
DNSOP D. Migault
Internet-Draft Ericsson
Intended status: Standards Track D. York
Expires: May 3, 2018 Internet Society
 E. Lewis
 ICANN
 October 30, 2017

 DNSSEC Validators Requirements
 draft-mglt-dnsop-dnssec-validator-requirements-06

Abstract

 DNSSEC provides data integrity and source authentication to a basic
 DNS RReet. Given a RRset, a public key and a signature, a DNSSEC
 validator checks the signature, time constraints, and other, local,
 policies. In case of mismatch the RRSet is considered illegitimate
 and is rejected.

 Accuracy in DNSSEC validation, that is, avoiding false positives and
 catching true negatives, requires that both the signing process and
 validation process adhere to the protocol, which begins with external
 configuration parameters. This document describes requirements for a
 validator to be able to perform accurate validation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Migault, et al. Expires May 3, 2018 [Page 1]

Internet-Draft DNSSEC Validator Requirements October 2017

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Requirements notation . 2
 2. Introduction . 2
 3. Terminology . 3
 4. DNSSEC Validator Description 4
 5. Time derivation and absence of Real Time Clock 5
 6. Trust Anchor . 5
 6.1. Trust Anchor Bootstrapping 6
 6.2. Trust Anchor Data Store 7
 6.3. Interactions with the cached RRsets 8
 7. ZSK / KSK . 8
 7.1. KSK/ZSK Data Store 8
 7.2. KSK/ZSK Data Store and Trust Anchor Data Store 10
 7.3. Interactions with cached RRsets 11
 8. DS . 12
 9. Cryptography Deprecation 12
 10. Reporting . 13
 11. IANA Considerations . 13
 12. Security Considerations 13
 13. Acknowledgment . 14
 14. References . 14
 14.1. Normative References 14
 14.2. Informational References 15
 Authors’ Addresses . 16

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 DNSSEC validation [RFC4033], [RFC4034] and [RFC4035] has two core
 concepts. One is the matching of a RRSIG resource record’s contents
 to a RRset, making use of a DNSKEY resource record (named in the

Migault, et al. Expires May 3, 2018 [Page 2]

Internet-Draft DNSSEC Validator Requirements October 2017

 RRSIG record). Two is the placing of trust in the DNSKEY resource
 record.

 Evaluation based on a RRSIG record involves a few steps. Most
 visible is a cryptographic operation, matching the digital signature
 in the RRSIG with the specified public key in the named DNSKEY record
 and a properly prepared DNS RRset. This is meant to demonstrate that
 the RRset came from an entity with the private component of the key
 (source authenticity).

 Not to be forgotten are the other matches to perform. To address the
 threat of reply attacks, wall-clock (absolute) time is checked. To
 address the authority of the source, the named DNSKEY record is
 checked for appropriateness (i.e., owned by the same zone is the
 default policy).

 The RRSIG record also contains other information intended to help the
 validator perform its work, in some cases "sane value" checks are
 performed. For instance, the original TTL (needed to prepare the RR
 set for validation) ought to be equal to or higher than the received
 TTL.

 Requirements related to validation exist in [RFC4033], [RFC4034] and
 [RFC4035]. However, the specification of the validation is not
 sufficient to enable a wide deployment of DNSSEC validators. In
 fact, there are a number of situations where the necessary condition
 are not met by the DNSSEC validator to perform DNSSEC validation.
 When such conditions are not met, the DNSSEC validation may qualify
 improperly a RRset as invalid. This document is focused on the
 necessary mechanisms that DNSSEC validators should implement in order
 to make DNSSEC validation output accurate. The mechanisms described
 in this document include, provisioning mechanisms as well as
 monitoring and management mechanisms that enables an administrator to
 validate the validity of the DNSSEC validation output.

3. Terminology

 This document uses the following terminology:

 DNSSEC validator: the entity that performs DNSSEC resolution and
 performs signature validation.

 Accurate validation: validation that avoids false positives and
 catches true negatives. (not sure if this is needed, but seems
 appropriate)

 Trust Anchor Data Store:

Migault, et al. Expires May 3, 2018 [Page 3]

Internet-Draft DNSSEC Validator Requirements October 2017

4. DNSSEC Validator Description

 This is a conceptual block diagram of the elements involved with
 DNSSEC validation. This is not meant to be an architecture for code,
 this is meant to be a framework for discussion and explanation.

 +-------------+ +---------------+
 | | | |
 | Time Source | | Cryptographic |
 | | | Libraries |
 | | | |
 +-------------+ +---------------+
 | |
 v v
 +--------------------------------+ +--------------+
 | | | |
 | |<--| Trust Anchor |
 | DNSSEC Validation Engine | | Manager & |
 | |-->| Storage |
 | | | |
 +--------------------------------+ +--------------+
 ^ | ^ |
 | v | |
 +-------------+ +---------------+ |
 | | | | |
 | DNS Caches | | DNS Messages |<---------+
 | | | |
 +-------------+ +---------------+

 Figure 1: DNSSEC Validator Description

 Time Source : Wall clock time Cryptograhic Libraries: Code
 performing mathematical functions.

 DNS Message : Receiver of DNS responses DNS Caches: Positive and
 negative caches.

 Trust Anchor Manager : database of trust anchors, manages trust
 DNSSEC Validation Engine: follows local policy to approve data.

 a. Time Source -> DNSSEC Validation Engine Current time upon
 request, in appropriate time zone setting

 b. Cryptographic Libraries-> DNSSEC Validation Engine Supplies code
 to perform math, the engine determines the DNSSEC Security
 Algorithms supported

Migault, et al. Expires May 3, 2018 [Page 4]

Internet-Draft DNSSEC Validator Requirements October 2017

 c. DNS Caches <- DNSSEC Validation Engine Enter the results of a
 validation (positive data, negative failures)

 d. DNS Caches -> DNSSEC Validation Engine Stored keys, etc., used in
 building a chain of trust

 e. DNS Messages -> DNSSEC Validation Engine DNS Responses needed
 validation

 f. Trust Anchor Management & Storage -> DNSSEC Validation Engine
 Supplies trust anchor information when needed.

 g. Trust Anchor Management & Storage <- DNSSEC Validation Engine
 Information to update the trust anchor store, resulting from
 automated update requests.

 h. Trust Anchor Management & Storage -> DNS Messages Requests made
 to manage trust anchors.

 i. Not shown - Name Server Process Management interfaces to
 elements, handling of Checking Disabled request, responses, as
 well as all API requests made of the name server.

5. Time derivation and absence of Real Time Clock

 With M2M communication some devices are not expecting to embed Real
 Time Clock (Raspberry Pi is one example of such devices). When these
 devices are re-plugged the initial time is set to January 1 1970.
 Other devices that have clocks that may suffer from time derivation.
 All these devices cannot rely on their time estimation to perform
 DNSSEC validation.

 REQ1: A DNSSEC validator MUST be provided means to update the time
 without relying on DNSSEC.

 Note that updating time in order to be able to perform DNSSEC
 validation may easily come with a chicken-and-egg problem when the
 NTP server is designated by its FQDN. The update mechanisms must
 consider the DNSSEC validator may not able to validate the DNSSEC
 queries. In other words, the mechanisms may have to update the time
 over an unsecure DNSSEC resolution.

6. Trust Anchor

Migault, et al. Expires May 3, 2018 [Page 5]

Internet-Draft DNSSEC Validator Requirements October 2017

6.1. Trust Anchor Bootstrapping

 A validator needs to have trust anchors or it will never be able to
 construct a chain of trust. Trust anchors are defined by DNSSEC to
 be keys that are inherently trusted, configured by authorized
 parties, in the validator. The configuration can be via an automated
 process, such as Automated Updates of DNSSEC Trust Anchors [RFC5011],
 [I-D.ietf-dnsop-rfc5011-security-considerations], or via manual
 process.

 An implementation of a validator needs to allow an operator to choose
 any automated process supported by the validator. (No requirements
 are stated about what processes to support, only one is standardized
 to date.) An implementation needs to also afford the operator the
 ability to override or manage via a purely manual process, the
 storage of managed keys. This includes adding, deleting, changing
 and inspecting.

 Beyond the scope of these requirements are the decision processes of
 authorized parties in placing trust in keys.

 REQ2: A DNSSEC validator MUST check the validity of its Trust
 Anchors. When a Trust Anchor cannot be verified, the DNSSEC
 validator MUST send a warning and SHOULD NOT start validating
 traffic without manual validation.

 REQ3: A DNSSEC validator SHOULD be able to retrieve a Trust Anchor
 with bootstrapping mechanism. Such mechanism’ security MUST
 NOT be based on DNSSEC, but could instead include downloading
 a XML file from a trusted URL, or a PKIX certificate.

 Although some bootstrapping mechanisms to securely retrieve publish
 [RFC7958] and retrieve [UNBOUND-ANCHOR] the Root Zone Trust Anchor
 have been defined, it is believed these mechanisms should be extended
 to other KSKs or Trust Anchors. In fact it is not always possible to
 build a trusted delegation between the Root Zone and any sub zone.
 This may happen for example if one of the upper zones does not handle
 the secure delegation or improperly implement it. A DS RRset may not
 be properly filled or its associated signature cannot be validated.
 As the chain of trust between a zone and the root zone may not be
 validated, the DNSSEC validation for the zone requires a Trust
 Anchor. Such DNS(SEC) resolutions may be critical for infrastructure
 management. A company "Example" may, for example, address all its
 devices under the domain example.com and may not want disruption to
 happen if the .com delegation cannot be validated for any reason.
 Such companies may provision there DNSSEC validator with the Trust
 Anchor KSK for the zone example.com in addition to the regular DNSSEC
 delegation. Similarly some some domains may present different views

Migault, et al. Expires May 3, 2018 [Page 6]

Internet-Draft DNSSEC Validator Requirements October 2017

 such as a "private" view and a "public view". These zones may have
 some different content, and may use a different KSK for each view.

6.2. Trust Anchor Data Store

 When DNSSEC validator are running and a Trust Anchor KSK roll over is
 ongoing, a network administrator or any trust party may be willing to
 check whether the new published keys are being stored in a Trust
 Anchor Data Store with an appropriated status. Such inspection aims
 at detecting an non successful Trust Anchor roll over before traffic
 is being rejected. When a new Trust Anchor has not been considered
 by the DNSSEC validator, a trusted party may be able to provision the
 DNSSEC validator with the new Trust Anchor, and eventually may remove
 the revoked Trust Anchor.

 While using a Trust Anchor that has been removed results in the
 DNSSEC validator rejecting multiple legitimate responses, the
 consequences associated to accepting a rogue Trust Anchor as a
 legitimate Trust Anchor are even worst. Such attacks would result in
 an attacker taking control of the entire naming space behind the
 Trust Anchor. In the case of the Root Zone KSK, for example, almost
 all name space would be under the control of the attacker. In
 addition, to the name space, once the rogue Trust Anchor is
 configured, there is little hope the DNSSEC validator be re-
 configured with the legitimate Trust Anchor without manual
 intervention. As a result, it is crucial to cautiously handle
 operations related to the Trust Anchor provisioning. Means must be
 provided so network administrator can clearly diagnose the reason a
 Trust Anchor is not valid to avoid accepting a rogue Trust Anchor
 inadvertently.

 DNSSEC may also be used in some private environment. Corporate
 networks and home networks, for example, may want to take advantage
 of DNSSEC for a local scope network. Typically, a corporate network
 may use a local scope Trust Anchor to validate DNS RRsets provided by
 authoritative DNSSEC server in the corporate network. This use case
 is also known as the "split-view" use case. These RRsets within the
 corporate network may differ from those hosted on the public DNS
 infrastructure. Note that using different Trust Anchor for a given
 zone may expose a zone to signature invalidation. This is especially
 the case for DNSSEC validators that are expected to flip-flop between
 local and public scope. How validators have to handle the various
 provisioned Trust Anchors is out of scope of the document.

 Home network may use DNSSEC with TLDs or associated domain names that
 are of local scope and not even registered in the public DNS
 infrastructure. This requires the ability to manage the Trust Anchor
 as well.

Migault, et al. Expires May 3, 2018 [Page 7]

Internet-Draft DNSSEC Validator Requirements October 2017

 The necessity to interact with the Trust Anchors lead to the
 following requirements:

 REQ4: A DNSSEC validator MUST store its Trust Anchors in a dedicated
 Trust Anchor Data Store. Such database MUST store
 informations associated to each Trust Anchor status as well as
 the time the status has been noticed by the DNSSEC validator.
 Such database MUST be resilient to DNSSEC validator reboot.

 REQ5: Trust Anchor states SHOULD at least consider those described
 in [RFC5011] (Start, AddPend, Valid, Missing, Revoked,
 Removed). Additional states SHOULD also be able to indicate
 additional motivations for revoking the Trust Anchor such as a
 Trust Anchor known to be corrupted, a Trust anchor miss
 published, or part of a regular roll over procedure.

 REQ6: A DNSSEC validator MUST provide access to the Trust Anchor
 Data Sase to authorized user only. Access control is expected
 to be based on a least privileged principles.

 REQ7: A trusted party MUST be able to add, remove a Trust Anchor in
 the Trust Anchor Data Store.

6.3. Interactions with the cached RRsets

 In addition when a Trust Anchor is revoked, the DNSSEC validator may
 behave differently if the revocation is motivated by a regular roll
 over operation or instead by revoking a Trust Anchor that is known as
 being corrupted. In the case the roll over procedure, is motivated
 by revoking a Trust Anchor that is known to be corrupted, the DNSSEC
 validator may be willing to flush all RRsets that depends on the
 Trust Anchor.

 REQ8: A DNSSEC validator MUST be able to flush the cached RRsets
 that rely on a Trust Anchor.

7. ZSK / KSK

7.1. KSK/ZSK Data Store

 A number of reasons may result in inconsistencies between the RRsets
 stored in the cache and those published by the authoritative server.

 An emergency KSK / ZSK rollover may result in a new KSK / ZSK with
 associated new RRSIG published in the authoritative zone, while
 DNSSEC validator may still cache the old value of the ZSK / KSK. For
 a RRset not cached, the DNSSEC validator performs a DNSSEC query to
 the authoritative server that returns the RRset signed with the new

Migault, et al. Expires May 3, 2018 [Page 8]

Internet-Draft DNSSEC Validator Requirements October 2017

 KSK / ZSK. The DNSSEC validator may not be able to retrieve the new
 KSK / ZSK while being unable to validate the signature with the old
 KSK / ZSK. This either result in a bogus resolution or in an invalid
 signature check. Note that by comparing the Key Tag Fields, the
 DNSSEC validator is able to notice the new KSK / ZSK used for signing
 differs from the one used to generate the received generated
 signature. However, the DNSSEC validator is not expectected to
 retrieve the new ZSK / KSK, as such behavior could be used by an
 attacker. Intsead, ZSK / ZSK key roll ove rprocedure are expected to
 avoid such inconsistencies.

 Similarly, a KSK / ZSK roll over may be performed normally, that is
 as described in [RFC6781] and [RFC7583]. While the KSK / ZSK roll
 over is performed, there is no obligation to flush the RRsets in the
 cache that have been associated with the old key. In fact, these
 RRset may still be considered as trusted and be removed from the
 cache as their TTL timeout. With very long TTL, these RRset may
 remain in the cache while the ZSK / KSK with a shorter TTL is no
 longer published nor in the cache. In such situations, the purpose
 of the KSK / ZSK is to validate the data is considered trusted at the
 time it enters the cache, and such trust may remain after the KSK /
 ZSK is being rolled over. Note also that even though the data may
 not be associated to the KSK / ZSK that has been used to valiadte the
 data, the link between the KSK / ZSK and teh data is still stored in
 teh cache using the RRSIG. Note also that inconsistencies between
 the ZSK / KSK stored in the cache and those published on the
 authoritative server, may lead to inconsistencies to downstream
 DNSSEC validators that realy on multiple cache over time. Typically,
 a request for the KSK / ZSK may have been provided by a cache that is
 storing the new published value, while the data and associated
 sigature may be associated to the old KSK / ZSK.

 KSK and ZSK are associated with configuration parameters, and as such
 are expected to be stored only in the cache. As a result, flushing
 their value from the cache could constitute a way forward to refresh
 them. On the other hand, their respective function is also to
 prevent illegitimate RRsets to be validated and so more understanding
 is need before taking any action associated to the KSK or ZSK. More
 specifically, the network administrator SHOULD be provided the
 appropriated information required to distinguish a misconfiguration
 from an attack.

 The following requirements are thus considered for the KSK / ZSK.

 REQ9: A DNSSEC validator MUST store its KSK/ZSK in a dedicated KSK/
 ZSK Data Base. Such database MUST store informations
 associated to each KSK/ZSK status as well as the time the
 status has been noticed by the DNSSEC validator. Such

Migault, et al. Expires May 3, 2018 [Page 9]

Internet-Draft DNSSEC Validator Requirements October 2017

 database MUST NOT be resilient to DNSSEC validator reboot,
 that is the information stored in the Data Base MUST NOT be
 used to populate the cache, while it MAY be used as second
 factor verification, or audit for example.

 REQ10: KSK/ZSK status and informaton SHOULD be monitored continuously
 and associated with their respective state as well as verified
 time. These states and time SHOULD be resilient to reboot.

 REQ11: KSK/ZSK states SHOULD at least consider those described in
 section 3.1 of [RFC7583] (Generated, Published, Ready, Active,
 Retired, Dead, Removed, Revoked). Additional states SHOULD
 also be able to indicate additional motivations for revoking
 the KSK/ZSK such as a KSK/ZSK known to be corrupted, a KSK/ZSK
 miss published, or part of a regular roll over procedure.

 REQ12: A DNSSEC validator MUST provide access to the KSK/ZSK data
 base to authorized user only. Access control is expected to
 be based on a least privileged principles.

 REQ13: A trusted party MUST be able to add, remove a Trust Anchor in
 the KSK/ZSK Database.

 Similarly to its counter part the TA Data Store, the KSK/ZSK Data
 Store is expected to be resilient to reboot. However the motivation
 for having the KSK/ZSK Data Store resilient to reboot differs from
 those for making the TA Data Store resilient to reboot. TA Data
 Store needs to be resilient as the Trust Anchors are necessary to
 perform the DNSSEC validation. KSK/ZSK are not expected to be
 locally stored, but instead are expected to be resolved, validated by
 the TA and stored in the cache. The reason for making the KSK/ZSK
 Data Store resilient to reboot is mostly to enable audit of the
 DNSSEC validator.

7.2. KSK/ZSK Data Store and Trust Anchor Data Store

 A zone may have been badly signed, which means that the KSK or ZSK
 cannot validate the RRSIG associated to the RRsets. This may not be
 due to a key roll over, but to an incompatibility between the keys
 (KSK or ZSK) and the signatures.

 When such situation occurs, there is only a choice between not
 validating the RRsets or invalidating their signature. This is a
 policy design that needs to be taken by the network administrator.
 In other ways, flushing the RRset are not expected to address this
 issue. Such KSK/ZSK are known as Negative Trust Anchors [RFC7646].

Migault, et al. Expires May 3, 2018 [Page 10]

Internet-Draft DNSSEC Validator Requirements October 2017

 With Negative Trust Anchor, the zone for a given time will be known
 as "known insecure". The DNSSEC Validator is not expected to perform
 signature validation for this zone. It is expected that this
 information is associated to a Time To Live (TTL).

 Note that, this information may be used as an attack vector to
 impersonate a zone, and must be provided in a trusted way, by a
 trusted party.

 If a zone has been badly signed, the administrator of the
 authoritative DNS server may resign the zone with the same keys or
 proceed to an emergency key rollover. If the signature is performed
 with the same keys, the DNSSEC Validator may notice by itself that
 RRSIG can be validated. On the other hand if a key rollover is
 performed, the newly received RRSIG will carry a new key id. Upon
 receiving a new key id in the RRSIG, the DNSSEC Validator is expected
 to retrieve the new ZSK/KSK. If the RRSIG can be validated, the
 DNSSEC Validator is expected to remove the "known insecure" flag.

 However, if the KSK/ZSK are rolled over and RRSIG cannot be
 validated, it remains hard for the DNSSEC validator to determine
 whether the RRSIG cannot be validated or that RRSIG are invalid. As
 a result:

 REQ14: A trusted party MUST be able to indicate a DNSSEC validator
 that a KSK or a ZSK as Negative Trust Anchor. Such Trust
 Anchors MUST NOT be used for RRSIG validation and MUST be
 moved to the Trust Anchor Data Store, so the information
 become resilient to reboot.

 REQ15: A trusted party MUST be able to indicate a DNSSEC validator
 that a KSK/ZSK is known "back to secure".

7.3. Interactions with cached RRsets

 The key roll over procedure intends to ensure that the published
 RRsets can be validated with the KSK / ZSK stored in the various
 cache of the DNSSEC validators. As a consequence, the key roll over
 enables trusted data to be cached. However, the key roll over does
 not necessarily prevents that cached be always validated with the
 currenlty published key. In fact, a cached data may have been
 validated by the former key and remain in the cache while the former
 key has been rolled out. Such inconsistencies may be acceptable and
 correspond to the following trust model: the KSK / ZSK validate the
 cached data can be trusted at time T. There is no specific
 information that leads to considers that trust at time T is subject
 to doubts at current time, so the cached data remain trusted.

Migault, et al. Expires May 3, 2018 [Page 11]

Internet-Draft DNSSEC Validator Requirements October 2017

 While such inconsistencies may have little impact on end host DNSSEC
 validators, it may be different for large resolving platforms with
 downstream DNSSEC validators, and a DNSSEC validator may be willing
 to maintain its cached data consistent with the published KSK / ZSK.
 A trusted third party may willing to remove all cached RRsets that
 have been validated by the KSK/ZSK upon some specific states
 (revoked, or Removed for example), of after some time after the state
 is noticed. In this later case, only the RRset whose TTL has not
 expired yet would be flushed.

 On the other hand, when a KSK / ZSK is known to be corrupted, this
 state may affect the trust that has been established at time T. In
 such case, the DNSSEC validator may be willling to flush all cached
 data that has been validated by the currently known corrupted KSK /
 ZSK, including the KSK / ZSK itslef.

 As a result, the following requirements are expected:

 REQ16: A DNSSEC validator MUST be able to flush the cached KSK/ZSK.

 REQ17: A DNSSEC validator MUST be able to flush the cached RRsets
 associated to a KSK/ZSK.

8. DS

 The DS RRset is stored in the parent zone to build a chain of trust
 with the child zone. This DS RRset can be invalid because its RDATA
 (KSK) is not anymore used in the child zone or because the DS is
 badly signed and cannot be validated by the DNSSEC Validator.

 In both cases the child zone is considered as bogus and the valid
 child zone’s KSK should become a Trust Anchor KSK. This requirements
 is fulfilled by the requirement to add a Trust Anchor in Section 6.

9. Cryptography Deprecation

 As mentioned in [RFC8247] and [RFC8221] cryptography used one day is
 expected over the time to be replaced by new and more robust
 cryptographic mechanisms. In the case of DNSSEC signature protocols
 are likely to be updated over time. In order to anticipate the
 sunset of one of the signature scheme, a DNSSEC validator may willing
 to estimate the impact of deprecating one signature scheme.

 Currently [RFC6975] provides the ability for a DNSSEC validator to
 announce an authoritative server the supported signature schemes.
 However, a DNSSEC validator is not able to determine other than by
 trying whether a signature scheme is supported by the authoritative
 server.

Migault, et al. Expires May 3, 2018 [Page 12]

Internet-Draft DNSSEC Validator Requirements October 2017

 In order for a DNSSEC validator to safely deprecate one signature
 scheme the following requirement should be fulfilled.

 REQ18: A DNSSEC validator SHOULD be able to request the signature
 scheme supported by an authoritative server.

10. Reporting

 A DNSSEC validator receiving a DNS response cannot make the
 difference between receiving an non-secure response versus an attack.
 Dropping DNSSEC fields by a misconfigured middle boxes, such as DS,
 RRRSIG is considered as an attack.

 A DNSSEC validator is expected to perform secure DNS resolution and
 as such protect its stub client. An invalid response may be the
 result of an attack or a misconfiguration, and the DNSSEC validator
 may play an important role in sharing this information.

 REQ19: A DNSSEC validation SHOULD be able to report the
 unavailability of the DNSSEC service.

 REQ20: A DNSSEC validator SHOULD be able to report a invalid DNSSEC
 validation.

11. IANA Considerations

 There are no IANA consideration for this document.

12. Security Considerations

 The requirements listed in this document aim at providing the DNSSEC
 validator appropriated information so DNSSEC validation can be
 performed. On the other hand, providing inappropriate information
 can lead to misconfiguring the DNSSEC validator, and thus disrupting
 the DNSSEC resolution service. As a result, enabling the setting of
 configuration parameters by a third party may open a wide surface of
 attacks.

 As an appropriate time value is necessary to perform signature check
 (cf. Section 5), an attacker may provide rogue time value to prevent
 the DNSSEC validator to check signatures.

 An attacker may also affect the resolution service by regularly
 asking the DNSSEC validator to flush the KSK/ZSK from its cache (cf.
 Section 7). All associated data will also be flushed. This
 generates additional DNSSEC resolution and additional validations, as
 RRSet that were cached require a DNSSEC resolution over the Internet.

Migault, et al. Expires May 3, 2018 [Page 13]

Internet-Draft DNSSEC Validator Requirements October 2017

 This affects the resolution service by slowing down responses, and
 increases the load on the DNSSEC validator.

 An attacker may ask the DNSSEC validator to consider a rogue KSK/ZSK
 (cf. Invalid DS in Section 8 or Private KSK in Section 6), thus
 hijacking the DNS zone. Similarly, (cf. Section 7) an attacker may
 inform the DNSSEC validator not to trust a given KSK in order to
 prevent DNSSEC validation to be performed.

 An attacker (cf. Section 7) can advertise a "known insecure" KSK or
 ZSK is "back to secure" to prevent signature check to be performed
 correctly.

 As a result, information considered by the DNSSEC validator should be
 from a trusted party. This trust party should have been
 authenticated, and the channel used to exchange the information
 should also be protected and authenticated.

13. Acknowledgment

 The need to address DNSSEC issues on the resolver side started in the
 Home Networks mailing list and during the IETF87 in Berlin. Among
 others, people involved in the discussion were Ted Lemon, Ralph
 Weber, Normen Kowalewski, and Mikael Abrahamsson. People involved in
 the email discussion initiated by Jim Gettys were, with among others,
 Paul Wouters, Joe Abley and Michael Richardson.

 The current document has been initiated after a discussion with Paul
 Wouter and Evan Hunt.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

Migault, et al. Expires May 3, 2018 [Page 14]

Internet-Draft DNSSEC Validator Requirements October 2017

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC5011] StJohns, M., "Automated Updates of DNS Security (DNSSEC)
 Trust Anchors", STD 74, RFC 5011, DOI 10.17487/RFC5011,
 September 2007, <https://www.rfc-editor.org/info/rfc5011>.

 [RFC6975] Crocker, S. and S. Rose, "Signaling Cryptographic
 Algorithm Understanding in DNS Security Extensions
 (DNSSEC)", RFC 6975, DOI 10.17487/RFC6975, July 2013,
 <https://www.rfc-editor.org/info/rfc6975>.

 [RFC8221] Wouters, P., Migault, D., Mattsson, J., Nir, Y., and T.
 Kivinen, "Cryptographic Algorithm Implementation
 Requirements and Usage Guidance for Encapsulating Security
 Payload (ESP) and Authentication Header (AH)", RFC 8221,
 DOI 10.17487/RFC8221, October 2017,
 <https://www.rfc-editor.org/info/rfc8221>.

 [RFC8247] Nir, Y., Kivinen, T., Wouters, P., and D. Migault,
 "Algorithm Implementation Requirements and Usage Guidance
 for the Internet Key Exchange Protocol Version 2 (IKEv2)",
 RFC 8247, DOI 10.17487/RFC8247, September 2017,
 <https://www.rfc-editor.org/info/rfc8247>.

14.2. Informational References

 [I-D.ietf-dnsop-rfc5011-security-considerations]
 Hardaker, W. and W. Kumari, "Security Considerations for
 RFC5011 Publishers", draft-ietf-dnsop-rfc5011-security-
 considerations-07 (work in progress), October 2017.

 [RFC6781] Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC
 Operational Practices, Version 2", RFC 6781,
 DOI 10.17487/RFC6781, December 2012,
 <https://www.rfc-editor.org/info/rfc6781>.

 [RFC7583] Morris, S., Ihren, J., Dickinson, J., and W. Mekking,
 "DNSSEC Key Rollover Timing Considerations", RFC 7583,
 DOI 10.17487/RFC7583, October 2015,
 <https://www.rfc-editor.org/info/rfc7583>.

 [RFC7646] Ebersman, P., Kumari, W., Griffiths, C., Livingood, J.,
 and R. Weber, "Definition and Use of DNSSEC Negative Trust
 Anchors", RFC 7646, DOI 10.17487/RFC7646, September 2015,
 <https://www.rfc-editor.org/info/rfc7646>.

Migault, et al. Expires May 3, 2018 [Page 15]

Internet-Draft DNSSEC Validator Requirements October 2017

 [RFC7958] Abley, J., Schlyter, J., Bailey, G., and P. Hoffman,
 "DNSSEC Trust Anchor Publication for the Root Zone",
 RFC 7958, DOI 10.17487/RFC7958, August 2016,
 <https://www.rfc-editor.org/info/rfc7958>.

 [UNBOUND-ANCHOR]
 "unbound-anchor.c File Reference",
 <https://www.unbound.net/documentation/doxygen/
 unbound-anchor_8c.html#details>.

Authors’ Addresses

 Daniel Migault
 Ericsson

 Email: daniel.migault@ericsson.com

 Dan York
 Internet Society

 Email: york@isoc.org

 Edward Lewis
 ICANN

 Email: edward.lewis@icann.org

Migault, et al. Expires May 3, 2018 [Page 16]

