFC6365]).

3. Techniques already in place

 In the IDNA mechanism for including Unicode code points [RFC5892], a
 code point is only included when it meets the needs of
 internationalizing domain names as explained in the IDNA framework
 [RFC5894]. For identifiers other than those specified by IDNA, the
 PRECIS framework [RFC7564] generalizes the same basic technique. In
 both cases, the overall approach is to assume that all characters are
 excluded, and then to include characters according to properties
 derived from the Unicode character properties. This general strategy
 cuts the enormous size of the Unicode database somewhat, avoiding
 including some characters that are necessarily unsuited for use as
 identifiers.

 The mechanism of inclusion by derived property, while helpful, is
 insufficient to guarantee every included character is safe for use in
 identifiers. Some characters’ properties lead them to be included
 even though they are not obviously good candidates. In other cases,
 individual characters are good for inclusion, but are problematic in
 combination. Finally, there are cases where characters (or sequences
 of characters) are not problematic by themselves, or if used in a
 mutually exclusive manner in the same identifier, but become
 problematic when their choice represents the only difference between
 otherwise identical identifiers. For some examples, see Appendix B.

 Operators of systems that create identifiers (whether through a
 registry or through a peer-to-peer identifier negotiation system)
 need to make policies for characters they will permit. Operators of
 registries, for instance, can help by adopting good registration
 policies: "Users will benefit if registries only permit characters
 from scripts that are well-understood by the registry or its
 advisers."[RFC5894]

Freytag, et al. Expires December 31, 2018 [Page 5]

Internet-Draft Troublesome Characters June 2018

 The difficulty for many operators, however, is that they do not have
 the writing system expertise to claim any character is "well-
 understood", and they do not really have the time to develop that
 expertise. Such operators should in fact not use or register such
 characters. Unfortunately, in many cases the operators are stewards
 of systems where the user population demands identifiers useful to
 them in their local languages. In other cases, operators may proceed
 without a proper understanding owing to financial or market share
 incentives. The risk for Internet identifiers in such cases is
 obviously that ill-understood and potentially exploitable gaps in
 registration policies will open.

 To help mitigate such issues, this document proposes a registry of
 Unicode code points that are known to present special issues for
 network identifiers with the aim to guide protocol and operating
 decisions about whether to permit a given code point or sequence of
 code points. By necessity, any list or guidance can only reflect
 issues that are known and understood at the time of writing. By
 limiting itself largely to characters that are widely used to write
 languages in contemporary use, the registry will address the more
 critical needs, while simultanesously focusing on characters that are
 well understood and for which there may already be some
 implementation experience in IDNs.

 By itself, such a registry will not completely protect against poor
 registration or use, but it may provide operational guidance
 necessary for people who are responsible for creating policies. It
 also obviates the need for everyone to repeat basic investigation
 into the behavior of Unicode characters. Instead, scarce expertise
 can be focused on ways to mitigate issues, perhaps caused by user
 requirements for a specific character.

 Note that the registry defined herein does not address any of the
 issues created by whole-string confusables where each of the
 identifiers is of a different script. A common workaround, limiting
 a registry to identifiers of only a single script, would mitigate
 this issue. [[CREF2: AF: we should evaluate that; cross-script
 variants that are homoglyphs have now been collected across modern
 scripts as part of the root zone LGR and are easily captured in a
 registry.]]

 For some of the code points (or code point sequences) listed as
 presenting issues for identifiers, it may be most expeditious to
 simply not include them, even though they are valid according to the
 protocol. Sometimes, one of a pair of identical code points (or code
 point sequences) may be deemed preferable over the other for
 practical reasons.

Freytag, et al. Expires December 31, 2018 [Page 6]

Internet-Draft Troublesome Characters June 2018

 However, simply leaving out any code point listed in this registry
 would render a registry of doubtful value for many scripts. It is
 not always necessary or desirable to exclude characters. Sometimes,
 it is merely necessary to ensure that for two otherwise identical
 identifiers, only one of a set of mutually exclusive code points (or
 sequences of code points) is used, while preventing the later
 registration of the label containing the other one in order to avoid
 ambiguity. This way the operator does not need to impose a choice.

 In cases where two or more variants of such an identifier mean the
 same thing to the native reader, an operator may decide to allow all
 of the variant labels to be registered simultaneously, but only to
 the same entity (and with proper safeguards that limit the
 multiplicity of such allocatable variant labels).

 The implementation of this strategy would be via the variant
 mechanism described in [RFC7940] and [RFC8228] which allows
 mechanical processing of mutual exclusion and /or bundling of
 identifiers respectively.

 This specification defines a registry of code points and sequences
 that have been identified as requiring special attention when they
 are to be used in identifiers. An administrator who does not have
 the time or inclination to develop the requisite policies might
 contemplate simply not to permit these code points at all.

 However, for some scripts the remaining subset might not be usable in
 a meaningful way. Identifiers in these scripts cannot be safely
 implemented without understanding the issues involved. Further note
 that many code points listed here are problematic only in their
 relationship to other code points and that as long as these issues
 are adequately addressed, for example using the variant mechanism,
 they do not need to be excluded. [[CREF3: AF: the above needs more
 editing, it’s a bit repetitive.]]

4. A registry of code points requiring special attention

4.1. Description

 The registry contains four fields. [[CREF4: AF If we are limited to
 the "texttable" format, we are limited to three columns, there’s no
 way we can fit more than that into the RFC plain text format and
 remain legible. If we want more columns, then we need to use some
 other data format, including PDF (which would allow us to show the
 images for the code points).]]

 1. The first field, called "Code Point(s)", is a code point or
 sequence of code points. Sequences in this and other fields are

Freytag, et al. Expires December 31, 2018 [Page 7]

Internet-Draft Troublesome Characters June 2018

 listed as space separated code point values. For completeness,
 full code point sequences are listed, even if some of their
 constituents are "Not recommended". A code point value is a
 series of 4-6 uppercase hexadecimal digits, as defined in
 [Unicode].

 2. The second field, "Related CP", contains zero or more cross
 references to related code points or sequences. Cross references
 consist of single code points or sequences. Multiple cross
 references are separated by a comma.

 3. The third field, called "References", contains one or more
 references to documents describing the code point and the reason
 why it presents an issue. References are cited by numeric
 values, each in square brackets; multiple references are
 separated by space.

 4. The last field, "Comment", is a free form text field that briefly
 describes the issue; it also The comment field starts with a
 category, separated by a colon, to allow quick identification of
 similar cases

 The following are the defined category values:

 Not Recommended While the code point (or sequence) is not
 DISALLOWED, there is emerging consensus in the community that it
 is not recommended for identifiers, or it is considered as such in
 the Unicode Standard. This includes, but is not limited to code
 points that are formally deprecated in the Unicode standard, as
 well as code points or sequences listed in the standard as "Do not
 use" or not preferred or similar. Code points not in active use,
 obsolete code points, or those intended for specialist use may
 also be listed under this category. Details are given in the
 explanation and references.

 Identical The code point (or sequence) is normally identical in
 appearance to another code point (or sequence); or may be
 identical in some contexts. If the related CP is listed as
 "PREFERRED", it is recommended that this code point (or sequence)
 be excluded; in the case of a sequence, it may be appropriate to
 exclude, the constituent combining marks (after first consulting
 the details given in the listing for the marks). Otherwise, it is
 recommended to make the two identical code points or sequences
 mutually exclusive by treating them as variants. Details are
 given in the explanation and references.

 Restricted Context The code point is problematic in relation to some
 other code points in the same label. For example, it should be

Freytag, et al. Expires December 31, 2018 [Page 8]

Internet-Draft Troublesome Characters June 2018

 used only after some code points or not adjacent to certain other
 code points. Further details are given in the explanation and
 references. This is a common case for certain combining marks or
 other code points in so-called "complex" scripts. These scripts
 generally require a coordinated set of context rules; in those
 cases the registry would not list any specific context rules, but
 to point to documentation of existing Label Generation Rulesets
 implementing a coherent set of rules as examples. Code points
 with IDNA2008 property of CONTEXTJ or CONTEXTO are not listed, as
 long as the given context rules mitigate any concerns.

 Preferred The code point is preferred to some other code point given
 in the cross reference (with the other code point normally
 "IDENTICAL" or "NOT RECOMMENDED"). In some cases this represents
 a preference for a code point (or sequence) that is a basic
 constituent in some alphabet over a code point (or sequence) that
 is rare or has specialized use. In some cases the preference may
 be formally specified or otherwise represent established community
 consensus. Details are given in the explanation and references.

 Other All cases that do not fit one of the other categories.
 Details are given in the explanation and references.

 If a character appears in the registry, that does not automatically
 mean that it is a bad candidate for use in identifiers generally.
 Absent a well-defined and verifiable policy, however, such a code
 point or sequence might well be treated with suspicion by users and
 by tools.

 For code points tagged as being "identical" to or "indistinguishable"
 from other code points, it may be that one is preferred over the
 other, but it may also be that implementing a scheme for mutual
 exclusion of any resulting identical labels is the best solution,
 such as assigning them "blocked" variants according to [RFC7940] and
 [RFC8228].

 Where characters are confusable with a combining sequence, only the
 combining sequence is listed; suggested mitigation may consist of
 disallowing either the specific combining sequence or disallowing the
 combining marks involved. It is usually inappropriate to exclude any
 of the basic letters involved, as they are generally members of the
 standard alphabet for one or more languages.

 The registry and this document are to be understood as guidance for
 the purpose of developing operational policies that are used for
 protocols under normal administrative scope. For instance, zone
 operators that support IDNA are expected to create policies governing
 the code points that they will permit (see [RFC5894] and

Freytag, et al. Expires December 31, 2018 [Page 9]

Internet-Draft Troublesome Characters June 2018

 [I-D.rfc5891bis]). The registry herein defined is intended to
 highlight particularly troublesome code points or code point
 sequences for the benefit of administrators creating such policies.
 It is also intended to highlight characters that may create
 identifier ambiguities and thereby create security vulnerabilities.
 However, by itself it is no substitute for such policies.

 The registry is by necessity limited to code points for which
 adequate information is available; by and large this means code
 points used in connection with modern languages or writing systems,
 except that specialized extensions to modern scripts may be
 indicated, if their use would fall into any of the categories
 defined. Historic scripts, and any modern scripts not represented in
 the registry can be assumed to not be well-understood; operators are
 cautioned to locate other sources of information and to develop the
 necessary policies before deploying such scripts.

4.2. Maintenance

 The registry is updated by Expert Review using an open process. From
 time to time, additional code points may be added to the Unicode
 standard, or further information may be discovered related to code
 points, to existing code points or those already listed here. The
 Unicode Standard may recommend against using a code point for all or
 some purposes. Or a script community may have gained more experience
 in deploying IDNs for that script and may create or update
 recommendations as to best policy.

4.3. Scope

 Code points that are DISALLOWED in IDNA 2008 are not eligible to be
 listed. Code points that are CONTEXTJ or CONTEXTO are not included
 here unless there are documented concerns that are not mitigated by
 the existing IDNA context rules. The focus is on scripts that are
 significant for identifiers; code points from scripts that are
 historic or otherwise of limited use have generally not been
 considered - however exceptions may exist where authoritative
 information is readily available. Code points and code point
 sequences included are those that need special policies (including,
 but not limited to policies of exclusion).

 New code points of sequences are listed whenever information becomes
 available that identifies a specific issue that requires attention in
 crafting a policy for the use of that code point or sequence in
 network identifiers. Likewise cross references, categories,
 explanations and references cited may be updated.

Freytag, et al. Expires December 31, 2018 [Page 10]

Internet-Draft Troublesome Characters June 2018

 The contents of the registry generally does not represent original
 research but a collection of issues documented elsewhere, with
 appropriate references cited. An exception might be cases that are
 in clear analogy to existing entries, but not explicitly covered by
 existing references, for example, because the code point in question
 was recently added to Unicode.

 If a particular language or script community reaches an apparent
 consensus that some code point is problematic, or that of two
 identical code points or sequences one should be preferred over the
 other, such recommendations, if known, should be documented in this
 registry.

 In addition, if the Unicode Standard designates a code point as
 formally "deprecated" or less formally as "do not use", or identifies
 code points that are "intentionally identical", this is also
 something that should be reflected in the registry. Another source
 of potential information might be existing registry policies or
 recommended policies, particularly where it is apparent that they
 represent a careful analysis of the issue or a wider consensus, or
 both.

 Proposed additions to the registry are to be shared on a mailing list
 to allow for broader comment and vetting.

 If there is a disagreement about the existence of an issue or its
 severity, it is preferable to document both the issue and the
 different evaluations of it. In all cases, the information and
 documentation presented must allow a user to fully evaluate the
 status of any entry in the registry.

 There is no requirement for the registry to form a stable body of
 data to which any future document would have to be backward
 compatible in any way. If new information emerges, additional code
 points may be considered problematic, or they may need to be
 reclassified. In case of significant changes, the explanation should
 note the nature of the change and cite a reference to document the
 basis for it.

5. Registry initial contents

5.1. Overview

 IDNA 2008 uses an inclusion process based on Unicode properties to
 define which code points are PVALID, but also recognizes that some
 code points require a context rule (CONTEXTJ, CONTEXTO).

Freytag, et al. Expires December 31, 2018 [Page 11]

Internet-Draft Troublesome Characters June 2018

 A number of code points which are PVALID in [RFC5892] may require
 additional attention in the design of label generations rules. In
 some cases, the issue is not necessarily with an individual code
 point, but with a code point sequence. In the following, "code
 point" and "code point sequence" are used synonymously unless
 explicitly called out. The fact that a code point require such
 attention does not affect its status under IDNA 2008.

 The following describes a number of conditions that pose problems for
 network identifiers and common strategies for mitigating them.

5.2. Interchangeable Code Points

 At times two code points or code point sequences are considered by
 all users (or a significant fraction) as equivalent to a degree that
 they accept one of them as substitute for another. This has obvious
 implications for the unambiguous recognition of identifiers. This
 document lists the code points and sequences affected (except for
 certain generic classes too numerous to list here). Note that one of
 the two may be preferred over the other, in which case the non-
 preferred one may be excluded or folded away. But in many cases
 either one is equally preferred. Mitigation techniques for such
 cases are discussed below.

 Homoglyphs Homoglyphs are code points that have identical
 appearance, or are so close in appearance that they are
 indistinguishable if not presented side-by-side. Whenever two
 labels differ only by code points that are homoglyphs of each
 other and occur in the same position, users cannot distinguish the
 labels from each other or tell which label is intended, even
 though the underlying code points are different. Users will
 substitute one label for another.

 Code points that are merely similar in appearance, including
 strongly similar code points, or code points that are difficult to
 distinguish (such as certain diacritical marks) are not considered
 here; handling such similarities often requires case by case
 judgment.

 Instead, this document considers these types of code points that
 can be fully substituted for one another:

 1. code points that, by design or derivation, are identical to
 each other;

 2. code points that assume the same shape in some context, e.g.
 at the end of a label;

Freytag, et al. Expires December 31, 2018 [Page 12]

Internet-Draft Troublesome Characters June 2018

 3. code points of a striking similarity based on derivation or
 common origin;

 4. and code points that are otherwise indistinguishable from one
 another unless placed side by side.

 Cross-script Homoglyphs A number of code points are homoglyphs of
 code points in another script (cross-script homoglyphs). Cross-
 script homoglyphs are a concern for any zone that supports labels
 from more than one script, even if each label is required to be in
 a single script. Note that some writing systems ordinarily use a
 combination of scripts (such as the use of Han, Hiragana and
 Katakana for Japanese). For many writing systems, an admixture of
 Latin letters is not uncommon, for example in brand or product
 names. If not handled carefully, this can prove problematic for
 identifiers.

 Homophones As discussed in [202], the Amharic language treats many
 code points from the Ethiopic script as sound-alikes (homophones).
 In writing, these are freely substituted, users do not recognize
 some spelling as more correct. A conservative approach would
 treat these as mutually exclusive; the alternative, to make all
 variants available to the same applicant is appears not feasible
 due to the high number of such variants per label.

 Semantic Variants The Chinese writing system, shared among several
 geographically distributed user communities, has many instances of
 code points that represent the same semantic. Even though they
 are visually distinct, they can be substituted for one another;
 typically these correspond to the simplified and traditional forms
 of Chinese characters. See [RFC4713] for details.

5.3. Excludable Code Points

 Code points that are not substitutable but troublesome for other
 reasons are candidates for exclusion from a zone’s repertoire. For
 each such code point, the comment field briefly describes why it
 should be excluded or considered troublesome. There is no identified
 mitigation strategy that can be recommended for general usage: unless
 careful study indicates that a code point with this status is
 exceptionally acceptable for a particular zone, after all, it should
 normally be excluded from the repertoire. These reasons are varied.

 Deprecated Code Points Deprecated code points are those that
 [Unicode] recommends not to use for any purpose. They should be
 excluded from identifiers; there is no mitigation. In addition,
 Unicode recommends against the use of some sequences and code

Freytag, et al. Expires December 31, 2018 [Page 13]

Internet-Draft Troublesome Characters June 2018

 points for any purpose, but without formal deprecation. These
 should likewise be excluded from identifiers.

 Non-preferred or other Troublesome Code Point This category includes
 all code points that are troublesome for other reasons; they
 include code points that represent non-preferred variations; or
 code points that not meant to be used in a combining sequence for
 letter; or code points that may be indistinguishable from a
 punctuation mark or other DISALLOWED code point. For each such
 code point, the comment field briefly describes why it should be
 excluded or considered troublesome.

 Obsolete or not in Active Use Many code points across scripts that
 are otherwise in modern use represent additions for use in
 obsolete orthographies and writing systems, that is for writing
 languages that are extinct or not longer written in that script.
 Some have been researched and no evidence of active use could be
 found. These code points are not recommended for use in
 identifiers and should be excluded. Except for specialists, users
 are unlikely to recognize them, or find them of use in
 constructing mnemonic strings for identifiers. In addition, they
 often have not been sufficiently analyzed as to whether they
 represent other issues for identifiers. That makes their use
 risky. Obsolete, rare and code points otherwise not in active are
 generally not listed here. The reader can find a list of code
 points with high probability of being in active use in [MSR].

5.4. Combining Marks

 Non Normalizable Sequences Certain combining marks are part of non-
 normalizable sequences. Normally, when a combining sequence is an
 alternate encoding to a composite code point, normalization can be
 used to select a preferred representation. For IDNA 2008, which
 uses NFC to normalize, this means the composite code point.
 However, some combining marks are not considered identical to the
 same mark when graphically part of a composite character.
 Sequences with these marks may look more or less like some
 composite code point, but they are considered different, and
 therefore not normalized. For identifiers, the best
 recommendation is to exclude those combining marks.

 Combining marks that are also part of precomposed letters
 Many combining marks are part of canonical decompositions. For
 identifiers that are normalized to the composed forms using NFC
 (as required by IDNA 2008), these combining marks usually are not
 needed on their own, that is as separate element of a combining
 sequence after normalization. (The vast majority of letters using
 these marks have been encoded as precomposed characters). It is

Freytag, et al. Expires December 31, 2018 [Page 14]

Internet-Draft Troublesome Characters June 2018

 strongly recommended to exclude these combining marks on their
 own, but, as needed for a specific language, to enumerate the
 needed sequences. (One notable example is Vietnamese which, after
 normalization to NFC uses a mixture of precomposed code points and
 combining marks). [TBD]The most common generic combining marks
 affected have been entered in the registry as excluded.

 Non-spacing combining marks These marks are typically accents,
 diacritics and the like. They pose an additional problem: if they
 are allowed to occur twice in a row, some rendering systems will
 "overprint" them, in effect making them indistinguishable from
 single marks. This problem can be avoided by allowing only
 enumerated sequences, or alternatively by a context rule.

 Ambiguous Rendering There are other ways in which certain code
 points and sequences representing particular combinations of code
 points may suffer from unreliable rendering, because rendering
 engines normally do not expect to encounter them. While Unicode
 allows the use of combining marks, in principle, in combination
 with any base character, in practice this can lead to
 unrecognizable labels, or labels that are not reliably distinct.
 This situation mostly affects the so-called complex scripts.

 Combining marks in complex scripts In some scripts, there are no
 precomposed sequences. Usually, these scripts are "complex"
 scripts, that require context rules for many classes of code
 points. For these scripts, context rules (see [RFC7940]) should
 be used to limit non-spacing marks to acceptable contexts. For an
 example of such rules see [204], [206].

 Soft Dotted and Dotless Letters Unicode code points with the
 Soft_Dotted property encode letter that lose their dot if followed
 by a diacritical mark above. (See [UCD]) If the following mark is
 a COMBINING DOT ABOVE, the combination is indistinguishable from
 the letter by itself. This can be mitigated by limiting or
 excluding the code point for DOT ABOVE. A soft dotted code point
 followed by any other diacritical mark above will look identical
 to the corresponding dotless letter with diacritical mark above.
 All combinations of dotless letters followed by diacritical marks
 should be excluded. (This can be done with a context rule, see
 [RFC7940]).

5.5. Mitigation

 Thiere are several techniques that can be used to help to mitigate
 confusion. The focus in the following is on issues addressable by
 protocol or registry policy. However, user agents might implement

Freytag, et al. Expires December 31, 2018 [Page 15]

Internet-Draft Troublesome Characters June 2018

 additional mitigation approaches, such as always using a font
 designed to distinguish among different characters.

5.5.1. Mitigation Strategies

 Exclusion The primary mitigation technique is to reduce the problem
 space: operators should only ever use the smallest repertoire of
 code points possible for their environment. So, for example, if
 there is a code point that is sometimes used but is perhaps a
 little obscure, it is better to leave it out. Users are unlikely
 to be familiar with many code points added to Unicode for the
 representation of historical forms of writing a script, or for
 highly specialized purposes. That unfamiliarity may present
 challenges to correct identification or keyboard entry, making the
 code point less usable. In addition, their use may present other
 problems not appreciated by anyone not familiar with them.

 For these reasons, code points used only in a language with which
 the administrator is not familiar should probably be excluded.
 The same applies to code points used in specialized contexts, such
 as those only found in historic or sacred documents, or only used
 for phonetic transcription or poetry.

 By reducing the repertoire to a well-understood essential subset
 it is often possible to eliminate some possible instances of
 confusion. For example, in the Arabic script, combining marks are
 generally used for optional or specialized aspects of the writing
 system. At the same time, many combining sequences are confusable
 with basic letters of the script. Because of this, excluding all
 Arabic combining mark would greatly reduce confusability without
 significantly affecting usability of the script for identifiers.

 Preferred code points Sometimes, each of these code points will be
 used by a different user community; or one of the code points is
 not in wide use, for example because it is intended for special
 purposes like phonetic annotation or transliteration. In such
 cases, the one not needed for a given zone could be excluded.

 In other cases, zones may be shared by a wider community, making
 it unattractive or impossible to institute a preference. A common
 method of mitigating issues from such homoglyphs is to make two
 labels that differ only by using a different homoglyph mutually
 exclusive. This can be done by making the homoglyphs code point
 variants, usually of type "blocked". See [RFC8228].

 In some cases, while two code points may be homoglyphs, one of
 them can be identified as the preferred alternative to encode the
 intended character. In these cases, one of the code points has

Freytag, et al. Expires December 31, 2018 [Page 16]

Internet-Draft Troublesome Characters June 2018

 been identified as "preferred", while the other has been
 identified as "troublesome"; or "excluded". In all other cases,
 no such preference exists in the general usage; a conservative
 mitigation might be to define the alternatives as blocked
 variants. However, the users of a given zone might have a
 specific preference, in which case one of the alternatives could
 be excluded instead.

 For convenience in presentation, this document presents pairs or
 sets of homoglyphs as mutually exclusive variants of type
 "homoglyph". Other ways of handling these code points are
 possible. While one might implement such a variant relation in
 many cases as one label blocking another, in some cases allowing
 both to be registered to the same applicant may be appropriate.
 Finally, in some case eliminating one or both code points from the
 repertoire may be a feasible alternative to establishing a variant
 relation.

 Script limitation For homoglyphs, a large number of cases (but not
 all of them) turn out to be in different scripts. As a result, it
 is usually a good idea to adopt the operational convention that
 identifiers for a protocol should always be in a single script.

 This mitigation strategy has limits. First, even if any given
 identifier is only in a single script, it may co-exist with
 identifiers from other scripts. Sometimes the repertoire used in
 operation allows multiple scripts that create whole string
 confusables -- strings made up entirely of homoglyphs of another
 string in a different script (such as can be found between
 Cyrillic and Latin, for example). In such cases, mitigation must
 turn to other means of preventing the registration of mutually
 confusable string, for example by In that case, a robust mechanism
 for mutual exclusion of confusable identifiers must exist,
 ensuring that the registration of one of them (whichever comes
 first) blocks the later registration of the other.

 Second, some writing systems use a combination of scripts and for
 commercial names in many scripts, admixture of Latin letters is
 common. Allowing limited script mixing may be an essential
 requirement in some cases.

 Lastly, identifiers are not always under the operational control
 of a single authority (such as in the case of DNS, where the
 system is under distributed control so that different parts of the
 hierarchy can have different operational rules).

Freytag, et al. Expires December 31, 2018 [Page 17]

Internet-Draft Troublesome Characters June 2018

 In the case of IDNA, some client programs restrict display of
 U-labels to top-level domains known to have policies about single-
 script labels.

 Exact homoglyphs No policy or convention, other than ensuring mutual
 exclusion, will do anything to help mititgate confusion for strict
 homoglyphs of each other in the same script (see Appendix B for
 some example cases.)

 Beyond the issue of mutual confusability, some combining sequences
 in particular can give rise to other difficulties in recognition -
 usually because client systems will not reliably and correctly
 display them. One particular case concerns sequences of more than
 one instance of the same non-spacing combining mark such as the
 repetition of an accent or diacritic. These are often rendered
 indistinguishably from single instances of the same mark.
 Operators should prohibit such repetition, particularly, as there
 are no known cases where they would be required in ordinary
 writing. Note that this prohibition would also apply to a non-
 spacing mark following a pre-composed code point containing the
 same diacritic. A more general mitigation technique would be to
 limit nonspacing marks to known combinations which can be
 enumerated. Where that is not possible for some scripts, some
 other context restrictions can usually be applied.

 There are some writing systems where characters do not normally
 occur in arbitrary locations in the context of each syllable.
 Neither users nor rendering systems for such scripts are adept at
 handling arbitrary sequences of such characters. While some
 latitude beyond strict spelling rules may be accommodated,
 policies that enforce a minimal set of structural rules are
 required to ensure that users can identify the identifier and
 systems can render them predictably.

5.5.2. Limits of Mitigation

 As noted in Section 1, it is not possible to solve all the problems
 with identifier systems, particularly when human factors are taken
 into account. In addition, each of the mitigation approaches has its
 own limits of the type of problems that can be addressed, whether it
 is by exclusion of specific code points; requiring or prohibiting
 contexts for certain code points; restriction to a single script per
 label; or mutual exclusion of labels differing only by code points
 identical or otherwise confusably equivalent to other code points.
 Additional policies may be needed to prevent registration of labels
 that are problematic or confusable for other reasons.

Freytag, et al. Expires December 31, 2018 [Page 18]

Internet-Draft Troublesome Characters June 2018

 There are a number of issues in implementing and presenting
 identifiers to the user which are not specific to individually
 identifiable code points (or sequences). For example, fonts can vary
 widely in whether they make or do not make a distinction in
 appearance of characters; relying on the native reader to get the
 intended meaning from context. It is up to user agents to make sure
 to select fonts that render each code point as distinct as possible.

 When new code points are assigned in Unicode, systems, keyboards,
 fonts and rendering engines may all be updated unevenly, with
 considerable delays. During a possibly lengthy transition period,
 this will lead to inconsistent user experience or inability to
 distinguish certain labels. Even if unsupported labels are presented
 as A-labels, users may not reliably identify them, because they
 appear as essentially random sequences of letters and digits.

5.6. Notes

 In the explanation the character names have been abbreviated. The
 following list shows sample entries for the proposed registry. It is
 non-normative, and only included for illustrative purposes. Also see
 the examples below (Appendix B).

6. Table of Code Points

 --
 Code Point: 01C0
 Related CP:
 References: [120] [155]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character that is not PVALID
 --
 Code Point: 01C1
 Related CP:
 References: [120] [155]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character that is not PVALID
 --
 Code Point: 01C2
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character that is not PVALID
 --
 Code Point: 01C3
 Related CP:
 References: [120] [150]
 Comment: Not Recommended: Indistinguishable from a

Freytag, et al. Expires December 31, 2018 [Page 19]

Internet-Draft Troublesome Characters June 2018

 punctuation character that is not PVALID
 --
 Code Point: 01DD
 Related CP: 0259
 References: [150]
 Comment: Identical: Identical in appearance to U+0259
 --
 Code Point: 0259
 Related CP: 01DD
 References: [150]
 Comment: Identical: Identical in appearance to U+01DD
 --
 Code Point: 0131
 Related CP:
 References: [100]
 Comment: Restricted Context: If followed by any combining
 mark above, renders the same way as U+0069 in any
 good font. Should be restricted to where it is not
 followed by a combining mark above
 --
 Code Point: 0237
 Related CP:
 References: [115]
 Comment: Not Recommended: If followed by any combining mark
 above, renders the same way as U+006A in any good
 font. As its use is limited, it is best excluded.
 --
 Code Point: 025F
 Related CP:
 References: [115]
 Comment: Not Recommended: If followed by any combining mark
 above, renders the same way as U+0249 in any good
 font. As its use is limited, it is best excluded.
 --
 Code Point: 02A3
 Related CP: 0064 007A
 References: [115]
 Comment: Not Recommended: Looks like small LETTER D plus
 LETTER Z, except for slight kerning; in limited
 use.
 --
 Code Point: 02A6
 Related CP: 0074 0073
 References: [115]
 Comment: Not Recommended: Looks like small LETTER T plus
 LETTER S, except for slight kerning; in limited
 use.
 --

Freytag, et al. Expires December 31, 2018 [Page 20]

Internet-Draft Troublesome Characters June 2018

 Code Point: 02A7
 Related CP: 0074 0283
 References: [115]
 Comment: Not Recommended: Looks like small LETTER T plus
 LETTER ESH, except for slight kerning; in limited
 use.
 --
 Code Point: 02AA
 Related CP: 006C 0073
 References: [115]
 Comment: Not Recommended: Looks like small LETTER L plus
 LETTER S, except for slight kerning; in limited
 use.
 --
 Code Point: 02AB
 Related CP: 006C 007A
 References: [115]
 Comment: Not Recommended: Looks like small LETTER L plus
 LETTER Z, except for slight kerning; in limited
 use.
 --
 Code Point: 02B9
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character that is not PVALID
 --
 Code Point: 02BA
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character that is not PVALID
 --
 Code Point: 02BB
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character that is not PVALID
 --
 Code Point: 02BC
 Related CP:
 References: [6912]
 Comment: Not Recommended: Indistinguishable from a
 punctuation character (U+2019), which is not
 PVALID
 --
 Code Point: 02BD
 Related CP:

Freytag, et al. Expires December 31, 2018 [Page 21]

Internet-Draft Troublesome Characters June 2018

 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02BE
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02BF
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02C0
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02C1
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02C6
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02C7
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02C8
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02C9
 Related CP:

Freytag, et al. Expires December 31, 2018 [Page 22]

Internet-Draft Troublesome Characters June 2018

 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02CA
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 02CB
 Related CP:
 References: [120]
 Comment: Not Recommended: Indistinguishable from
 punctuation character that is not PVALID
 --
 Code Point: 0300
 Related CP:
 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0301
 Related CP:
 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0302
 Related CP:
 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0303
 Related CP:
 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0304
 Related CP:
 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0306
 Related CP:

Freytag, et al. Expires December 31, 2018 [Page 23]

Internet-Draft Troublesome Characters June 2018

 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0307
 Related CP:
 References: [115]
 Comment: Restricted Context: By definition, LATIN SMALL
 LETTER I plus combining DOT ABOVE renders exactly
 the same as LATIN SMALL LETTER I by itself and
 does so in practice for any good font. The same is
 true for all Unicode characters with the
 soft_dotted property; they lose their dot if
 followed by a combining mark. DOT ABOVE should be
 excluded, or restricted to contexts where it does
 not follow a soft_dotted letter.
 --
 Code Point: 0308
 Related CP:
 References: [100]
 Comment: Not Recommended: Not recommended other than as
 part of enumerated sequences
 --
 Code Point: 0624
 Related CP: 0648
 References: [201]
 Comment: Identical: Identical in appearance in some
 positional form and/or not reliably distinguished
 because of small size of distinguishing features
 --
 Code Point: 0625
 Related CP: 0622, 0623, 0627, 0672
 References: [201]
 Comment: Identical: Identical in appearance in some
 positional form and/or not reliably distinguished
 because of small size of distinguishing features
 --
 Code Point: 0626
 Related CP: 0649, 064A, 067B, 06CC, 06CD, 06D0, 06D2
 References: [201]
 Comment: Identical: Identical in appearance in some
 positional form and/or not reliably distinguished
 because of small size of distinguishing features
 --
 Code Point: 0627
 Related CP: 0622, 0623, 0625, 0672
 References: [201]
 Comment: Identical: Identical in appearance in some

Freytag, et al. Expires December 31, 2018 [Page 24]

Internet-Draft Troublesome Characters June 2018

 positional form and/or not reliably distinguished
 because of small size of distinguishing features
 --
 Code Point: 064B
 Related CP:
 References: [5564]
 Comment: Not Recommended: Not to be used in zone files for
 the Arabic language, per RFC 5564
 --
 Code Point: 064C
 Related CP:
 References: [5564]
 Comment: Not Recommended: Not to be used in zone files for
 the Arabic language, per RFC 5564
 --
 Code Point: 065C
 Related CP:
 References: [300]
 Comment: Not Recommended: Part of homoglyph sequence(s)
 not covered by normalization.
 --
 Code Point: 0660
 Related CP: 06F0
 References: [110]
 Comment: Identical: Identical in appearance and meaning to
 EXTENDED ARABIC-INDIC DIGIT ZERO
 --
 Code Point: 0661
 Related CP: 06F1
 References: [110]
 Comment: Identical: Identical in appearance and meaning to
 EXTENDED ARABIC-INDIC DIGIT ONE
 --
 Code Point: 077F
 Related CP:
 References: [115]
 Comment: Not Recommended: Obsolote (archaic)
 --
 Code Point: 08AA
 Related CP:
 References: [201]
 Comment: Not Recommended: No evidence of active use found;
 not recommended
 --
 Code Point: 0A72 0A3F
 Related CP: 0A07
 References: [401]
 Comment: Not Recommended: Do not use for U+0A07

Freytag, et al. Expires December 31, 2018 [Page 25]

Internet-Draft Troublesome Characters June 2018

 --
 Code Point: 0A72 0A40
 Related CP: 0A08
 References: [401]
 Comment: Not Recommended: Do not use for U+0A08
 --
 Code Point: 0E3A
 Related CP:
 References: [206]
 Comment: Other issue: Renders unreliably, or not at all, if
 adjacent to any Thai vowel below. This may be
 prevented by a context rule
 --
 Code Point: 0E41
 Related CP:
 References: [206]
 Comment: Restricted Context: Digraph of U+0E40 SARA E
 U+0E40 SARA E. Normally handled by disallowing the
 sequence via a context rule
 --
 Code Point: 0E45
 Related CP:
 References: [206]
 Comment: Restricted Context: Only occurs after two special
 Thai vowels,U+0E24 RU and U+0E26 LU. Is also
 potentially confused with U+0E32 SARA I. Both
 issues can be addressed by defining a context
 rule. Alternatively the context may be spelled out
 by enumerating the two sequences and excluding
 U+0E45 if occurring by itself.
 --
 Code Point: 0E4E
 Related CP:
 References: [206]
 Comment: Not Recommended: Rarely used in modern Thai; it is
 more commonly replaced with U+0E3A (PHINTHU).
 Excluding it avoids issues with confusing it with
 another diacritic U+0E4C (THANTHAKHAT). Both are
 rendered atop a syllable and hard to distinguish
 at small sizes.
 --
 Code Point: 12A5
 Related CP: 12D5
 References: [100] [202]
 Comment: Interchangeable: U+12A5 and U+12D5 are used
 interchangeably in Amharic
 --
 Code Point: 12A6

Freytag, et al. Expires December 31, 2018 [Page 26]

Internet-Draft Troublesome Characters June 2018

 Related CP: 12D6
 References: [100] [202]
 Comment: Interchangeable: U+12A6 and U+12D6 are used
 interchangeably in Amharic
 --
 Code Point: 17D2 178A
 Related CP: 17D2 178F
 References: [204]
 Comment: Identical: When preceded by U+17D2, U+178A and
 U+178F are indistinguishable
 --
 Code Point: 17D2 178F
 Related CP: 17D2 178A
 References: [204]
 Comment: Identical: When preceded by U+17D2, U+178A and
 U+178F are indistinguishable
 --

6.1. References for Registry

 [99] The Unicode Consortium, "The Unicode Standard", (latest
 version) http:www.unicode.org/versions/latest (Multiple, or latest
 version)

 [100] Integration Panel, "Maximal Starting Repertoire (MSR-2)",
 April 2015, https://www.icann.org/en/system/files/files/msr-2-
 overview-14apr15-en.pdf (Code points included in MSR-2 as
 potentially appropriate for the root zone)

 [115] Integration Panel, "Maximal Starting Repertoire (MSR-2)",
 April 2015, https://www.icann.org/en/system/files/files/msr-2-
 overview-14apr15-en.pdf (Code points excluded from MSR-2 as
 inappropriate for the root zone)

 [120] Integration Panel, "Maximal Starting Repertoire (MSR-2)",
 April 2015, https://www.icann.org/en/system/files/files/msr-2-
 overview-14apr15-en.pdf (Code points considered problematic by
 MSR-2)

 [150] The Unicode Consortium, "Intentional.txt", Version 10.0.0,
 http://www.unicode.org/Public/security/10.0.0/intentional.txt
 (Code points considered identical by intention)

 [155] "Proposal to Update Identical.txt", L2 17/301 (and revisions)
 http://www.unicode.org/L2/L2017/17301-update-intentional.pdf (Code
 points considered identical by intention)

Freytag, et al. Expires December 31, 2018 [Page 27]

Internet-Draft Troublesome Characters June 2018

 [201] TF-AIDN, "Proposal for Arabic Script Root Zone LGR", 18
 November 2015 https://www.icann.org/en/system/files/files/arabic-
 lgr-proposal-18nov15-en.pdf (In-script variants and code points
 excluded)

 [202] Ethiopic Generation Panel, "Proposal for Ethiopic Script Root
 Zone LGR", May 17, 2017,
 https://www.icann.org/en/system/files/files/proposal-ethiopic-lgr-
 17may17-en.pdf ()

 [204] Khmer Generation Panel, "Proposal for Khmer Script Root Zone
 Label Generation Rules (LGR)", August 15, 2016,
 https://www.icann.org/en/system/files/files/proposal-khmer-lgr-
 15aug16-en.pdf ()

 [206] Thai Generation Panel, "Proposal for the Thai Script Root Zone
 LGR", May 25, 2017 https://www.icann.org/en/system/files/files/
 proposal-thai-lgr-25may17-en.pdf ()

 [300] Internationalized Domain Names Variant Issues Project: Arabic
 Case Study Team Issues Report, ICANN, October 7, 2011
 https://archive.icann.org/en/topics/new-gtlds/arabic-vip-issues-
 report-07oct11-en.pdf (In-script variants and code points
 excluded)

 [401] Table 12-14 in Chapter 12 "South and Central Asia-I", ,"The
 Unicode Standard", Version 10.0,
 https://www.unicode.org/versions/Unicode10.0.0/ch12.pdf (Vowel
 sequences not to be used in Gurmukhi)

 [5564] RFC 5564 (Code points to be excluded from repertoires for the
 Arabic language)

 [6912] RFC 6912 (Code points considered problematic)

7. IANA Considerations

 The IANA Services Operator is hereby requested to create the Registry
 of Unicode Code Points for Special Consideration in Network
 Identifiers, and to populate it with the values in section Section 5.
 The registry is to be updated by Expert Review.

 This registry has no formal protocol status with respect to IDNA or
 PRECIS. It is a registry intended to be used by those creating
 registration or lookup policies, in order to inform the development
 of such policies.

Freytag, et al. Expires December 31, 2018 [Page 28]

Internet-Draft Troublesome Characters June 2018

8. Security Considerations

 The registry established by this document is intended to help
 operators of identifier systems in deciding what to permit in
 identifiers. It may also be useful for user agents that attempt to
 provide warnings to users about suspicious or inadvisable
 identifiers. Operators that fail to make policies addressing the
 contents of the registry may permit the creation of identifiers that
 are misleading or that may be used in attacks on the network or
 users.

 The registry is not a magic solution to all identifier ambiguity, and
 even refusing to permit registration of, or lookup of, every code
 point in the registry cannot ensure that misleading or confusing
 identifiers will never be created.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4713] Lee, X., Mao, W., Chen, E., Hsu, N., and J. Klensin,
 "Registration and Administration Recommendations for
 Chinese Domain Names", RFC 4713, DOI 10.17487/RFC4713,
 October 2006, <https://www.rfc-editor.org/info/rfc4713>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",
 RFC 5892, DOI 10.17487/RFC5892, August 2010,
 <https://www.rfc-editor.org/info/rfc5892>.

Freytag, et al. Expires December 31, 2018 [Page 29]

Internet-Draft Troublesome Characters June 2018

 [RFC5893] Alvestrand, H., Ed. and C. Karp, "Right-to-Left Scripts
 for Internationalized Domain Names for Applications
 (IDNA)", RFC 5893, DOI 10.17487/RFC5893, August 2010,
 <https://www.rfc-editor.org/info/rfc5893>.

 [RFC5894] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Background, Explanation, and
 Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010,
 <https://www.rfc-editor.org/info/rfc5894>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 7564, DOI 10.17487/RFC7564, May 2015,
 <https://www.rfc-editor.org/info/rfc7564>.

 [RFC7940] Davies, K. and A. Freytag, "Representing Label Generation
 Rulesets Using XML", RFC 7940, DOI 10.17487/RFC7940,
 August 2016, <https://www.rfc-editor.org/info/rfc7940>.

 [UAX44] The Unicode Consortium, "Unicode Standard Annex #44,
 Unicode Character Database",
 <http://www.unicode.org/reports/tr44/>.

 This references the most currently published version of
 the description of the Unicode Character Database.

 [UCD] The Unicode Consortium, "Unicode Character Database",
 <http://www.unicode.org/Public/UCD/latest/ucd/>.

 This references the most currently published version of
 the data files for the Unicode Character Database

 [Unicode] The Unicode Consortium, "The Unicode Standard, Latest
 Version", <http://www.unicode.org/versions/latest/>.

 This references the most currently published version

9.2. Informative References

 [I-D.klensin-idna-5892upd-unicode70]
 Klensin, J. and P. Faltstrom, "IDNA Update for Unicode 7.0
 and Later Versions", draft-klensin-idna-5892upd-
 unicode70-05 (work in progress), October 2017.

Freytag, et al. Expires December 31, 2018 [Page 30]

Internet-Draft Troublesome Characters June 2018

 [I-D.rfc5891bis]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Registry Restrictions and
 Recommendations", March 2017,
 <https://datatracker.ietf.org/doc/
 draft-klensin-idna-rfc5891bis/>.

 [MSR] Integration Panel, ""Maximal Starting Repertoire (MSR-
 3)"", March 2018, <
 https://www.icann.org/en/system/files/files/
 msr-3-overview-28mar18-en.pdf>.

 [RFC5564] El-Sherbiny, A., Farah, M., Oueichek, I., and A. Al-Zoman,
 "Linguistic Guidelines for the Use of the Arabic Language
 in Internet Domains", RFC 5564, DOI 10.17487/RFC5564,
 February 2010, <https://www.rfc-editor.org/info/rfc5564>.

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,
 <https://www.rfc-editor.org/info/rfc6365>.

 [RFC8228] Freytag, A., "Guidance on Designing Label Generation
 Rulesets (LGRs) Supporting Variant Labels", RFC 8228,
 DOI 10.17487/RFC8228, August 2017,
 <https://www.rfc-editor.org/info/rfc8228>.

 [RZ-LGR] Integration Panel, ""Root Zone Label Generation Rules
 (LGR-2) - Overview and Summary"", July 2017, <
 https://www.icann.org/sites/default/files/lgr/
 lgr-2-overview-26jul17-en.pdf>.

Appendix A. Additional Background

A.1. The Theory of Inclusion

 The mechanism that the IETF has come to prefer for
 internationalization of identifiers may be called "inclusion-based
 identifier internationalization", or "inclusion" for short. Under
 inclusion, the characters that are permissible in identifiers for a
 protocol are selected from the set of all Unicode characters. One
 starts with an empty set of characters, and then gradually adds
 characters to the set, usually based on Unicode properties (see
 below, and also Section 3).

 Inclusion depends in part on assumptions the IETF made when the
 strategy was adopted and developed; some of those assumptions were
 about the relationships between different characters and the

Freytag, et al. Expires December 31, 2018 [Page 31]

Internet-Draft Troublesome Characters June 2018

 likelihood that similar such relationships would get added to future
 versions of Unicode. Those assumptions turn out not to have been
 true in every case. Code points at issue are among those to be
 listed in the registry defined here. (See Section 5.)

 The intent of Unicode is to encode all known writing systems into a
 single coded character set. One consequence of that goal is that
 Unicode encodes an enormous number of characters. Another is that
 the work of Unicode does not end until every writing system is
 encoded; even after that, it needs to continue to track any changes
 in those writing systems.

 Unicode encodes abstract characters, not glyphs. Because of the way
 Unicode was built up over time, there are sometimes multiple ways to
 encode the same abstract character. For example, an e with an acute
 accent may be written by combining U+0065 LATIN SMALL LETTER E and
 U+0031 COMBINING ACUTE ACCENT, or it may be written U+00E9 LATIN
 SMALL LETTER E WITH ACUTE. If Unicode encodes an abstract character
 in more than one way, then for most purposes the different encodings
 should all be treated as though they’re the same character. This
 "canonical equivalence" between encodings of the same abstract
 characters is explicitly called out by Unicode. A lack of a defined
 canonical equivalence is tantamount to an assertion by Unicode that
 the two encodings do not represent the same abstract character, even
 if both happen to result in the same appearance.

 Every encoded character in Unicode (more precisely, every code point)
 is associated with a set of properties. The properties define what
 script a code point is in, whether it is a letter or a number or
 punctuation and so forth, its direction when written, to what other
 code point or code point sequence it is canonically equivalent, and
 many other properties. These properties are important to the
 inclusion mechanism. They are defined in the Unicode Character
 Database [UCD] [UAX44].

 Inclusion depends on the assumption that such strings as will be used
 in identifiers will not have any ambiguous matching to other strings.
 In practice, this means that input strings to the protocol are
 expected to be in Normalization Form C. This way, any alternative
 sequences of code points for the same characters will be normalized
 to a single form. If all the characters in the string are also
 included for the protocol’s candidate identifiers, then the string is
 eligible to be an identifier under the protocol.

Freytag, et al. Expires December 31, 2018 [Page 32]

Internet-Draft Troublesome Characters June 2018

A.2. The Difference Between Theory and Practice

 In principle, under inclusion identifiers should be unambiguous. It
 has always been recognized, however, that for humans some ambiguity
 is inevitable, because of the vagaries of writing systems and of
 human perception.

 Normalization Form C ("NFC") removes the ambiguities based on dual or
 multiple encoding for the same abstract character. However,
 characters are not the same as their glyphs. This means that it is
 possible for certain abstract characters to share a glyph. We can
 call such abstract characters "homoglyphs". While this looks at
 first like something that should be handled (or should have been
 handled) by normalization (NFC or something else), there are
 important differences; the situation is in some sense an extreme case
 of a spectrum of ambiguity.

A.2.1. Confusability

 While Unicode deals in abstract characters and inclusion works on
 Unicode code points, users interact with strings as actually
 rendered: sequences of glyphs. There are characters that, depending
 on font, sometimes look quite similar to one another (such as "l" and
 "1"); any character that is like this is often called "visually
 similar". More difficult are characters that, in any normal
 rendering, always look the same as one another. The shared history
 of Cyrillic, Greek, and Latin scripts, for example, means that there
 are characters in each script that function similarly and that are
 usually indistinguishable from one another, though they are not the
 same abstract character. These are examples of "homoglyphs." Any
 character that can be confused for another one can be called
 confusable, and confusability can be thought of as a spectrum with
 "visually similar" at one end, and "homoglyphs" at the other. (We
 use the term "homoglyph" strictly: code points that normally use the
 same glyph when rendered.)

 Note that homoglyphs are not restricted to cross-script scenarios -
 there are a number of homoglyphs where both code points or sequences
 are part of the same script.

 A further issue is introduced by the fact that Unicode caters not
 only to living and dead languages alike, but also to scholarly and
 scientific notation, as well as specialized modes of written text,
 such as for poetry, religious works, or texts to be sung or chanted.
 Where these notations use symbols, they are excluded under inclusion,
 but where they use varieties of letter forms or marks used with
 letters, they are included by default. Some of these letters or
 marks, have been incorporated over time into orthographies for living

Freytag, et al. Expires December 31, 2018 [Page 33]

Internet-Draft Troublesome Characters June 2018

 languages, which is one reason they were not rigorously excluded from
 the start. However, in some cases, they may (alone or in combination
 with ordinary letters appear the same (or very similar to) existing
 letters. This makes some of these characters, and especially the
 marks in question "troublesome".

 Finally, IDNA 2008 has a limited appreciation for the fact that
 characters in complex scripts, unlike ASCII letters, cannot simply
 occur in random sequences. Neither software (for display or data
 entering) nor readers are prepared to process some of these code
 points "out of order". For such scripts, without a policy that
 describes permissible contexts, labels could be registered that
 cannot be rendered or typed reliably and which most users would not
 know how to read or recognize. In some cases, combining sequences
 typed in the "wrong" order may display identically to to those typed
 in the "correct" ordering; again something that needs to be sorted
 out by defining permissible contexts, for example by using the
 context rule mechanism in [RFC7940].

Appendix B. Examples

 There are a number of cases that illustrate the combining sequence or
 digraph issue:

 U+08A1 vs \u’0628’\u’0654’ This case is ARABIC LETTER BEH WITH HAMZA
 ABOVE, which is the one that was detected during expert review
 that caused the IETF to first notice the issue, even though the
 issue existed before this. For detailed discussion of this case
 and some of the following ones, see
 [I-D.klensin-idna-5892upd-unicode70].

 U+0681 vs \u’062D’\u’0654’ This case is ARABIC LETTER HAH WITH HAMZA
 ABOVE, which (like U+08A1) does not have a canonical equivalent.
 In both cases, the places where hamza above and similar Arabic
 combining marks are used are specialized enough that the combining
 marks are generally excluded. See [RFC5564] and [RZ-LGR].
 Unicode has a policy of encoding as composite any letter needed in
 an Arabic orthography, even if it appears superficially that the
 same shape could be achieved by a combining sequence. (In actual
 typography there’s often a small but noticeable difference in
 placement of the mark between a composite character and a
 combining sequence.)

 U+0623 vs \u’0627’\u’0654’ This case is ARABIC LETTER ALEF WITH
 HAMZA ABOVE. Unlike the previous two cases, it does have a
 canonical equivalence with the combining sequence. Therefore,
 only the composite is used in IDNs.

Freytag, et al. Expires December 31, 2018 [Page 34]

Internet-Draft Troublesome Characters June 2018

 U+09E1 vs u\’098C’u\’09E2’ This case is BENGALI LETTER VOCALIC LL.
 This is an example in the Bengali script of a case without a
 canonical equivalence to the combining sequence. Per Unicode, the
 single code point should be used to represent vowel signs in text,
 and the sequence of code points should not be used. There are
 similar cases in many Indic scripts. It is not a simple matter of
 disallowing the combining vowel mark in cases like this, because
 it is commonly used as vowel sign. The recommendation would be to
 add a context rule, restricting the vowel signs from appearing
 directly after an independent vowel like U+098C..

 U+019A vs \u’006C’\u’0335’ This case is LATIN SMALL LETTER L WITH
 BAR. In at least some fonts, there is a detectable difference
 between the composite code point and the combining sequence, but
 only if one compares them side-by-side. Unlike a separable
 diacritic, there are no fast rules for placement of overlays. A
 bar may cross at different heights for different glyph shape or
 may cross different parts of the glyph. For this reason, there is
 no canonical equivalence defined between the sequence and the
 composite. Unicode has a principle of encoding barred letters of
 specific shape as single code point composites when needed for any
 writing system. The code point U+0335 COMBINING SHORT STROKE
 OVERLAY and similar overlay diacritics are therefore never needed
 as part of any orthography and are recommended to be excluded from
 identifiers.

 U+00F8 vs \u’006F’\u’0337’ This is LATIN SMALL LETTER O WITH STROKE.
 The effect is similar to the previous case. Unicode has a
 principle of encoding stroked letters as composites when needed
 for any writing system.

 U+02A6 vs \u’0074’\u’0073’ This is LATIN SMALL LETTER TS DIGRAPH,
 which is not canonically equivalent to the letters t and s. The
 intent appears to be that the digraph shows the two shapes as
 kerned, but the difference may be slight if viewed out of context.
 The use of the digraph is for specialized purposes; it can be
 excluded from identifiers.

 U+01C9 vs \u’006C’\u’006A’ Unlike the TS digraph, the LJ digraph has
 a relevant compatibility decomposition, so it fails the relevant
 stability rules under inclusion and is therefore DISALLOWED in
 IDNA2008. This illustrates the way that consistencies that might
 be natural to some users of a script are not necessarily found in
 it, possibly because of uses by another writing system.

 U+06C8 vs u\’0648’u\’0670’ ARABIC LETTER YU is an example where the
 normally-rendered character looks just like a combining sequence,
 but are named differently. This an example that shows that the

Freytag, et al. Expires December 31, 2018 [Page 35]

Internet-Draft Troublesome Characters June 2018

 Unicode name is not a reliable indicator of the intended
 appearance. Like other cases in Arabig, the recommendation is to
 exclude the combining mark (and therefore the sequence) in favor
 of the composite.

 U+069 vs \u’0069’\u’0307’ LATIN SMALL LETTER I followed by COMBINING
 DOT ABOVE by definition, renders exactly the same as LATIN SMALL
 LETTER I by itself and does so in practice for any good font. The
 same would be true if "i" was replaced with any of the other
 Soft_Dotted characters defined in Unicode. The character sequence
 \u’0069’\u’0307’ (followed by no other combining mark) is
 reportedly rather common on the Internet. Because base character
 and stand-alone code point are the same in this case, and the code
 points affected have the Soft_Dotted property already, this could
 be mitigated separately via a context rule affecting U+0307.

 Other cases that demonstrate that the issue does not lie exclusively
 or primarily with combining sequences:

 U+0B95 vs U+0BE7 The TAMIL LETTER KA and TAMIL DIGIT ONE are always
 indistinguishable, but needed to be encoded separately because one
 is a letter and the other is a digit.

 Arabic-Indic Digits vs. Extended Arabic-Indic Digits Seven digits of
 these two sequences have entirely identical shapes. This case is
 an example of something dealt with in inclusion that nevertheless
 can lead to confusions that are not fully mitigated. IDNA, for
 example, contains context rules restricting the digits to one set
 or another; but such rules apply only to a single label, not to an
 entire name. Moreover, it provides no way of distinguishing
 between two labels that both conform to the context rule, but
 where each contains a different member one of the seven identical
 shape pairs.

 U+53E3 vs U+56D7 These are two Han characters (roughly rectangular)
 that are different when laid side by side; but they may be
 difficult to distinguish out of context or in very small print.

 U+01DD vs U+0259 The two Latin script code points share the have the
 identical appearance of a lower-case upside down "e". They are
 encoded differently due to different uppercase forms. The fact
 that they uppercase differently is taken as evidence that they are
 not the same abstract character, despite the superficial evidence
 of their shared shape. The more common cases, where the uppercase
 forms are identical may be of less concern, given that IDNA 2008
 is limited to lower case.

Freytag, et al. Expires December 31, 2018 [Page 36]

Internet-Draft Troublesome Characters June 2018

 Cross script homoglyphs usually do not involve combining sequences,
 but can be mitigated by rules requiring strings to be in a single
 script. For zones that support multiple scripts, it may be necessary
 to have policies to prevent whole-script homographs: labels entirely
 in one script that look the same as another label in the other
 script. One method would be to define "blocked" variants (See
 [RFC7940] and [RFC8228]).

 LATIN SMALL LETTER OPEN E is one of a handful of examples of
 characters borrowed from another script, in this case GREEK SMALL
 LETTER EPSILON.

 LATIN SMALL LETTER E and CYRILLIC SMALL LETTER IE are historically
 related, both derive from uppercase forms of the GREEK CAPTIAL
 LETTER EPSILON. There are a number of such pairs -- enough to
 make many whole strings that look the same in both scripts (but
 usually spell nonsense in one of them). An example would be
 "pax".

Appendix C. Discussion Venue

 Note to RFC Editor: this section should be removed prior to
 publication as an RFC.

 This Internet-Draft may be discussed on the IAB Internationalization
 public list: i18n-discuss@iab.org.

Appendix D. Change History

 Note to RFC Editor: this section should be removed prior to
 publication as an RFC.

 00:

 * Initial version

 01:

 * Add background and examples from the LUCID Problem Statement

 * Add a paragraph about motivation to explain the difference
 between this registry and administrative policy more generally

 * Expand and clarify a number of earlier points of discussion

 * Attempt to make clear that this registry does not update any
 protocols

Freytag, et al. Expires December 31, 2018 [Page 37]

Internet-Draft Troublesome Characters June 2018

 * Move some formerly-appendix material to the body

 * Expand the initial registry.

 02:

 * Expanded the discussion of possible mitigation approaches and
 made its own section.

 * Added more detail to the categories of troublesome characters

 * Minor updates to "Existing techniques" section.

 * Some extension to the description of the contents of the
 registry and discussion of how to handle additional
 information.

Authors’ Addresses

 Asmus Freytag
 ASMUS, Inc.

 Email: asmus@unicode.org

 John C Klensin
 1770 Massachusetts Ave, Ste 322
 Cambridge, MA 02140
 U.S.A.

 Email: john-ietf@jck.com

 Andrew Sullivan
 Oracle Corp.
 100 Milverton Drive
 Missisauga, ON L5R 4H1
 Canada

 Email: andrew.s.sullivan@oracle.com

Freytag, et al. Expires December 31, 2018 [Page 38]

