
DNSOP Working Group R. Bellis
Internet-Draft ISC
Updates: 1035, 7766 (if approved) S. Cheshire
Intended status: Standards Track Apple Inc.
Expires: June 9, 2019 J. Dickinson
 S. Dickinson
 Sinodun
 T. Lemon
 Nibbhaya Consulting
 T. Pusateri
 Unaffiliated
 December 06, 2018

 DNS Stateful Operations
 draft-ietf-dnsop-session-signal-20

Abstract

 This document defines a new DNS OPCODE for DNS Stateful Operations
 (DSO). DSO messages communicate operations within persistent
 stateful sessions, using type-length-value (TLV) syntax. Three TLVs
 are defined that manage session timeouts, termination, and encryption
 padding, and a framework is defined for extensions to enable new
 stateful operations. This document updates RFC 1035 by adding a new
 DNS header opcode which has different message semantics, and a new
 result code. This document updates RFC 7766 by redefining a session,
 providing new guidance on connection re-use, and providing a new
 mechanism for handling session idle timeouts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 9, 2019.

Bellis, et al. Expires June 9, 2019 [Page 1]

Internet-Draft DNS Stateful Operations December 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 5
 3. Terminology . 6
 4. Applicability . 9
 4.1. Use Cases . 9
 4.1.1. Session Management 9
 4.1.2. Long-lived Subscriptions 9
 4.2. Applicable Transports 10
 5. Protocol Details . 11
 5.1. DSO Session Establishment 12
 5.1.1. Session Establishment Failure 13
 5.1.2. Session Establishment Success 14
 5.2. Operations After Session Establishment 14
 5.3. Session Termination 15
 5.3.1. Handling Protocol Errors 15
 5.4. Message Format . 16
 5.4.1. DNS Header Fields in DSO Messages 17
 5.4.2. DSO Data . 19
 5.4.3. TLV Syntax . 21
 5.4.4. EDNS(0) and TSIG 24
 5.5. Message Handling . 25
 5.5.1. Delayed Acknowledgement Management 26
 5.5.2. MESSAGE ID Namespaces 27
 5.5.3. Error Responses 28
 5.6. Responder-Initiated Operation Cancellation 29
 6. DSO Session Lifecycle and Timers 30
 6.1. DSO Session Initiation 30
 6.2. DSO Session Timeouts 31
 6.3. Inactive DSO Sessions 32
 6.4. The Inactivity Timeout 33
 6.4.1. Closing Inactive DSO Sessions 33

Bellis, et al. Expires June 9, 2019 [Page 2]

Internet-Draft DNS Stateful Operations December 2018

 6.4.2. Values for the Inactivity Timeout 34
 6.5. The Keepalive Interval 35
 6.5.1. Keepalive Interval Expiry 35
 6.5.2. Values for the Keepalive Interval 35
 6.6. Server-Initiated Session Termination 37
 6.6.1. Server-Initiated Retry Delay Message 38
 6.6.2. Misbehaving Clients 39
 6.6.3. Client Reconnection 39
 7. Base TLVs for DNS Stateful Operations 41
 7.1. Keepalive TLV . 41
 7.1.1. Client handling of received Session Timeout values . 43
 7.1.2. Relationship to edns-tcp-keepalive EDNS0 Option . . . 44
 7.2. Retry Delay TLV . 45
 7.2.1. Retry Delay TLV used as a Primary TLV 45
 7.2.2. Retry Delay TLV used as a Response Additional TLV . . 47
 7.3. Encryption Padding TLV 48
 8. Summary Highlights . 49
 8.1. QR bit and MESSAGE ID 49
 8.2. TLV Usage . 50
 9. Additional Considerations 52
 9.1. Service Instances . 52
 9.2. Anycast Considerations 53
 9.3. Connection Sharing 54
 9.4. Operational Considerations for Middlebox 55
 9.5. TCP Delayed Acknowledgement Considerations 56
 10. IANA Considerations . 59
 10.1. DSO OPCODE Registration 59
 10.2. DSO RCODE Registration 59
 10.3. DSO Type Code Registry 59
 11. Security Considerations 60
 11.1. TLS 0-RTT Considerations 61
 12. Acknowledgements . 62
 13. References . 62
 13.1. Normative References 62
 13.2. Informative References 63
 Authors’ Addresses . 65

1. Introduction

 This document specifies a mechanism for managing stateful DNS
 connections. DNS most commonly operates over a UDP transport, but
 can also operate over streaming transports; the original DNS RFC
 specifies DNS over TCP [RFC1035] and a profile for DNS over TLS
 [RFC7858] has been specified. These transports can offer persistent,
 long-lived sessions and therefore when using them for transporting
 DNS messages it is of benefit to have a mechanism that can establish
 parameters associated with those sessions, such as timeouts. In such

Bellis, et al. Expires June 9, 2019 [Page 3]

Internet-Draft DNS Stateful Operations December 2018

 situations it is also advantageous to support server-initiated
 messages (such as DNS Push Notifications [I-D.ietf-dnssd-push]).

 The existing EDNS(0) Extension Mechanism for DNS [RFC6891] is
 explicitly defined to only have "per-message" semantics. While
 EDNS(0) has been used to signal at least one session-related
 parameter (edns-tcp-keepalive EDNS0 Option [RFC7828]) the result is
 less than optimal due to the restrictions imposed by the EDNS(0)
 semantics and the lack of server-initiated signalling. For example,
 a server cannot arbitrarily instruct a client to close a connection
 because the server can only send EDNS(0) options in responses to
 queries that contained EDNS(0) options.

 This document defines a new DNS OPCODE, DSO ([TBA1], tentatively 6),
 for DNS Stateful Operations. DSO messages are used to communicate
 operations within persistent stateful sessions, expressed using type-
 length-value (TLV) syntax. This document defines an initial set of
 three TLVs, used to manage session timeouts, termination, and
 encryption padding.

 All three TLVs defined here are mandatory for all implementations of
 DSO. Further TLVs may be defined in additional specifications.

 DSO messages may or may not be acknowledged; this is signalled by
 providing a non-zero message ID for messages that must be
 acknowledged (DSO request messages) and a zero message ID for
 messages that are not to be acknowledged (DSO unidirectional
 messages), and is also specified in the definition of a particular
 DSO message type. Messages are pipelined; answers may appear out of
 order when more than one answer is pending.

 The format for DSO messages (Section 5.4) differs somewhat from the
 traditional DNS message format used for standard queries and
 responses. The standard twelve-byte header is used, but the four
 count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) are set to zero and
 accordingly their corresponding sections are not present.

 The actual data pertaining to DNS Stateful Operations (expressed in
 TLV syntax) is appended to the end of the DNS message header. Just
 as in traditional DNS over TCP [RFC1035] [RFC7766] the stream
 protocol carrying DSO messages (which are just another kind of DNS
 message) frames them by putting a 16-bit message length at the start,
 so the length of the DSO message is determined from that length,
 rather than from any of the DNS header counts.

 When displayed using packet analyzer tools that have not been updated
 to recognize the DSO format, this will result in the DSO data being

Bellis, et al. Expires June 9, 2019 [Page 4]

Internet-Draft DNS Stateful Operations December 2018

 displayed as unknown additional data after the end of the DNS
 message.

 This new format has distinct advantages over an RR-based format
 because it is more explicit and more compact. Each TLV definition is
 specific to its use case, and as a result contains no redundant or
 overloaded fields. Importantly, it completely avoids conflating DNS
 Stateful Operations in any way with normal DNS operations or with
 existing EDNS(0)-based functionality. A goal of this approach is to
 avoid the operational issues that have befallen EDNS(0), particularly
 relating to middlebox behaviour (see for example
 [I-D.ietf-dnsop-no-response-issue] sections 3.2 and 4).

 With EDNS(0), multiple options may be packed into a single OPT
 pseudo-RR, and there is no generalized mechanism for a client to be
 able to tell whether a server has processed or otherwise acted upon
 each individual option within the combined OPT pseudo-RR. The
 specifications for each individual option need to define how each
 different option is to be acknowledged, if necessary.

 In contrast to EDNS(0), with DSO there is no compelling motivation to
 pack multiple operations into a single message for efficiency
 reasons, because DSO always operates using a connection-oriented
 transport protocol. Each DSO operation is communicated in its own
 separate DNS message, and the transport protocol can take care of
 packing several DNS messages into a single IP packet if appropriate.
 For example, TCP can pack multiple small DNS messages into a single
 TCP segment. This simplification allows for clearer semantics. Each
 DSO request message communicates just one primary operation, and the
 RCODE in the corresponding response message indicates the success or
 failure of that operation.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Bellis, et al. Expires June 9, 2019 [Page 5]

Internet-Draft DNS Stateful Operations December 2018

3. Terminology

 DSO: DNS Stateful Operations.

 connection: a bidirectional byte (or message) stream, where the
 bytes (or messages) are delivered reliably and in-order, such as
 provided by using DNS over TCP [RFC1035] [RFC7766] or DNS over TLS
 [RFC7858].

 session: The unqualified term "session" in the context of this
 document refers to a persistent network connection between two
 endpoints which allows for the exchange of DNS messages over a
 connection where either end of the connection can send messages to
 the other end. (The term has no relationship to the "session
 layer" of the OSI "seven-layer model".)

 DSO Session: a session established between two endpoints that
 acknowledge persistent DNS state via the exchange of DSO messages
 over the connection. This is distinct from a DNS-over-TCP session
 as described in the previous specification for DNS over TCP
 [RFC7766].

 close gracefully: a normal session shutdown, where the client closes
 the TCP connection to the server using a graceful close, such that
 no data is lost (e.g., using TCP FIN, see Section 5.3).

 forcibly abort: a session shutdown as a result of a fatal error,
 where the TCP connection is unilaterally aborted without regard
 for data loss (e.g., using TCP RST, see Section 5.3).

 server: the software with a listening socket, awaiting incoming
 connection requests, in the usual DNS sense.

 client: the software which initiates a connection to the server’s
 listening socket, in the usual DNS sense.

 initiator: the software which sends a DSO request message or a DSO
 unidirectional message during a DSO session. Either a client or
 server can be an initiator

 responder: the software which receives a DSO request message or a
 DSO unidirectional message during a DSO

 session. Either a client or server can be a responder.

 sender: the software which is sending a DNS message, a DSO message,
 a DNS response, or a DSO response.

Bellis, et al. Expires June 9, 2019 [Page 6]

Internet-Draft DNS Stateful Operations December 2018

 receiver: the software which is receiving a DNS message, a DSO
 message, a DNS response, or a DSO response.

 service instance: a specific instance of server software running on
 a specific host (Section 9.1).

 long-lived operation: a long-lived operation is an outstanding
 operation on a DSO session where either the client or server,
 acting as initiator, has requested that the responder send new
 information regarding the request, as it becomes available.

 Early Data: A TLS 1.3 handshake containing early data that begins a
 DSO session ([RFC8446] section 2.3). TCP Fast Open is only permitted
 when using TLS.

 DNS message: any DNS message, including DNS queries, response,
 updates, DSO messages, etc.

 DNS request message: any DNS message where the QR bit is 0.

 DNS response message: any DNS message where the QR bit is 1.

 DSO message: a DSO request message, DSO unidirectional message, or a
 DSO response to a DSO request message. If the QR bit is 1 in a
 DSO message, it is a DSO response message. If the QR bit is 0 in
 a DSO message, it is a DSO request message or DSO unidirectional
 message, as determined by the specification of its primary TLV.

 DSO response message: a response to a DSO request message.

 DSO request message: a DSO message that requires a response.

 DSO unidirectional message: a DSO message that does not require and
 cannot induce a response.

 Primary TLV: The first TLV in a DSO message or DSO response; in the
 DSO message this determines the nature of the operation being
 performed.

 Additional TLV: Any TLVs in a DSO message response that follow the
 primary TLV.

 Response Primary TLV: The (optional) first TLV in a DSO response.

 Response Additional TLV: Any TLVs in a DSO response that follow the
 (optional) Response Primary TLV.

Bellis, et al. Expires June 9, 2019 [Page 7]

Internet-Draft DNS Stateful Operations December 2018

 inactivity timer: the time since the most recent non-keepalive DNS
 message was sent or received. (see Section 6.4)

 keepalive timer: the time since the most recent DNS message was sent
 or received. (see Section 6.5)

 session timeouts: the inactivity timer and the keepalive timer.

 inactivity timeout: the maximum value that the inactivity timer can
 have before the connection is gracefully closed.

 keepalive interval: the maximum value that the keepalive timer can
 have before the client is required to send a keepalive. (see
 Section 7.1)

 resetting a timer: setting the timer value to zero and restarting
 the timer.

 clearing a timer: setting the timer value to zero but not restarting
 the timer.

Bellis, et al. Expires June 9, 2019 [Page 8]

Internet-Draft DNS Stateful Operations December 2018

4. Applicability

 DNS Stateful Operations are applicable to several known use cases and
 are only applicable on transports that are capable of supporting a
 DSO Session.

4.1. Use Cases

 There are several use cases for DNS Stateful operations that can be
 described here.

4.1.1. Session Management

 Firstly, establishing session parameters such as server-defined
 timeouts is of great use in the general management of persistent
 connections. For example, using DSO sessions for stub-to-recursive
 DNS-over-TLS [RFC7858] is more flexible for both the client and the
 server than attempting to manage sessions using just the edns-tcp-
 keepalive EDNS0 Option [RFC7828]. The simple set of TLVs defined in
 this document is sufficient to greatly enhance connection management
 for this use case.

4.1.2. Long-lived Subscriptions

 Secondly, DNS-SD [RFC6763] has evolved into a naturally session-based
 mechanism where, for example, long-lived subscriptions lend
 themselves to ’push’ mechanisms as opposed to polling. Long-lived
 stateful connections and server-initiated messages align with this
 use case [I-D.ietf-dnssd-push].

 A general use case is that DNS traffic is often bursty but session
 establishment can be expensive. One challenge with long-lived
 connections is to maintain sufficient traffic to maintain NAT and
 firewall state. To mitigate this issue this document introduces a
 new concept for the DNS, that is DSO "Keepalive traffic". This
 traffic carries no DNS data and is not considered ’activity’ in the
 classic DNS sense, but serves to maintain state in middleboxes, and
 to assure client and server that they still have connectivity to each
 other.

Bellis, et al. Expires June 9, 2019 [Page 9]

Internet-Draft DNS Stateful Operations December 2018

4.2. Applicable Transports

 DNS Stateful Operations are applicable in cases where it is useful to
 maintain an open session between a DNS client and server, where the
 transport allows such a session to be maintained, and where the
 transport guarantees in-order delivery of messages, on which DSO
 depends. Examples of transports that can support DNS Stateful
 Operations are DNS-over-TCP [RFC1035] [RFC7766] and DNS-over-TLS
 [RFC7858].

 Note that in the case of DNS over TLS, there is no mechanism for
 upgrading from DNS-over-TCP to DNS-over-TLS mid-connection (see
 [RFC7858] section 7). A connection is either DNS-over-TCP from the
 start, or DNS-over-TLS from the start.

 DNS Stateful Operations are not applicable for transports that cannot
 support clean session semantics, or that do not guarantee in-order
 delivery. While in principle such a transport could be constructed
 over UDP, the current DNS specification over UDP transport [RFC1035]
 does not provide in-order delivery or session semantics, and hence
 cannot be used. Similarly, DNS-over-HTTP
 [I-D.ietf-doh-dns-over-https] cannot be used because HTTP has its own
 mechanism for managing sessions, and this is incompatible with the
 mechanism specified here.

 No other transports are currently defined for use with DNS Stateful
 Operations. Such transports can be added in the future, if they meet
 the requirements set out in the first paragraph of this section.

Bellis, et al. Expires June 9, 2019 [Page 10]

Internet-Draft DNS Stateful Operations December 2018

5. Protocol Details

 The overall flow of DNS Stateful Operations goes through a series of
 phases:

 Connection Establishment: A client establishes a connection to a
 server. (Section 4.2)

 Connected but sessionless: A connection exists, but a DSO session
 has not been established. DNS messages can be sent from the
 client to server, and DNS responses can be sent from servers to
 clients. In this state a client that wishes to use DSO can
 attempt to establish a DSO session (Section 5.1). Standard DNS-
 over-TCP inactivity timeout handling is in effect [RFC7766] (see
 Section 7.1.2).

 DSO Session Establishment in Progress: A client has sent a DSO
 request, but has not yet received a DSO response. In this phase,
 the client may send more DSO requests and more DNS requests, but
 MUST NOT send DSO unidirectional messages (Section 5.1).

 DSO Session Establishment Failed: The attempt to establish the DSO
 session did not succeed. At this point, the client is permitted
 to continue operating without a DSO session (Connected but
 Sessionless) but does not send further DSO messages (Section 5.1).

 DSO Session Established: Both client and server may send DSO
 messages and DNS messages; both may send replies in response to
 messages they receive (Section 5.2). The inactivity timer
 (Section 6.4) is active; the keepalive timer (Section 6.5) is
 active. Standard DNS-over-TCP inactivity timeout handling is no
 longer in effect [RFC7766] (see Section 7.1.2).

 Server Shutdown: The server has decided to gracefully terminate the
 session, and has sent the client a Retry Delay message
 (Section 6.6.1). There may still be unprocessed messages from the
 client; the server will ignore these. The server will not send
 any further messages to the client (Section 6.6.1.1).

 Client Shutdown: The client has decided to disconnect, either
 because it no longer needs service, the connection is inactive
 (Section 6.4.1), or because the server sent it a Retry Delay
 message (Section 6.6.1). The client closes the connection
 gracefully Section 5.3.

 Reconnect: The client disconnected as a result of a server shutdown.
 The client either waits for the server-specified Retry Delay to
 expire (Section 6.6.3), or else contacts a different server

Bellis, et al. Expires June 9, 2019 [Page 11]

Internet-Draft DNS Stateful Operations December 2018

 instance. If the client no longer needs service, it does not
 reconnect.

 Forcibly Abort: The client or server detected a protocol error, and
 further communication would have undefined behavior. The client
 or server forcibly aborts the connection (Section 5.3).

 Abort Reconnect Wait: The client has forcibly aborted the
 connection, but still needs service. Or, the server forcibly
 aborted the connection, but the client still needs service. The
 client either connects to a different service instance
 (Section 9.1) or waits to reconnect (Section 6.6.3.1).

5.1. DSO Session Establishment

 In order for a session to be established between a client and a
 server, the client must first establish a connection to the server,
 using an applicable transport (see Section 4).

 In some environments it may be known in advance by external means
 that both client and server support DSO, and in these cases either
 client or server may initiate DSO messages at any time. In this
 case, the session is established as soon as the connection is
 established; this is referred to as implicit session establishment.

 However, in the typical case a server will not know in advance
 whether a client supports DSO, so in general, unless it is known in
 advance by other means that a client does support DSO, a server MUST
 NOT initiate DSO request messages or DSO unidirectional messages
 until a DSO Session has been mutually established by at least one
 successful DSO request/response exchange initiated by the client, as
 described below. This is referred to as explicit session
 establishment.

 Until a DSO session has been implicitly or explicitly established, a
 client MUST NOT initiate DSO unidirectional messages.

 A DSO Session is established over a connection by the client sending
 a DSO request message, such as a DSO Keepalive request message
 (Section 7.1), and receiving a response, with matching MESSAGE ID,
 and RCODE set to NOERROR (0), indicating that the DSO request was
 successful.

 Some DSO messages are permitted as early data (Section 11.1). Others
 are not. Unidirectional messages are never permitted as early data
 unless an implicit session exists.

Bellis, et al. Expires June 9, 2019 [Page 12]

Internet-Draft DNS Stateful Operations December 2018

 If a server receives a DSO message in early data whose primary TLV is
 not permitted to appear in early data, the server MUST forcibly abort
 the connection. If a client receives a DSO message in early data,
 and there is no implicit DSO session, the client MUST forcibly abort
 the connection. This can only be enforced on TLS connections;
 therefore, servers MUST NOT enable TFO when listening for a
 connection that does not require TLS.

5.1.1. Session Establishment Failure

 If the response RCODE is set to NOTIMP (4), or in practise any value
 other than NOERROR (0) or DSOTYPENI (defined below), then the client
 MUST assume that the server does not implement DSO at all. In this
 case the client is permitted to continue sending DNS messages on that
 connection, but the client MUST NOT issue further DSO messages on
 that connection.

 If the RCODE in the response is set to DSOTYPENI ("DSO-TYPE Not
 Implemented", [TBA2] tentatively RCODE 11) this indicates that the
 server does support DSO, but does not implement the DSO-TYPE of the
 primary TLV in this DSO request message. A server implementing DSO
 MUST NOT return DSOTYPENI for a DSO Keepalive request message,
 because the Keepalive TLV is mandatory to implement. But in the
 future, if a client attempts to establish a DSO Session using a
 response-requiring DSO request message using some newly-defined DSO-
 TYPE that the server does not understand, that would result in a
 DSOTYPENI response. If the server returns DSOTYPENI then a DSO
 Session is not considered established, but the client is permitted to
 continue sending DNS messages on the connection, including other DSO
 messages such as the DSO Keepalive, which may result in a successful
 NOERROR response, yielding the establishment of a DSO Session.

 Two other possibilities exist: the server might drop the connection,
 or the server might send no response to the DSO message.

 In the first case, the client SHOULD mark that service instance as
 not supporting DSO, and not attempt a DSO connection for some period
 of time (at least an hour) after the failed attempt. The client MAY
 reconnect but not use DSO, if appropriate (Section 6.6.3.2).

 In the second case, the client SHOULD wait 30 seconds, after which
 time the server will be assumed not to support DSO. If the server
 doesn’t respond within 30 seconds, the client MUST forcibly abort the
 connection to the server, since the server’s behavior is out of spec,
 and hence its state is undefined. The client MAY reconnect, but not
 use DSO, if appropriate (Section 6.6.3.1).

Bellis, et al. Expires June 9, 2019 [Page 13]

Internet-Draft DNS Stateful Operations December 2018

5.1.2. Session Establishment Success

 When the server receives a DSO request message from a client, and
 transmits a successful NOERROR response to that request, the server
 considers the DSO Session established.

 When the client receives the server’s NOERROR response to its DSO
 request message, the client considers the DSO Session established.

 Once a DSO Session has been established, either end may unilaterally
 send appropriate DSO messages at any time, and therefore either
 client or server may be the initiator of a message.

5.2. Operations After Session Establishment

 Once a DSO Session has been established, clients and servers should
 behave as described in this specification with regard to inactivity
 timeouts and session termination, not as previously prescribed in the
 earlier specification for DNS over TCP [RFC7766].

 Because a server that supports DNS Stateful Operations MUST return an
 RCODE of NOERROR when it receives a Keepalive TLV DSO request
 message, the Keepalive TLV is an ideal candidate for use in
 establishing a DSO session. Any other option that can only succeed
 when sent to a server of the desired kind is also a good candidate
 for use in establishing a DSO session. For clients that implement
 only the DSO-TYPEs defined in this base specification, sending a
 Keepalive TLV is the only DSO request message they have available to
 initiate a DSO Session. Even for clients that do implement other
 future DSO-TYPEs, for simplicity they MAY elect to always send an
 initial DSO Keepalive request message as their way of initiating a
 DSO Session. A future definition of a new response-requiring DSO-
 TYPE gives implementers the option of using that new DSO-TYPE if they
 wish, but does not change the fact that sending a Keepalive TLV
 remains a valid way of initiating a DSO Session.

Bellis, et al. Expires June 9, 2019 [Page 14]

Internet-Draft DNS Stateful Operations December 2018

5.3. Session Termination

 A "DSO Session" is terminated when the underlying connection is
 closed. Sessions are "closed gracefully" as a result of the server
 closing a session because it is overloaded, the client closing the
 session because it is done, or the client closing the session because
 it is inactive. Sessions are "forcibly aborted" when either the
 client or server closes the connection because of a protocol error.

 o Where this specification says, "close gracefully," that means
 sending a TLS close_notify (if TLS is in use) followed by a TCP
 FIN, or the equivalents for other protocols. Where this
 specification requires a connection to be closed gracefully, the
 requirement to initiate that graceful close is placed on the
 client, to place the burden of TCP’s TIME-WAIT state on the client
 rather than the server.

 o Where this specification says, "forcibly abort," that means
 sending a TCP RST, or the equivalent for other protocols. In the
 BSD Sockets API this is achieved by setting the SO_LINGER option
 to zero before closing the socket.

5.3.1. Handling Protocol Errors

 In protocol implementation there are generally two kinds of errors
 that software writers have to deal with. The first is situations
 that arise due to factors in the environment, such as temporary loss
 of connectivity. While undesirable, these situations do not indicate
 a flaw in the software, and they are situations that software should
 generally be able to recover from.

 The second is situations that should never happen when communicating
 with a compliant DSO implementation. If they do happen, they
 indicate a serious flaw in the protocol implementation, beyond what
 it is reasonable to expect software to recover from. This document
 describes this latter form of error condition as a "fatal error" and
 specifies that an implementation encountering a fatal error condition
 "MUST forcibly abort the connection immediately".

Bellis, et al. Expires June 9, 2019 [Page 15]

Internet-Draft DNS Stateful Operations December 2018

5.4. Message Format

 A DSO message begins with the standard twelve-byte DNS message header
 [RFC1035] with the OPCODE field set to the DSO OPCODE. However,
 unlike standard DNS messages, the question section, answer section,
 authority records section and additional records sections are not
 present. The corresponding count fields (QDCOUNT, ANCOUNT, NSCOUNT,
 ARCOUNT) MUST be set to zero on transmission.

 If a DSO message is received where any of the count fields are not
 zero, then a FORMERR MUST be returned.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | MESSAGE ID |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 |QR | OPCODE | Z | RCODE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | QDCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | ANCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | NSCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | ARCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / DSO Data /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Bellis, et al. Expires June 9, 2019 [Page 16]

Internet-Draft DNS Stateful Operations December 2018

5.4.1. DNS Header Fields in DSO Messages

 In a DSO unidirectional message the MESSAGE ID field MUST be set to
 zero. In a DSO request message the MESSAGE ID field MUST be set to a
 unique nonzero value, that the initiator is not currently using for
 any other active operation on this connection. For the purposes
 here, a MESSAGE ID is in use in this DSO Session if the initiator has
 used it in a DSO request message for which it is still awaiting a
 response, or if the client has used it to set up a long-lived
 operation that has not yet been cancelled. For example, a long-lived
 operation could be a Push Notification subscription
 [I-D.ietf-dnssd-push] or a Discovery Relay interface subscription
 [I-D.ietf-dnssd-mdns-relay].

 Whether a message is a DSO request message or a DSO unidirectional
 message is determined only by the specification for the Primary TLV.
 An acknowledgment cannot be requested by including a nonzero message
 ID in a message that is required according to its primary TLV to be
 unidirectional. Nor can an acknowledgment be prevented by sending a
 message ID of zero in a message that is required to be a DSO request
 message according to its primary TLV. A responder that receives
 either such malformed message MUST treat it as a fatal error and
 forcibly abort the connection immediately.

 In a DSO request message or DSO unidirectional message the DNS Header
 QR bit MUST be zero (QR=0). If the QR bit is not zero the message is
 not a DSO request or DSO unidirectional message.

 In a DSO response message the DNS Header QR bit MUST be one (QR=1).
 If the QR bit is not one, the message is not a response message.

 In a DSO response message (QR=1) the MESSAGE ID field MUST contain a
 copy of the value of the MESSAGE ID field in the DSO request message
 being responded to. In a DSO response message (QR=1) the MESSAGE ID
 field MUST NOT be zero. If a DSO response message (QR=1) is received
 where the MESSAGE ID is zero this is a fatal error and the recipient
 MUST forcibly abort the connection immediately.

 The DNS Header OPCODE field holds the DSO OPCODE value.

 The Z bits are currently unused in DSO messages, and in both DSO
 request messages and DSO responses the Z bits MUST be set to zero (0)
 on transmission and MUST be ignored on reception.

 In a DSO request message (QR=0) the RCODE is set according to the
 definition of the request. For example, in a Retry Delay message
 (Section 6.6.1) the RCODE indicates the reason for termination.
 However, in most cases, except where clearly specified otherwise, in

Bellis, et al. Expires June 9, 2019 [Page 17]

Internet-Draft DNS Stateful Operations December 2018

 a DSO request message (QR=0) the RCODE is set to zero on
 transmission, and silently ignored on reception.

 The RCODE value in a response message (QR=1) may be one of the
 following values:

 +--------+-----------+--+
 | Code | Mnemonic | Description |
 +--------+-----------+--+
0	NOERROR	Operation processed successfully
1	FORMERR	Format error
2	SERVFAIL	Server failed to process DSO request message
		due to a problem with the server
4	NOTIMP	DSO not supported
5	REFUSED	Operation declined for policy reasons
[TBA2]	DSOTYPENI	Primary TLV’s DSO-Type is not implemented
11		
 +--------+-----------+--+

 Use of the above RCODEs is likely to be common in DSO but does not
 preclude the definition and use of other codes in future documents
 that make use of DSO.

 If a document defining a new DSO-TYPE makes use of response codes not
 defined here, then that document MUST specify the specific
 interpretation of those RCODE values in the context of that new DSO
 TLV.

Bellis, et al. Expires June 9, 2019 [Page 18]

Internet-Draft DNS Stateful Operations December 2018

5.4.2. DSO Data

 The standard twelve-byte DNS message header with its zero-valued
 count fields is followed by the DSO Data, expressed using TLV syntax,
 as described below in Section 5.4.3.

 A DSO request message or DSO unidirectional message MUST contain at
 least one TLV. The first TLV in a DSO request message or DSO
 unidirectional message is referred to as the "Primary TLV" and
 determines the nature of the operation being performed, including
 whether it is a DSO request or a DSO unidirectional operation. In
 some cases it may be appropriate to include other TLVs in a DSO
 request message or DSO unidirectional message, such as the Encryption
 Padding TLV (Section 7.3), and these extra TLVs are referred to as
 the "Additional TLVs" and are not limited to what is defined in this
 document. New "Additional TLVs" may be defined in the future and
 those definitions will describe when their use is appropriate.

 A DSO response message may contain no TLVs, or it may be specified to
 contain one or more TLVs appropriate to the information being
 communicated. This includes "Primary TLVs" and "Additional TLVs"
 defined in this document as well as in future TLV definitions. It
 may be permissible for an additional TLV to appear in a response to a
 primary TLV even though the specification of that primary TLV does
 not specify it explicitly. See Section 8.2 for more information.

 A DSO response message may contain one or more TLVs with the Primary
 TLV DSO-TYPE the same as the Primary TLV from the corresponding DSO
 request message or it may contain zero or more Additional TLVs only.
 The MESSAGE ID field in the DNS message header is sufficient to
 identify the DSO request message to which this response message
 relates.

 A DSO response message may contain one or more TLVs with DSO-TYPEs
 different from the Primary TLV from the corresponding DSO request
 message, in which case those TLV(s) are referred to as "Response
 Additional TLVs".

 Response Primary TLV(s), if present, MUST occur first in the response
 message, before any Response Additional TLVs.

 It is anticipated that most DSO operations will be specified to use
 DSO request messages, which generate corresponding DSO responses. In
 some specialized high-traffic use cases, it may be appropriate to
 specify DSO unidirectional messages. DSO unidirectional messages can
 be more efficient on the network, because they don’t generate a
 stream of corresponding reply messages. Using DSO unidirectional
 messages can also simplify software in some cases, by removing need

Bellis, et al. Expires June 9, 2019 [Page 19]

Internet-Draft DNS Stateful Operations December 2018

 for an initiator to maintain state while it waits to receive replies
 it doesn’t care about. When the specification for a particular TLV
 states that, when used as a Primary TLV (i.e., first) in an outgoing
 DSO request message (i.e., QR=0), that message is to be
 unidirectional, the MESSAGE ID field MUST be set to zero and the
 receiver MUST NOT generate any response message corresponding to this
 DSO unidirectional message.

 The previous point, that the receiver MUST NOT generate responses to
 DSO unidirectional messages, applies even in the case of errors.

 When a DSO message is received where both the QR bit and the MESSAGE
 ID field are zero, the receiver MUST NOT generate any response. For
 example, if the DSO-TYPE in the Primary TLV is unrecognized, then a
 DSOTYPENI error MUST NOT be returned; instead the receiver MUST
 forcibly abort the connection immediately.

 DSO unidirectional messages MUST NOT be used "speculatively" in cases
 where the sender doesn’t know if the receiver supports the Primary
 TLV in the message, because there is no way to receive any response
 to indicate success or failure. DSO unidirectional messages are only
 appropriate in cases where the sender already knows that the receiver
 supports, and wishes to receive, these messages.

 For example, after a client has subscribed for Push Notifications
 [I-D.ietf-dnssd-push], the subsequent event notifications are then
 sent as DSO unidirectional messages, and this is appropriate because
 the client initiated the message stream by virtue of its Push
 Notification subscription, thereby indicating its support of Push
 Notifications, and its desire to receive those notifications.

 Similarly, after a Discovery Relay client has subscribed to receive
 inbound mDNS (multicast DNS, [RFC6762]) traffic from a Discovery
 Relay, the subsequent stream of received packets is then sent using
 DSO unidirectional messages, and this is appropriate because the
 client initiated the message stream by virtue of its Discovery Relay
 link subscription, thereby indicating its support of Discovery Relay,
 and its desire to receive inbound mDNS packets over that DSO session
 [I-D.ietf-dnssd-mdns-relay].

Bellis, et al. Expires June 9, 2019 [Page 20]

Internet-Draft DNS Stateful Operations December 2018

5.4.3. TLV Syntax

 All TLVs, whether used as "Primary", "Additional", "Response
 Primary", or "Response Additional", use the same encoding syntax.

 Specifications that define new TLVs must specify whether the DSO-TYPE
 can be used as the Primary TLV, used as an Additional TLV, or used in
 either context, both in the case of requests and of responses. The
 specification for a TLV must also state whether, when used as the
 Primary (i.e., first) TLV in a DSO message (i.e., QR=0), that DSO
 message is unidirectional or is a request message which requires a
 response. If the DSO message requires a response, the specification
 must also state which TLVs, if any, are to be included in the
 response. The Primary TLV may or may not be contained in the
 response, depending on what is specified for that TLV.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | DSO-TYPE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | DSO-LENGTH |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / DSO-DATA /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 DSO-TYPE: A 16-bit unsigned integer, in network (big endian) byte
 order, giving the DSO-TYPE of the current DSO TLV per the IANA DSO
 Type Code Registry.

 DSO-LENGTH: A 16-bit unsigned integer, in network (big endian) byte
 order, giving the size in bytes of the DSO-DATA.

 DSO-DATA: Type-code specific format. The generic DSO machinery
 treats the DSO-DATA as an opaque "blob" without attempting to
 interpret it. Interpretation of the meaning of the DSO-DATA for a
 particular DSO-TYPE is the responsibility of the software that
 implements that DSO-TYPE.

Bellis, et al. Expires June 9, 2019 [Page 21]

Internet-Draft DNS Stateful Operations December 2018

5.4.3.1. Request TLVs

 The first TLV in a DSO request message or DSO unidirectional message
 is the "Primary TLV" and indicates the operation to be performed. A
 DSO request message or DSO unidirectional message MUST contain at at
 least one TLV-the Primary TLV.

 Immediately following the Primary TLV, a DSO request message or DSO
 unidirectional message MAY contain one or more "Additional TLVs",
 which specify additional parameters relating to the operation.

5.4.3.2. Response TLVs

 Depending on the operation, a DSO response message MAY contain no
 TLVs, because it is simply a response to a previous DSO request
 message, and the MESSAGE ID in the header is sufficient to identify
 the DSO request in question. Or it may contain a single response
 TLV, with the same DSO-TYPE as the Primary TLV in the request
 message. Alternatively it may contain one or more TLVs of other
 types, or a combination of the above, as appropriate for the
 information that needs to be communicated. The specification for
 each DSO TLV determines what TLVs are required in a response to a DSO
 request message using that TLV.

 If a DSO response is received for an operation where the
 specification requires that the response carry a particular TLV or
 TLVs, and the required TLV(s) are not present, then this is a fatal
 error and the recipient of the defective response message MUST
 forcibly abort the connection immediately.

Bellis, et al. Expires June 9, 2019 [Page 22]

Internet-Draft DNS Stateful Operations December 2018

5.4.3.3. Unrecognized TLVs

 If DSO request message is received containing an unrecognized Primary
 TLV, with a nonzero MESSAGE ID (indicating that a response is
 expected), then the receiver MUST send an error response with
 matching MESSAGE ID, and RCODE DSOTYPENI. The error response MUST
 NOT contain a copy of the unrecognized Primary TLV.

 If DSO unidirectional message is received containing an unrecognized
 Primary TLV, with a zero MESSAGE ID (indicating that no response is
 expected), then this is a fatal error and the recipient MUST forcibly
 abort the connection immediately.

 If a DSO request message or DSO unidirectional message is received
 where the Primary TLV is recognized, containing one or more
 unrecognized Additional TLVs, the unrecognized Additional TLVs MUST
 be silently ignored, and the remainder of the message is interpreted
 and handled as if the unrecognized parts were not present.

 Similarly, if a DSO response message is received containing one or
 more unrecognized TLVs, the unrecognized TLVs MUST be silently
 ignored, and the remainder of the message is interpreted and handled
 as if the unrecognized parts were not present.

Bellis, et al. Expires June 9, 2019 [Page 23]

Internet-Draft DNS Stateful Operations December 2018

5.4.4. EDNS(0) and TSIG

 Since the ARCOUNT field MUST be zero, a DSO message cannot contain a
 valid EDNS(0) option in the additional records section. If
 functionality provided by current or future EDNS(0) options is
 desired for DSO messages, one or more new DSO TLVs need to be defined
 to carry the necessary information.

 For example, the EDNS(0) Padding Option [RFC7830] used for security
 purposes is not permitted in a DSO message, so if message padding is
 desired for DSO messages then the Encryption Padding TLV described in
 Section 7.3 MUST be used.

 A DSO message can’t contain a TSIG record, because a TSIG record is
 included in the additional section of the message, which would mean
 that ARCOUNT would be greater than zero. DSO messages are required
 to have an ARCOUNT of zero. Therefore, if use of signatures with DSO
 messages becomes necessary in the future, a new DSO TLV would have to
 be defined to perform this function.

 Note however that, while DSO *messages* cannot include EDNS(0) or
 TSIG records, a DSO *session* is typically used to carry a whole
 series of DNS messages of different kinds, including DSO messages,
 and other DNS message types like Query [RFC1034] [RFC1035] and Update
 [RFC2136], and those messages can carry EDNS(0) and TSIG records.

 Although messages may contain other EDNS(0) options as appropriate,
 this specification explicitly prohibits use of the edns-tcp-keepalive
 EDNS0 Option [RFC7828] in *any* messages sent on a DSO Session
 (because it is obsoleted by the functionality provided by the DSO
 Keepalive operation). If any message sent on a DSO Session contains
 an edns-tcp-keepalive EDNS0 Option this is a fatal error and the
 recipient of the defective message MUST forcibly abort the connection
 immediately.

Bellis, et al. Expires June 9, 2019 [Page 24]

Internet-Draft DNS Stateful Operations December 2018

5.5. Message Handling

 As described above in Section 5.4.1, whether an outgoing DSO message
 with the QR bit in the DNS header set to zero is a DSO request or DSO
 unidirectional message is determined by the specification for the
 Primary TLV, which in turn determines whether the MESSAGE ID field in
 that outgoing message will be zero or nonzero.

 Every DSO message with the QR bit in the DNS header set to zero and a
 nonzero MESSAGE ID field is a DSO request message, and MUST elicit a
 corresponding response, with the QR bit in the DNS header set to one
 and the MESSAGE ID field set to the value given in the corresponding
 DSO request message.

 Valid DSO request messages sent by the client with a nonzero MESSAGE
 ID field elicit a response from the server, and valid DSO request
 messages sent by the server with a nonzero MESSAGE ID field elicit a
 response from the client.

 Every DSO message with both the QR bit in the DNS header and the
 MESSAGE ID field set to zero is a DSO unidirectional message, and
 MUST NOT elicit a response.

Bellis, et al. Expires June 9, 2019 [Page 25]

Internet-Draft DNS Stateful Operations December 2018

5.5.1. Delayed Acknowledgement Management

 Generally, most good TCP implementations employ a delayed
 acknowledgement timer to provide more efficient use of the network
 and better performance.

 With a bidirectional exchange over TCP, as for example with a DSO
 request message, the operating system TCP implementation waits for
 the application-layer client software to generate the corresponding
 DSO response message. It can then send a single combined packet
 containing the TCP acknowledgement, the TCP window update, and the
 application-generated DSO response message. This is more efficient
 than sending three separate packets, as would occur if the TCP packet
 containing the DSO request were acknowledged immediately.

 With a DSO unidirectional message or DSO response message, there is
 no corresponding application-generated DSO response message, and
 consequently, no hint to the transport protocol about when it should
 send its acknowledgement and window update.

 Some networking APIs provide a mechanism that allows the application-
 layer client software to signal to the transport protocol that no
 response will be forthcoming (in effect it can be thought of as a
 zero-length "empty" write). Where available in the networking API
 being used, the recipient of a DSO unidirectional message or DSO
 response message, having parsed and interpreted the message, SHOULD
 then use this mechanism provided by the networking API to signal that
 no response for this message will be forthcoming, so that the TCP
 implementation can go ahead and send its acknowledgement and window
 update without further delay. See Section 9.5 for further discussion
 of why this is important.

Bellis, et al. Expires June 9, 2019 [Page 26]

Internet-Draft DNS Stateful Operations December 2018

5.5.2. MESSAGE ID Namespaces

 The namespaces of 16-bit MESSAGE IDs are independent in each
 direction. This means it is *not* an error for both client and
 server to send DSO request messages at the same time as each other,
 using the same MESSAGE ID, in different directions. This
 simplification is necessary in order for the protocol to be
 implementable. It would be infeasible to require the client and
 server to coordinate with each other regarding allocation of new
 unique MESSAGE IDs. It is also not necessary to require the client
 and server to coordinate with each other regarding allocation of new
 unique MESSAGE IDs. The value of the 16-bit MESSAGE ID combined with
 the identity of the initiator (client or server) is sufficient to
 unambiguously identify the operation in question. This can be
 thought of as a 17-bit message identifier space, using message
 identifiers 0x00001-0x0FFFF for client-to-server DSO request
 messages, and message identifiers 0x10001-0x1FFFF for server-to-
 client DSO request messages. The least-significant 16 bits are
 stored explicitly in the MESSAGE ID field of the DSO message, and the
 most-significant bit is implicit from the direction of the message.

 As described above in Section 5.4.1, an initiator MUST NOT reuse a
 MESSAGE ID that it already has in use for an outstanding DSO request
 message (unless specified otherwise by the relevant specification for
 the DSO-TYPE in question). At the very least, this means that a
 MESSAGE ID can’t be reused in a particular direction on a particular
 DSO Session while the initiator is waiting for a response to a
 previous DSO request message using that MESSAGE ID on that DSO
 Session (unless specified otherwise by the relevant specification for
 the DSO-TYPE in question), and for a long-lived operation the MESSAGE
 ID for the operation can’t be reused while that operation remains
 active.

 If a client or server receives a response (QR=1) where the MESSAGE ID
 is zero, or is any other value that does not match the MESSAGE ID of
 any of its outstanding operations, this is a fatal error and the
 recipient MUST forcibly abort the connection immediately.

 If a responder receives a DSO request message (QR=0) where the
 MESSAGE ID is not zero, and the responder tracks request MESSAGE IDs,
 and the MESSAGE ID matches the MESSAGE ID of a DSO request message it
 received for which a response has not yet been sent, it MUST forcibly
 abort the connection immediately. This behavior is required to
 prevent a hypothetical attack that takes advantage of undefined
 behavior in this case. However, if the responder does not track
 MESSAGE IDs in this way, no such risk exists, so tracking MESSAGE IDs
 just to implement this sanity check is not required.

Bellis, et al. Expires June 9, 2019 [Page 27]

Internet-Draft DNS Stateful Operations December 2018

5.5.3. Error Responses

 When a DSO unidirectional message type is received (MESSAGE ID field
 is zero), the receiver should already be expecting this DSO message
 type. Section 5.4.3.3 describes the handling of unknown DSO message
 types. Parsing errors MUST also result in the receiver forcibly
 aborting the connection. When a DSO unidirectional message of an
 unexpected type is received, the receiver SHOULD forcibly abort the
 connection. Whether the connection should be forcibly aborted for
 other internal errors processing the DSO unidirectional message is
 implementation dependent, according to the severity of the error.

 When a DSO request message is unsuccessful for some reason, the
 responder returns an error code to the initiator.

 In the case of a server returning an error code to a client in
 response to an unsuccessful DSO request message, the server MAY
 choose to end the DSO Session, or MAY choose to allow the DSO Session
 to remain open. For error conditions that only affect the single
 operation in question, the server SHOULD return an error response to
 the client and leave the DSO Session open for further operations.

 For error conditions that are likely to make all operations
 unsuccessful in the immediate future, the server SHOULD return an
 error response to the client and then end the DSO Session by sending
 a Retry Delay message, as described in Section 6.6.1.

 Upon receiving an error response from the server, a client SHOULD NOT
 automatically close the DSO Session. An error relating to one
 particular operation on a DSO Session does not necessarily imply that
 all other operations on that DSO Session have also failed, or that
 future operations will fail. The client should assume that the
 server will make its own decision about whether or not to end the DSO
 Session, based on the server’s determination of whether the error
 condition pertains to this particular operation, or would also apply
 to any subsequent operations. If the server does not end the DSO
 Session by sending the client a Retry Delay message (Section 6.6.1)
 then the client SHOULD continue to use that DSO Session for
 subsequent operations.

Bellis, et al. Expires June 9, 2019 [Page 28]

Internet-Draft DNS Stateful Operations December 2018

5.6. Responder-Initiated Operation Cancellation

 This document, the base specification for DNS Stateful Operations,
 does not itself define any long-lived operations, but it defines a
 framework for supporting long-lived operations, such as Push
 Notification subscriptions [I-D.ietf-dnssd-push] and Discovery Relay
 interface subscriptions [I-D.ietf-dnssd-mdns-relay].

 Long-lived operations, if successful, will remain active until the
 initiator terminates the operation.

 However, it is possible that a long-lived operation may be valid at
 the time it was initiated, but then a later change of circumstances
 may render that operation invalid. For example, a long-lived client
 operation may pertain to a name that the server is authoritative for,
 but then the server configuration is changed such that it is no
 longer authoritative for that name.

 In such cases, instead of terminating the entire session it may be
 desirable for the responder to be able to cancel selectively only
 those operations that have become invalid.

 The responder performs this selective cancellation by sending a new
 response message, with the MESSAGE ID field containing the MESSAGE ID
 of the long-lived operation that is to be terminated (that it had
 previously acknowledged with a NOERROR RCODE), and the RCODE field of
 the new response message giving the reason for cancellation.

 After a response message with nonzero RCODE has been sent, that
 operation has been terminated from the responder’s point of view, and
 the responder sends no more messages relating to that operation.

 After a response message with nonzero RCODE has been received by the
 initiator, that operation has been terminated from the initiator’s
 point of view, and the cancelled operation’s MESSAGE ID is now free
 for reuse.

Bellis, et al. Expires June 9, 2019 [Page 29]

Internet-Draft DNS Stateful Operations December 2018

6. DSO Session Lifecycle and Timers

6.1. DSO Session Initiation

 A DSO Session begins as described in Section 5.1.

 The client may perform as many DNS operations as it wishes using the
 newly created DSO Session. When the client has multiple messages to
 send, it SHOULD NOT wait for each response before sending the next
 message.

 The server MUST act on messages in the order they are received, but
 SHOULD NOT delay sending responses to those messages as they become
 available in order to return them in the order the requests were
 received.

 Section 6.2.1.1 of the DNS-over-TCP specification [RFC7766] specifies
 this in more detail.

Bellis, et al. Expires June 9, 2019 [Page 30]

Internet-Draft DNS Stateful Operations December 2018

6.2. DSO Session Timeouts

 Two timeout values are associated with a DSO Session: the inactivity
 timeout, and the keepalive interval. Both values are communicated in
 the same TLV, the Keepalive TLV (Section 7.1).

 The first timeout value, the inactivity timeout, is the maximum time
 for which a client may speculatively keep an inactive DSO Session
 open in the expectation that it may have future requests to send to
 that server.

 The second timeout value, the keepalive interval, is the maximum
 permitted interval between messages if the client wishes to keep the
 DSO Session alive.

 The two timeout values are independent. The inactivity timeout may
 be lower, the same, or higher than the keepalive interval, though in
 most cases the inactivity timeout is expected to be shorter than the
 keepalive interval.

 A shorter inactivity timeout with a longer keepalive interval signals
 to the client that it should not speculatively keep an inactive DSO
 Session open for very long without reason, but when it does have an
 active reason to keep a DSO Session open, it doesn’t need to be
 sending an aggressive level of DSO keepalive traffic to maintain that
 session. An example of this would be a client that has subscribed to
 DNS Push notifications: in this case, the client is not sending any
 traffic to the server, but the session is not inactive, because there
 is a active request to the server to receive push notifications.

 A longer inactivity timeout with a shorter keepalive interval signals
 to the client that it may speculatively keep an inactive DSO Session
 open for a long time, but to maintain that inactive DSO Session it
 should be sending a lot of DSO keepalive traffic. This configuration
 is expected to be less common.

 In the usual case where the inactivity timeout is shorter than the
 keepalive interval, it is only when a client has a long-lived, low-
 traffic, operation that the keepalive interval comes into play, to
 ensure that a sufficient residual amount of traffic is generated to
 maintain NAT and firewall state and to assure client and server that
 they still have connectivity to each other.

 On a new DSO Session, if no explicit DSO Keepalive message exchange
 has taken place, the default value for both timeouts is 15 seconds.

 For both timeouts, lower values of the timeout result in higher
 network traffic, and higher CPU load on the server.

Bellis, et al. Expires June 9, 2019 [Page 31]

Internet-Draft DNS Stateful Operations December 2018

6.3. Inactive DSO Sessions

 At both servers and clients, the generation or reception of any
 complete DNS message (including DNS requests, responses, updates, DSO
 messages, etc.) resets both timers for that DSO Session, with the one
 exception that a DSO Keepalive message resets only the keepalive
 timer, not the inactivity timeout timer.

 In addition, for as long as the client has an outstanding operation
 in progress, the inactivity timer remains cleared, and an inactivity
 timeout cannot occur.

 For short-lived DNS operations like traditional queries and updates,
 an operation is considered in progress for the time between request
 and response, typically a period of a few hundred milliseconds at
 most. At the client, the inactivity timer is cleared upon
 transmission of a request and remains cleared until reception of the
 corresponding response. At the server, the inactivity timer is
 cleared upon reception of a request and remains cleared until
 transmission of the corresponding response.

 For long-lived DNS Stateful operations (such as a Push Notification
 subscription [I-D.ietf-dnssd-push] or a Discovery Relay interface
 subscription [I-D.ietf-dnssd-mdns-relay]), an operation is considered
 in progress for as long as the operation is active, i.e. until it is
 cancelled. This means that a DSO Session can exist, with active
 operations, with no messages flowing in either direction, for far
 longer than the inactivity timeout, and this is not an error. This
 is why there are two separate timers: the inactivity timeout, and the
 keepalive interval. Just because a DSO Session has no traffic for an
 extended period of time does not automatically make that DSO Session
 "inactive", if it has an active operation that is awaiting events.

Bellis, et al. Expires June 9, 2019 [Page 32]

Internet-Draft DNS Stateful Operations December 2018

6.4. The Inactivity Timeout

 The purpose of the inactivity timeout is for the server to balance
 the trade off between the costs of setting up new DSO Sessions and
 the costs of maintaining inactive DSO Sessions. A server with
 abundant DSO Session capacity can offer a high inactivity timeout, to
 permit clients to keep a speculative DSO Session open for a long
 time, to save the cost of establishing a new DSO Session for future
 communications with that server. A server with scarce memory
 resources can offer a low inactivity timeout, to cause clients to
 promptly close DSO Sessions whenever they have no outstanding
 operations with that server, and then create a new DSO Session later
 when needed.

6.4.1. Closing Inactive DSO Sessions

 When a connection’s inactivity timeout is reached the client MUST
 begin closing the idle connection, but a client is not required to
 keep an idle connection open until the inactivity timeout is reached.
 A client MAY close a DSO Session at any time, at the client’s
 discretion. If a client determines that it has no current or
 reasonably anticipated future need for a currently inactive DSO
 Session, then the client SHOULD gracefully close that connection.

 If, at any time during the life of the DSO Session, the inactivity
 timeout value (i.e., 15 seconds by default) elapses without there
 being any operation active on the DSO Session, the client MUST close
 the connection gracefully.

 If, at any time during the life of the DSO Session, twice the
 inactivity timeout value (i.e., 30 seconds by default), or five
 seconds, if twice the inactivity timeout value is less than five
 seconds, elapses without there being any operation active on the DSO
 Session, the server MUST consider the client delinquent, and MUST
 forcibly abort the DSO Session.

 In this context, an operation being active on a DSO Session includes
 a query waiting for a response, an update waiting for a response, or
 an active long-lived operation, but not a DSO Keepalive message
 exchange itself. A DSO Keepalive message exchange resets only the
 keepalive interval timer, not the inactivity timeout timer.

 If the client wishes to keep an inactive DSO Session open for longer
 than the default duration then it uses the DSO Keepalive message to
 request longer timeout values, as described in Section 7.1.

Bellis, et al. Expires June 9, 2019 [Page 33]

Internet-Draft DNS Stateful Operations December 2018

6.4.2. Values for the Inactivity Timeout

 For the inactivity timeout value, lower values result in more
 frequent DSO Session teardown and re-establishment. Higher values
 result in lower traffic and lower CPU load on the server, but higher
 memory burden to maintain state for inactive DSO Sessions.

 A server may dictate any value it chooses for the inactivity timeout
 (either in a response to a client-initiated request, or in a server-
 initiated message) including values under one second, or even zero.

 An inactivity timeout of zero informs the client that it should not
 speculatively maintain idle connections at all, and as soon as the
 client has completed the operation or operations relating to this
 server, the client should immediately begin closing this session.

 A server will forcibly abort an idle client session after twice the
 inactivity timeout value, or five seconds, whichever is greater. In
 the case of a zero inactivity timeout value, this means that if a
 client fails to close an idle client session then the server will
 forcibly abort the idle session after five seconds.

 An inactivity timeout of 0xFFFFFFFF represents "infinity" and informs
 the client that it may keep an idle connection open as long as it
 wishes. Note that after granting an unlimited inactivity timeout in
 this way, at any point the server may revise that inactivity timeout
 by sending a new DSO Keepalive message dictating new Session Timeout
 values to the client.

 The largest *finite* inactivity timeout supported by the current
 Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7
 days).

Bellis, et al. Expires June 9, 2019 [Page 34]

Internet-Draft DNS Stateful Operations December 2018

6.5. The Keepalive Interval

 The purpose of the keepalive interval is to manage the generation of
 sufficient messages to maintain state in middleboxes (such at NAT
 gateways or firewalls) and for the client and server to periodically
 verify that they still have connectivity to each other. This allows
 them to clean up state when connectivity is lost, and to establish a
 new session if appropriate.

6.5.1. Keepalive Interval Expiry

 If, at any time during the life of the DSO Session, the keepalive
 interval value (i.e., 15 seconds by default) elapses without any DNS
 messages being sent or received on a DSO Session, the client MUST
 take action to keep the DSO Session alive, by sending a DSO Keepalive
 message (Section 7.1). A DSO Keepalive message exchange resets only
 the keepalive timer, not the inactivity timer.

 If a client disconnects from the network abruptly, without cleanly
 closing its DSO Session, perhaps leaving a long-lived operation
 uncancelled, the server learns of this after failing to receive the
 required DSO keepalive traffic from that client. If, at any time
 during the life of the DSO Session, twice the keepalive interval
 value (i.e., 30 seconds by default) elapses without any DNS messages
 being sent or received on a DSO Session, the server SHOULD consider
 the client delinquent, and SHOULD forcibly abort the DSO Session.

6.5.2. Values for the Keepalive Interval

 For the keepalive interval value, lower values result in a higher
 volume of DSO keepalive traffic. Higher values of the keepalive
 interval reduce traffic and CPU load, but have minimal effect on the
 memory burden at the server, because clients keep a DSO Session open
 for the same length of time (determined by the inactivity timeout)
 regardless of the level of DSO keepalive traffic required.

 It may be appropriate for clients and servers to select different
 keepalive interval values depending on the nature of the network they
 are on.

 A corporate DNS server that knows it is serving only clients on the
 internal network, with no intervening NAT gateways or firewalls, can
 impose a higher keepalive interval, because frequent DSO keepalive
 traffic is not required.

 A public DNS server that is serving primarily residential consumer
 clients, where it is likely there will be a NAT gateway on the path,

Bellis, et al. Expires June 9, 2019 [Page 35]

Internet-Draft DNS Stateful Operations December 2018

 may impose a lower keepalive interval, to generate more frequent DSO
 keepalive traffic.

 A smart client may be adaptive to its environment. A client using a
 private IPv4 address [RFC1918] to communicate with a DNS server at an
 address outside that IPv4 private address block, may conclude that
 there is likely to be a NAT gateway on the path, and accordingly
 request a lower keepalive interval.

 By default it is RECOMMENDED that clients request, and servers grant,
 a keepalive interval of 60 minutes. This keepalive interval provides
 for reasonably timely detection if a client abruptly disconnects
 without cleanly closing the session, and is sufficient to maintain
 state in firewalls and NAT gateways that follow the IETF recommended
 Best Current Practice that the "established connection idle-timeout"
 used by middleboxes be at least 2 hours 4 minutes [RFC5382]
 [RFC7857].

 Note that the lower the keepalive interval value, the higher the load
 on client and server. Moreover for a keep-alive value that is
 smaller than the time needed for the transport to retransmit, a
 single packet loss would cause a server to overzealously abort the
 connect. For example, a (hypothetical and unrealistic) keepalive
 interval value of 100 ms would result in a continuous stream of ten
 messages per second or more (if allowed by the current congestion
 control window), in both directions, to keep the DSO Session alive.
 And, in this extreme example, a single retransmission over a path
 with, e.g., 100ms RTT would introduce a momentary pause in the stream
 of messages, long enough to cause the server to abort the connection.

 Because of this concern, the server MUST NOT send a DSO Keepalive
 message (either a response to a client-initiated request, or a
 server-initiated message) with a keepalive interval value less than
 ten seconds. If a client receives a DSO Keepalive message specifying
 a keepalive interval value less than ten seconds this is a fatal
 error and the client MUST forcibly abort the connection immediately.

 A keepalive interval value of 0xFFFFFFFF represents "infinity" and
 informs the client that it should generate no DSO keepalive traffic.
 Note that after signaling that the client should generate no DSO
 keepalive traffic in this way, at any point the server may revise
 that DSO keepalive traffic requirement by sending a new DSO Keepalive
 message dictating new Session Timeout values to the client.

 The largest *finite* keepalive interval supported by the current
 Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7
 days).

Bellis, et al. Expires June 9, 2019 [Page 36]

Internet-Draft DNS Stateful Operations December 2018

6.6. Server-Initiated Session Termination

 In addition to cancelling individual long-lived operations
 selectively (Section 5.6) there are also occasions where a server may
 need to terminate one or more entire sessions. An entire session may
 need to be terminated if the client is defective in some way, or
 departs from the network without closing its session. Sessions may
 also need to be terminated if the server becomes overloaded, or if
 the server is reconfigured and lacks the ability to be selective
 about which operations need to be cancelled.

 This section discusses various reasons a session may be terminated,
 and the mechanisms for doing so.

 In normal operation, closing a DSO Session is the client’s
 responsibility. The client makes the determination of when to close
 a DSO Session based on an evaluation of both its own needs, and the
 inactivity timeout value dictated by the server. A server only
 causes a DSO Session to be ended in the exceptional circumstances
 outlined below. Some of the exceptional situations in which a server
 may terminate a DSO Session include:

 o The server application software or underlying operating system is
 shutting down or restarting.

 o The server application software terminates unexpectedly (perhaps
 due to a bug that makes it crash, causing the underlying operating
 system to send a TCP RST).

 o The server is undergoing a reconfiguration or maintenance
 procedure, that, due to the way the server software is
 implemented, requires clients to be disconnected. For example,
 some software is implemented such that it reads a configuration
 file at startup, and changing the server’s configuration entails
 modifying the configuration file and then killing and restarting
 the server software, which generally entails a loss of network
 connections.

 o The client fails to meets its obligation to generate the required
 DSO keepalive traffic, or to close an inactive session by the
 prescribed time (twice the time interval dictated by the server,
 or five seconds, whichever is greater, as described in
 Section 6.2).

 o The client sends a grossly invalid or malformed request that is
 indicative of a seriously defective client implementation.

 o The server is over capacity and needs to shed some load.

Bellis, et al. Expires June 9, 2019 [Page 37]

Internet-Draft DNS Stateful Operations December 2018

6.6.1. Server-Initiated Retry Delay Message

 In the cases described above where a server elects to terminate a DSO
 Session, it could do so simply by forcibly aborting the connection.
 However, if it did this the likely behavior of the client might be
 simply to to treat this as a network failure and reconnect
 immediately, putting more burden on the server.

 Therefore, to avoid this reconnection implosion, a server SHOULD
 instead choose to shed client load by sending a Retry Delay message,
 with an appropriate RCODE value informing the client of the reason
 the DSO Session needs to be terminated. The format of the Retry
 Delay TLV, and the interpretations of the various RCODE values, are
 described in Section 7.2. After sending a Retry Delay message, the
 server MUST NOT send any further messages on that DSO Session.

 The server MAY randomize retry delays in situations where many retry
 delays are sent in quick succession, so as to avoid all the clients
 attempting to reconnect at once. In general, implementations should
 avoid using the Retry Delay message in a way that would result in
 many clients reconnecting at the same time, if every client attempts
 to reconnect at the exact time specified.

 Upon receipt of a Retry Delay message from the server, the client
 MUST make note of the reconnect delay for this server, and then
 immediately close the connection gracefully.

 After sending a Retry Delay message the server SHOULD allow the
 client five seconds to close the connection, and if the client has
 not closed the connection after five seconds then the server SHOULD
 forcibly abort the connection.

 A Retry Delay message MUST NOT be initiated by a client. If a server
 receives a Retry Delay message this is a fatal error and the server
 MUST forcibly abort the connection immediately.

6.6.1.1. Outstanding Operations

 At the instant a server chooses to initiate a Retry Delay message
 there may be DNS requests already in flight from client to server on
 this DSO Session, which will arrive at the server after its Retry
 Delay message has been sent. The server MUST silently ignore such
 incoming requests, and MUST NOT generate any response messages for
 them. When the Retry Delay message from the server arrives at the
 client, the client will determine that any DNS requests it previously
 sent on this DSO Session, that have not yet received a response, now
 will certainly not be receiving any response. Such requests should

Bellis, et al. Expires June 9, 2019 [Page 38]

Internet-Draft DNS Stateful Operations December 2018

 be considered failed, and should be retried at a later time, as
 appropriate.

 In the case where some, but not all, of the existing operations on a
 DSO Session have become invalid (perhaps because the server has been
 reconfigured and is no longer authoritative for some of the names),
 but the server is terminating all affected DSO Sessions en masse by
 sending them all a Retry Delay message, the reconnect delay MAY be
 zero, indicating that the clients SHOULD immediately attempt to re-
 establish operations.

 It is likely that some of the attempts will be successful and some
 will not, depending on the nature of the reconfiguration.

 In the case where a server is terminating a large number of DSO
 Sessions at once (e.g., if the system is restarting) and the server
 doesn’t want to be inundated with a flood of simultaneous retries, it
 SHOULD send different reconnect delay values to each client. These
 adjustments MAY be selected randomly, pseudorandomly, or
 deterministically (e.g., incrementing the time value by one tenth of
 a second for each successive client, yielding a post-restart
 reconnection rate of ten clients per second).

6.6.2. Misbehaving Clients

 A server may determine that a client is not following the protocol
 correctly. There may be no way for the server to recover the
 session, in which case the server forcibly terminates the connection.
 Since the client doesn’t know why the connection dropped, it may
 reconnect immediately. If the server has determined that a client is
 not following the protocol correctly, it may terminate the DSO
 session as soon as it is established, specifying a long retry-delay
 to prevent the client from immediately reconnecting.

6.6.3. Client Reconnection

 After a DSO Session is ended by the server (either by sending the
 client a Retry Delay message, or by forcibly aborting the underlying
 transport connection) the client SHOULD try to reconnect, to that
 service instance, or to another suitable service instance, if more
 than one is available. If reconnecting to the same service instance,
 the client MUST respect the indicated delay, if available, before
 attempting to reconnect. Clients should not attempt to randomize the
 delay; the server will randomly jitter the retry delay values it
 sends to each client if this behavior is desired.

 If the service instance will only be out of service for a short
 maintenance period, it should use a value a little longer that the

Bellis, et al. Expires June 9, 2019 [Page 39]

Internet-Draft DNS Stateful Operations December 2018

 expected maintenance window. It should not default to a very large
 delay value, or clients may not attempt to reconnect after it resumes
 service.

 If a particular service instance does not want a client to reconnect
 ever (perhaps the service instance is being de-commissioned), it
 SHOULD set the retry delay to the maximum value 0xFFFFFFFF (2^32-1
 milliseconds, approximately 49.7 days). It is not possible to
 instruct a client to stay away for longer than 49.7 days. If, after
 49.7 days, the DNS or other configuration information still indicates
 that this is the valid service instance for a particular service,
 then clients MAY attempt to reconnect. In reality, if a client is
 rebooted or otherwise lose state, it may well attempt to reconnect
 before 49.7 days elapses, for as long as the DNS or other
 configuration information continues to indicate that this is the
 service instance the client should use.

6.6.3.1. Reconnecting After a Forcible Abort

 If a connection was forcibly aborted by the client, the client SHOULD
 mark that service instance as not supporting DSO. The client MAY
 reconnect but not attempt to use DSO, or may connect to a different
 service instance, if applicable.

6.6.3.2. Reconnecting After an Unexplained Connection Drop

 It is also possible for a server to forcibly terminate the
 connection; in this case the client doesn’t know whether the
 termination was the result of a protocol error or a network outage.
 When the client notices that the connection has been dropped, it can
 attempt to reconnect immediately. However, if the connection is
 dropped again without the client being able to successfully do
 whatever it is trying to do, it should mark the server as not
 supporting DSO.

6.6.3.3. Probing for Working DSO Support

 Once a server has been marked by the client as not supporting DSO,
 the client SHOULD NOT attempt DSO operations on that server until
 some time has elapsed. A reasonable minimum would be an hour. Since
 forcibly aborted connections are the result of a software failure,
 it’s not likely that the problem will be solved in the first hour
 after it’s first encountered. However, by restricting the retry
 interval to an hour, the client will be able to notice when the
 problem has been fixed without placing an undue burden on the server.

Bellis, et al. Expires June 9, 2019 [Page 40]

Internet-Draft DNS Stateful Operations December 2018

7. Base TLVs for DNS Stateful Operations

 This section describes the three base TLVs for DNS Stateful
 Operations: Keepalive, Retry Delay, and Encryption Padding.

7.1. Keepalive TLV

 The Keepalive TLV (DSO-TYPE=1) performs two functions. Primarily it
 establishes the values for the Session Timeouts. Incidentally, it
 also resets the keepalive timer for the DSO Session, meaning that it
 can be used as a kind of "no-op" message for the purpose of keeping a
 session alive. The client will request the desired session timeout
 values and the server will acknowledge with the response values that
 it requires the client to use.

 DSO messages with the Keepalive TLV as the primary TLV may appear in
 early data.

 The DSO-DATA for the Keepalive TLV is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | INACTIVITY TIMEOUT (32 bits) |
 +-+
 | KEEPALIVE INTERVAL (32 bits) |
 +-+

 INACTIVITY TIMEOUT: The inactivity timeout for the current DSO
 Session, specified as a 32-bit unsigned integer, in network (big
 endian) byte order, in units of milliseconds. This is the timeout
 at which the client MUST begin closing an inactive DSO Session.
 The inactivity timeout can be any value of the server’s choosing.
 If the client does not gracefully close an inactive DSO Session,
 then after twice this interval, or five seconds, whichever is
 greater, the server will forcibly abort the connection.

 KEEPALIVE INTERVAL: The keepalive interval for the current DSO
 Session, specified as a 32-bit unsigned integer, in network (big
 endian) byte order, in units of milliseconds. This is the
 interval at which a client MUST generate DSO keepalive traffic to
 maintain connection state. The keepalive interval MUST NOT be
 less than ten seconds. If the client does not generate the
 mandated DSO keepalive traffic, then after twice this interval the
 server will forcibly abort the connection. Since the minimum
 allowed keepalive interval is ten seconds, the minimum time at
 which a server will forcibly disconnect a client for failing to
 generate the mandated DSO keepalive traffic is twenty seconds.

Bellis, et al. Expires June 9, 2019 [Page 41]

Internet-Draft DNS Stateful Operations December 2018

 The transmission or reception of DSO Keepalive messages (i.e.,
 messages where the Keepalive TLV is the first TLV) reset only the
 keepalive timer, not the inactivity timer. The reason for this is
 that periodic DSO Keepalive messages are sent for the sole purpose of
 keeping a DSO Session alive, when that DSO Session has current or
 recent non-maintenance activity that warrants keeping that DSO
 Session alive. Sending DSO keepalive traffic itself is not
 considered a client activity; it is considered a maintenance activity
 that is performed in service of other client activities. If DSO
 keepalive traffic itself were to reset the inactivity timer, then
 that would create a circular livelock where keepalive traffic would
 be sent indefinitely to keep a DSO Session alive, where the only
 activity on that DSO Session would be the keepalive traffic keeping
 the DSO Session alive so that further keepalive traffic can be sent.
 For a DSO Session to be considered active, it must be carrying
 something more than just keepalive traffic. This is why merely
 sending or receiving a DSO Keepalive message does not reset the
 inactivity timer.

 When sent by a client, the DSO Keepalive request message MUST be sent
 as an DSO request message, with a nonzero MESSAGE ID. If a server
 receives a DSO Keepalive message with a zero MESSAGE ID then this is
 a fatal error and the server MUST forcibly abort the connection
 immediately. The DSO Keepalive request message resets a DSO
 Session’s keepalive timer, and at the same time communicates to the
 server the client’s requested Session Timeout values. In a server
 response to a client-initiated DSO Keepalive request message, the
 Session Timeouts contain the server’s chosen values from this point
 forward in the DSO Session, which the client MUST respect. This is
 modeled after the DHCP protocol, where the client requests a certain
 lease lifetime using DHCP option 51 [RFC2132], but the server is the
 ultimate authority for deciding what lease lifetime is actually
 granted.

 When a client is sending its second and subsequent DSO Keepalive
 request messages to the server, the client SHOULD continue to request
 its preferred values each time. This allows flexibility, so that if
 conditions change during the lifetime of a DSO Session, the server
 can adapt its responses to better fit the client’s needs.

 Once a DSO Session is in progress (Section 5.1) a DSO Keepalive
 message MAY be initiated by a server. When sent by a server, the DSO
 Keepalive message MUST be sent as a DSO unidirectional message, with
 the MESSAGE ID set to zero. The client MUST NOT generate a response
 to a server-initiated DSO Keepalive message. If a client receives a
 DSO Keepalive request message with a nonzero MESSAGE ID then this is
 a fatal error and the client MUST forcibly abort the connection
 immediately. The DSO Keepalive unidirectional message from the

Bellis, et al. Expires June 9, 2019 [Page 42]

Internet-Draft DNS Stateful Operations December 2018

 server resets a DSO Session’s keepalive timer, and at the same time
 unilaterally informs the client of the new Session Timeout values to
 use from this point forward in this DSO Session. No client DSO
 response to this unilateral declaration is required or allowed.

 In DSO Keepalive response messages, the Keepalive TLV is REQUIRED and
 is used only as a Response Primary TLV sent as a reply to a DSO
 Keepalive request message from the client. A Keepalive TLV MUST NOT
 be added to other responses as a Response Additional TLV. If the
 server wishes to update a client’s Session Timeout values other than
 in response to a DSO Keepalive request message from the client, then
 it does so by sending an DSO Keepalive unidirectional message of its
 own, as described above.

 It is not required that the Keepalive TLV be used in every DSO
 Session. While many DNS Stateful operations will be used in
 conjunction with a long-lived session state, not all DNS Stateful
 operations require long-lived session state, and in some cases the
 default 15-second value for both the inactivity timeout and keepalive
 interval may be perfectly appropriate. However, note that for
 clients that implement only the DSO-TYPEs defined in this document, a
 DSO Keepalive request message is the only way for a client to
 initiate a DSO Session.

7.1.1. Client handling of received Session Timeout values

 When a client receives a response to its client-initiated DSO
 Keepalive message, or receives a server-initiated DSO Keepalive
 message, the client has then received Session Timeout values dictated
 by the server. The two timeout values contained in the Keepalive TLV
 from the server may each be higher, lower, or the same as the
 respective Session Timeout values the client previously had for this
 DSO Session.

 In the case of the keepalive timer, the handling of the received
 value is straightforward. The act of receiving the message
 containing the DSO Keepalive TLV itself resets the keepalive timer,
 and updates the keepalive interval for the DSO Session. The new
 keepalive interval indicates the maximum time that may elapse before
 another message must be sent or received on this DSO Session, if the
 DSO Session is to remain alive.

 In the case of the inactivity timeout, the handling of the received
 value is a little more subtle, though the meaning of the inactivity
 timeout remains as specified -- it still indicates the maximum
 permissible time allowed without useful activity on a DSO Session.
 The act of receiving the message containing the Keepalive TLV does
 not itself reset the inactivity timer. The time elapsed since the

Bellis, et al. Expires June 9, 2019 [Page 43]

Internet-Draft DNS Stateful Operations December 2018

 last useful activity on this DSO Session is unaffected by exchange of
 DSO Keepalive messages. The new inactivity timeout value in the
 Keepalive TLV in the received message does update the timeout
 associated with the running inactivity timer; that becomes the new
 maximum permissible time without activity on a DSO Session.

 o If the current inactivity timer value is less than the new
 inactivity timeout, then the DSO Session may remain open for now.
 When the inactivity timer value reaches the new inactivity
 timeout, the client MUST then begin closing the DSO Session, as
 described above.

 o If the current inactivity timer value is equal to the new
 inactivity timeout, then this DSO Session has been inactive for
 exactly as long as the server will permit, and now the client MUST
 immediately begin closing this DSO Session.

 o If the current inactivity timer value is already greater than the
 new inactivity timeout, then this DSO Session has already been
 inactive for longer than the server permits, and the client MUST
 immediately begin closing this DSO Session.

 o If the current inactivity timer value is already more than twice
 the new inactivity timeout, then the client is immediately
 considered delinquent (this DSO Session is immediately eligible to
 be forcibly terminated by the server) and the client MUST
 immediately begin closing this DSO Session. However if a server
 abruptly reduces the inactivity timeout in this way, then, to give
 the client time to close the connection gracefully before the
 server resorts to forcibly aborting it, the server SHOULD give the
 client an additional grace period of one quarter of the new
 inactivity timeout, or five seconds, whichever is greater.

7.1.2. Relationship to edns-tcp-keepalive EDNS0 Option

 The inactivity timeout value in the Keepalive TLV (DSO-TYPE=1) has
 similar intent to the edns-tcp-keepalive EDNS0 Option [RFC7828]. A
 client/server pair that supports DSO MUST NOT use the edns-tcp-
 keepalive EDNS0 Option within any message after a DSO Session has
 been established. A client that has sent a DSO message to establish
 a session MUST NOT send an edns-tcp-keepalive EDNS0 Option from this
 point on. Once a DSO Session has been established, if either client
 or server receives a DNS message over the DSO Session that contains
 an edns-tcp-keepalive EDNS0 Option, this is a fatal error and the
 receiver of the edns-tcp-keepalive EDNS0 Option MUST forcibly abort
 the connection immediately.

Bellis, et al. Expires June 9, 2019 [Page 44]

Internet-Draft DNS Stateful Operations December 2018

7.2. Retry Delay TLV

 The Retry Delay TLV (DSO-TYPE=2) can be used as a Primary TLV
 (unidirectional) in a server-to-client message, or as a Response
 Additional TLV in either direction. DSO messages with a Relay Delay
 TLV as their primary TLV are not permitted in early data.

 The DSO-DATA for the Retry Delay TLV is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RETRY DELAY (32 bits) |
 +-+

 RETRY DELAY: A time value, specified as a 32-bit unsigned integer,
 in network (big endian) byte order, in units of milliseconds,
 within which the initiator MUST NOT retry this operation, or retry
 connecting to this server. Recommendations for the RETRY DELAY
 value are given in Section 6.6.1.

7.2.1. Retry Delay TLV used as a Primary TLV

 When sent from server to client, the Retry Delay TLV is used as the
 Primary TLV in a DSO unidirectional message. It is used by a server
 to instruct a client to close the DSO Session and underlying
 connection, and not to reconnect for the indicated time interval.

 In this case it applies to the DSO Session as a whole, and the client
 MUST begin closing the DSO Session, as described in Section 6.6.1.
 The RCODE in the message header SHOULD indicate the principal reason
 for the termination:

 o NOERROR indicates a routine shutdown or restart.

 o FORMERR indicates that a client request was too badly malformed
 for the session to continue.

 o SERVFAIL indicates that the server is overloaded due to resource
 exhaustion and needs to shed load.

 o REFUSED indicates that the server has been reconfigured, and at
 this time it is now unable to perform one or more of the long-
 lived client operations that were previously being performed on
 this DSO Session.

 o NOTAUTH indicates that the server has been reconfigured and at
 this time it is now unable to perform one or more of the long-

Bellis, et al. Expires June 9, 2019 [Page 45]

Internet-Draft DNS Stateful Operations December 2018

 lived client operations that were previously being performed on
 this DSO Session because it does not have authority over the names
 in question (for example, a DNS Push Notification server could be
 reconfigured such that is is no longer accepting DNS Push
 Notification requests for one or more of the currently subscribed
 names).

 This document specifies only these RCODE values for the Retry Delay
 message. Servers sending Retry Delay messages SHOULD use one of
 these values. However, future circumstances may create situations
 where other RCODE values are appropriate in Retry Delay messages, so
 clients MUST be prepared to accept Retry Delay messages with any
 RCODE value.

 In some cases, when a server sends a Retry Delay message to a client,
 there may be more than one reason for the server wanting to end the
 session. Possibly the configuration could have been changed such
 that some long-lived client operations can no longer be continued due
 to policy (REFUSED), and other long-lived client operations can no
 longer be performed due to the server no longer being authoritative
 for those names (NOTAUTH). In such cases the server MAY use any of
 the applicable RCODE values, or RCODE=NOERROR (routine shutdown or
 restart).

 Note that the selection of RCODE value in a Retry Delay message is
 not critical, since the RCODE value is generally used only for
 information purposes, such as writing to a log file for future human
 analysis regarding the nature of the disconnection. Generally
 clients do not modify their behavior depending on the RCODE value.
 The RETRY DELAY in the message tells the client how long it should
 wait before attempting a new connection to this service instance.

 For clients that do in some way modify their behavior depending on
 the RCODE value, they should treat unknown RCODE values the same as
 RCODE=NOERROR (routine shutdown or restart).

 A Retry Delay message from server to client is a DSO unidirectional
 message; the MESSAGE ID MUST be set to zero in the outgoing message
 and the client MUST NOT send a response.

 A client MUST NOT send a Retry Delay DSO message to a server. If a
 server receives a DSO message where the Primary TLV is the Retry
 Delay TLV, this is a fatal error and the server MUST forcibly abort
 the connection immediately.

Bellis, et al. Expires June 9, 2019 [Page 46]

Internet-Draft DNS Stateful Operations December 2018

7.2.2. Retry Delay TLV used as a Response Additional TLV

 In the case of a DSO request message that results in a nonzero RCODE
 value, the responder MAY append a Retry Delay TLV to the response,
 indicating the time interval during which the initiator SHOULD NOT
 attempt this operation again.

 The indicated time interval during which the initiator SHOULD NOT
 retry applies only to the failed operation, not to the DSO Session as
 a whole.

Bellis, et al. Expires June 9, 2019 [Page 47]

Internet-Draft DNS Stateful Operations December 2018

7.3. Encryption Padding TLV

 The Encryption Padding TLV (DSO-TYPE=3) can only be used as an
 Additional or Response Additional TLV. It is only applicable when
 the DSO Transport layer uses encryption such as TLS.

 The DSO-DATA for the Padding TLV is optional and is a variable length
 field containing non-specified values. A DSO-LENGTH of 0 essentially
 provides for 4 bytes of padding (the minimum amount).

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 / /
 / PADDING -- VARIABLE NUMBER OF BYTES /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 As specified for the EDNS(0) Padding Option [RFC7830] the PADDING
 bytes SHOULD be set to 0x00. Other values MAY be used, for example,
 in cases where there is a concern that the padded message could be
 subject to compression before encryption. PADDING bytes of any value
 MUST be accepted in the messages received.

 The Encryption Padding TLV may be included in either a DSO request
 message, response, or both. As specified for the EDNS(0) Padding
 Option [RFC7830] if a DSO request message is received with an
 Encryption Padding TLV, then the DSO response MUST also include an
 Encryption Padding TLV.

 The length of padding is intentionally not specified in this document
 and is a function of current best practices with respect to the type
 and length of data in the preceding TLVs
 [I-D.ietf-dprive-padding-policy].

Bellis, et al. Expires June 9, 2019 [Page 48]

Internet-Draft DNS Stateful Operations December 2018

8. Summary Highlights

 This section summarizes some noteworthy highlights about various
 aspects of the DSO protocol.

8.1. QR bit and MESSAGE ID

 In DSO Request Messages the QR bit is 0 and the MESSAGE ID is
 nonzero.

 In DSO Response Messages the QR bit is 1 and the MESSAGE ID is
 nonzero.

 In DSO Unidirectional Messages the QR bit is 0 and the MESSAGE ID is
 zero.

 The table below illustrates which combinations are legal and how they
 are interpreted:

 +------------------------------+------------------------+
 | MESSAGE ID zero | MESSAGE ID nonzero |
 +--------+------------------------------+------------------------+
 | QR=0 | DSO unidirectional Message | DSO Request Message |
 +--------+------------------------------+------------------------+
 | QR=1 | Invalid - Fatal Error | DSO Response Message |
 +--------+------------------------------+------------------------+

Bellis, et al. Expires June 9, 2019 [Page 49]

Internet-Draft DNS Stateful Operations December 2018

8.2. TLV Usage

 The table below indicates, for each of the three TLVs defined in this
 document, whether they are valid in each of ten different contexts.

 The first five contexts are DSO requests or DSO unidirectional
 messages from client to server, and the corresponding responses from
 server back to client:

 o C-P - Primary TLV, sent in DSO Request message, from client to
 server, with nonzero MESSAGE ID indicating that this request MUST
 generate response message.

 o C-U - Primary TLV, sent in DSO Unidirectional message, from client
 to server, with zero MESSAGE ID indicating that this request MUST
 NOT generate response message.

 o C-A - Additional TLV, optionally added to a DSO request message or
 DSO unidirectional message from client to server.

 o CRP - Response Primary TLV, included in response message sent back
 to the client (in response to a client "C-P" request with nonzero
 MESSAGE ID indicating that a response is required) where the DSO-
 TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV
 in the request.

 o CRA - Response Additional TLV, included in response message sent
 back to the client (in response to a client "C-P" request with
 nonzero MESSAGE ID indicating that a response is required) where
 the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
 the Primary TLV in the request.

 The second five contexts are their counterparts in the opposite
 direction: DSO requests or DSO unidirectional messages from server to
 client, and the corresponding responses from client back to server.

 o S-P - Primary TLV, sent in DSO Request message, from server to
 client, with nonzero MESSAGE ID indicating that this request MUST
 generate response message.

 o S-U - Primary TLV, sent in DSO Unidirectional message, from server
 to client, with zero MESSAGE ID indicating that this request MUST
 NOT generate response message.

 o S-A - Additional TLV, optionally added to a DSO request message or
 DSO unidirectional message from server to client.

Bellis, et al. Expires June 9, 2019 [Page 50]

Internet-Draft DNS Stateful Operations December 2018

 o SRP - Response Primary TLV, included in response message sent back
 to the server (in response to a server "S-P" request with nonzero
 MESSAGE ID indicating that a response is required) where the DSO-
 TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV
 in the request.

 o SRA - Response Additional TLV, included in response message sent
 back to the server (in response to a server "S-P" request with
 nonzero MESSAGE ID indicating that a response is required) where
 the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
 the Primary TLV in the request.

 +-------------------------+-------------------------+
 | C-P C-U C-A CRP CRA | S-P S-U S-A SRP SRA |
 +------------+-------------------------+-------------------------+
 | KeepAlive | X X | X |
 +------------+-------------------------+-------------------------+
 | RetryDelay | X | X X |
 +------------+-------------------------+-------------------------+
 | Padding | X X | X X |
 +------------+-------------------------+-------------------------+

 Note that some of the columns in this table are currently empty. The
 table provides a template for future TLV definitions to follow. It
 is recommended that definitions of future TLVs include a similar
 table summarizing the contexts where the new TLV is valid.

Bellis, et al. Expires June 9, 2019 [Page 51]

Internet-Draft DNS Stateful Operations December 2018

9. Additional Considerations

9.1. Service Instances

 We use the term service instance to refer to software running on a
 host which can receive connections on some set of IP address and port
 tuples. What makes the software an instance is that regardless of
 which of these tuples the client uses to connect to it, the client is
 connected to the same software, running on the same node (but see
 Section 9.2), and will receive the same answers and the same keying
 information.

 Service instances are identified from the perspective of the client.
 If the client is configured with IP addresses and port number tuples,
 it has no way to tell if the service offered at one tuple is the same
 server that is listening on a different tuple. So in this case, the
 client treats each such tuple as if it references a separate service
 instance.

 In some cases a client is configured with a hostname and a port
 number (either implicitly, where the port number is omitted and
 assumed, or explicitly, as in the case of DNS SRV records). In these
 cases, the (hostname, port) tuple uniquely identifies the service
 instance (hostname comparisons are case-insensitive [RFC1034].

 It is possible that two hostnames might point to some common IP
 addresses; this is a configuration error which the client is not
 obliged to detect. The effect of this could be that after being told
 to disconnect, the client might reconnect to the same server because
 it is represented as a different service instance.

 Implementations SHOULD NOT resolve hostnames and then perform
 matching of IP address(es) in order to evaluate whether two entities
 should be determined to be the "same service instance".

Bellis, et al. Expires June 9, 2019 [Page 52]

Internet-Draft DNS Stateful Operations December 2018

9.2. Anycast Considerations

 When an anycast service is configured on a particular IP address and
 port, it must be the case that although there is more than one
 physical server responding on that IP address, each such server can
 be treated as equivalent. What we mean by "equivalent" here is that
 both servers can provide the same service and, where appropriate, the
 same authentication information, such as PKI certificates, when
 establishing connections.

 If a change in network topology causes packets in a particular TCP
 connection to be sent to an anycast server instance that does not
 know about the connection, the new server will automatically
 terminate the connection with a TCP reset, since it will have no
 record of the connection, and then the client can reconnect or stop
 using the connection, as appropriate.

 If after the connection is re-established, the client’s assumption
 that it is connected to the same service is violated in some way,
 that would be considered to be incorrect behavior in this context.
 It is however out of the possible scope for this specification to
 make specific recommendations in this regard; that would be up to
 follow-on documents that describe specific uses of DNS stateful
 operations.

Bellis, et al. Expires June 9, 2019 [Page 53]

Internet-Draft DNS Stateful Operations December 2018

9.3. Connection Sharing

 As previously specified for DNS over TCP [RFC7766]:

 To mitigate the risk of unintentional server overload, DNS
 clients MUST take care to minimize the number of concurrent
 TCP connections made to any individual server. It is RECOMMENDED
 that for any given client/server interaction there SHOULD be
 no more than one connection for regular queries, one for zone
 transfers, and one for each protocol that is being used on top
 of TCP (for example, if the resolver was using TLS). However,
 it is noted that certain primary/secondary configurations
 with many busy zones might need to use more than one TCP
 connection for zone transfers for operational reasons (for
 example, to support concurrent transfers of multiple zones).

 A single server may support multiple services, including DNS Updates
 [RFC2136], DNS Push Notifications [I-D.ietf-dnssd-push], and other
 services, for one or more DNS zones. When a client discovers that
 the target server for several different operations is the same
 service instance (see Section 9.1), the client SHOULD use a single
 shared DSO Session for all those operations.

 This requirement has two benefits. First, it reduces unnecessary
 connection load on the DNS server. Second, it avoids paying the TCP
 slow start penalty when making subsequent connections to the same
 server.

 However, server implementers and operators should be aware that
 connection sharing may not be possible in all cases. A single host
 device may be home to multiple independent client software instances
 that don’t coordinate with each other. Similarly, multiple
 independent client devices behind the same NAT gateway will also
 typically appear to the DNS server as different source ports on the
 same client IP address. Because of these constraints, a DNS server
 MUST be prepared to accept multiple connections from different source
 ports on the same client IP address.

Bellis, et al. Expires June 9, 2019 [Page 54]

Internet-Draft DNS Stateful Operations December 2018

9.4. Operational Considerations for Middlebox

 Where an application-layer middlebox (e.g., a DNS proxy, forwarder,
 or session multiplexer) is in the path, care must be taken to avoid a
 configuration in which DSO traffic is mis-handled. The simplest way
 to avoid such problems is to avoid using middleboxes. When this is
 not possible, middleboxes should be evaluated to make sure that they
 behave correctly.

 Correct behavior for middleboxes consists of one of:

 o The middlebox does not forward DSO messages, and responds to DSO
 messages with a response code other than NOERROR or DSOTYPENI.

 o The middlebox acts as a DSO server and follows this specification
 in establishing connections.

 o There is a 1:1 correspondence between incoming and outgoing
 connections, such that when a connection is established to the
 middlebox, it is guaranteed that exactly one corresponding
 connection will be established from the middlebox to some DNS
 resolver, and all incoming messages will be forwarded without
 modification or reordering. An example of this would be a NAT
 forwarder or TCP connection optimizer (e.g. for a high-latency
 connection such as a geosynchronous satellite link).

 Middleboxes that do not meet one of the above criteria are very
 likely to fail in unexpected and difficult-to-diagnose ways. For
 example, a DNS load balancer might unbundle DNS messages from the
 incoming TCP stream and forward each message from the stream to a
 different DNS server. If such a load balancer is in use, and the DNS
 servers it points implement DSO and are configured to enable DSO, DSO
 session establishment will succeed, but no coherent session will
 exist between the client and the server. If such a load balancer is
 pointed at a DNS server that does not implement DSO or is configured
 not to allow DSO, no such problem will exist, but such a
 configuration risks unexpected failure if new server software is
 installed which does implement DSO.

 It is of course possible to implement a middlebox that properly
 supports DSO. It is even possible to implement one that implements
 DSO with long-lived operations. This can be done either by
 maintaining a 1:1 correspondence between incoming and outgoing
 connections, as mentioned above, or by terminating incoming sessions
 at the middlebox, but maintaining state in the middlebox about any
 long-lived that are requested. Specifying this in detail is beyond
 the scope of this document.

Bellis, et al. Expires June 9, 2019 [Page 55]

Internet-Draft DNS Stateful Operations December 2018

9.5. TCP Delayed Acknowledgement Considerations

 Most modern implementations of the Transmission Control Protocol
 (TCP) include a feature called "Delayed Acknowledgement" [RFC1122].

 Without this feature, TCP can be very wasteful on the network. For
 illustration, consider a simple example like remote login, using a
 very simple TCP implementation that lacks delayed acks. When the
 user types a keystroke, a data packet is sent. When the data packet
 arrives at the server, the simple TCP implementation sends an
 immediate acknowledgement. Mere milliseconds later, the server
 process reads the one byte of keystroke data, and consequently the
 simple TCP implementation sends an immediate window update. Mere
 milliseconds later, the server process generates the character echo,
 and sends this data back in reply. The simple TCP implementation
 then sends this data packet immediately too. In this case, this
 simple TCP implementation sends a burst of three packets almost
 instantaneously (ack, window update, data).

 Clearly it would be more efficient if the TCP implementation were to
 combine the three separate packets into one, and this is what the
 delayed ack feature enables.

 With delayed ack, the TCP implementation waits after receiving a data
 packet, typically for 200 ms, and then send its ack if (a) more data
 packet(s) arrive (b) the receiving process generates some reply data,
 or (c) 200 ms elapses without either of the above occurring.

 With delayed ack, remote login becomes much more efficient,
 generating just one packet instead of three for each character echo.

 The logic of delayed ack is that the 200 ms delay cannot do any
 significant harm. If something at the other end were waiting for
 something, then the receiving process should generate the reply that
 the thing at the end is waiting for, and TCP will then immediately
 send that reply (and the ack and window update). And if the
 receiving process does not in fact generate any reply for this
 particular message, then by definition the thing at the other end
 cannot be waiting for anything, so the 200 ms delay is harmless.

 This assumption may be true, unless the sender is using Nagle’s
 algorithm, a similar efficiency feature, created to protect the
 network from poorly written client software that performs many rapid
 small writes in succession. Nagle’s algorithm allows these small
 writes to be combined into larger, less wasteful packets.

Bellis, et al. Expires June 9, 2019 [Page 56]

Internet-Draft DNS Stateful Operations December 2018

 Unfortunately, Nagle’s algorithm and delayed ack, two valuable
 efficiency features, can interact badly with each other when used
 together [NagleDA].

 DSO request messages elicit responses; DSO unidirectional messages
 and DSO response messages do not.

 For DSO request messages, which do elicit responses, Nagle’s
 algorithm and delayed ack work as intended.

 For DSO messages that do not elicit responses, the delayed ack
 mechanism causes the ack to be delayed by 200 ms. The 200 ms delay
 on the ack can in turn cause Nagle’s algorithm to prevent the sender
 from sending any more data for 200 ms until the awaited ack arrives.
 On an enterprise GigE backbone with sub-millisecond round-trip times,
 a 200 ms delay is enormous in comparison.

 When this issues is raised, there are two solutions that are often
 offered, neither of them ideal:

 1. Disable delayed ack. For DSO messages that elicit no response,
 removing delayed ack avoids the needless 200 ms delay, and sends
 back an immediate ack, which tells Nagle’s algorithm that it
 should immediately grant the sender permission to send its next
 packet. Unfortunately, for DSO messages that *do* elicit a
 response, removing delayed ack removes the efficiency gains of
 combining acks with data, and the responder will now send two or
 three packets instead of one.

 2. Disable Nagle’s algorithm. When acks are delayed by the delayed
 ack algorithm, removing Nagle’s algorithm prevents the sender
 from being blocked from sending its next small packet
 immediately. Unfortunately, on a network with a higher round-
 trip time, removing Nagle’s algorithm removes the efficiency
 gains of combining multiple small packets into fewer larger ones,
 with the goal of limiting the number of small packets in flight
 at any one time.

 For DSO messages that elicit a response, delayed ack and Nagle’s
 algorithm do the right thing.

 The problem here is that with DSO messages that elicit no response,
 the TCP implementation is stuck waiting, unsure if a response is
 about to be generated, or whether the TCP implementation should go
 ahead and send an ack and window update.

 The solution is networking APIs that allow the receiver to inform the
 TCP implementation that a received message has been read, processed,

Bellis, et al. Expires June 9, 2019 [Page 57]

Internet-Draft DNS Stateful Operations December 2018

 and no response for this message will be generated. TCP can then
 stop waiting for a response that will never come, and immediately go
 ahead and send an ack and window update.

 For implementations of DSO, disabling delayed ack is NOT RECOMMENDED,
 because of the harm this can do to the network.

 For implementations of DSO, disabling Nagle’s algorithm is NOT
 RECOMMENDED, because of the harm this can do to the network.

 At the time that this document is being prepared for publication, it
 is known that at least one TCP implementation provides the ability
 for the recipient of a TCP message to signal that it is not going to
 send a response, and hence the delayed ack mechanism can stop
 waiting. Implementations on operating systems where this feature is
 available SHOULD make use of it.

Bellis, et al. Expires June 9, 2019 [Page 58]

Internet-Draft DNS Stateful Operations December 2018

10. IANA Considerations

10.1. DSO OPCODE Registration

 The IANA is requested to record the value [TBA1] (tentatively 6) for
 the DSO OPCODE in the DNS OPCODE Registry. DSO stands for DNS
 Stateful Operations.

10.2. DSO RCODE Registration

 The IANA is requested to record the value [TBA2] (tentatively 11) for
 the DSOTYPENI error code in the DNS RCODE Registry. The DSOTYPENI
 error code ("DSO-TYPE Not Implemented") indicates that the receiver
 does implement DNS Stateful Operations, but does not implement the
 specific DSO-TYPE of the primary TLV in the DSO request message.

10.3. DSO Type Code Registry

 The IANA is requested to create the 16-bit DSO Type Code Registry,
 with initial (hexadecimal) values as shown below:

 +-----------+------------------------+-------+----------+-----------+
 | Type | Name | Early | Status | Reference |
 | | | Data | | |
 +-----------+------------------------+-------+----------+-----------+
0000	Reserved	NO	Standard	RFC-TBD
0001	KeepAlive	OK	Standard	RFC-TBD
0002	RetryDelay	NO	Standard	RFC-TBD
0003	EncryptionPadding	NA	Standard	RFC-TBD
0004-003F	Unassigned, reserved	NO		
	for DSO session-			
	management TLVs			
0040-F7FF	Unassigned	NO		
F800-FBFF	Experimental/local use	NO		
FC00-FFFF	Reserved for future	NO		
	expansion			
 +-----------+------------------------+-------+----------+-----------+

 The meanings of the fields are as follows:

 Type: the 16-bit DSO type code

Bellis, et al. Expires June 9, 2019 [Page 59]

Internet-Draft DNS Stateful Operations December 2018

 Name: the human-readable name of the TLV

 Early Data: If OK, this TLV may be sent as early data in a TLS 0-RTT
 ([RFC8446] Section 2.3) initial handshake. If NA, the TLV may
 appear as a secondary TLV in a DSO message that is send as early
 data.

 Status: IETF Document status (or "External" if not documented in an
 IETF document.

 Reference: A stable reference to the document in which this TLV is
 defined.

 DSO Type Code zero is reserved and is not currently intended for
 allocation.

 Registrations of new DSO Type Codes in the "Reserved for DSO session-
 management" range 0004-003F and the "Reserved for future expansion"
 range FC00-FFFF require publication of an IETF Standards Action
 document [RFC8126].

 Any document defining a new TLV which lists a value of "OK" in the
 0-RTT column must include a threat analysis for the use of the TLV in
 the case of TLS 0-RTT. See Section 11.1 for details.

 Requests to register additional new DSO Type Codes in the
 "Unassigned" range 0040-F7FF are to be recorded by IANA after Expert
 Review [RFC8126]. The expert review should validate that the
 requested type code is specified in a way that conforms to this
 specification, and that the intended use for the code would not be
 addressed with an experimental/local assignment.

 DSO Type Codes in the "experimental/local" range F800-FBFF may be
 used as Experimental Use or Private Use values [RFC8126] and may be
 used freely for development purposes, or for other purposes within a
 single site. No attempt is made to prevent multiple sites from using
 the same value in different (and incompatible) ways. There is no
 need for IANA to review such assignments (since IANA does not record
 them) and assignments are not generally useful for broad
 interoperability. It is the responsibility of the sites making use
 of "experimental/local" values to ensure that no conflicts occur
 within the intended scope of use.

11. Security Considerations

 If this mechanism is to be used with DNS over TLS, then these
 messages are subject to the same constraints as any other DNS-over-

Bellis, et al. Expires June 9, 2019 [Page 60]

Internet-Draft DNS Stateful Operations December 2018

 TLS messages and MUST NOT be sent in the clear before the TLS session
 is established.

 The data field of the "Encryption Padding" TLV could be used as a
 covert channel.

 When designing new DSO TLVs, the potential for data in the TLV to be
 used as a tracking identifier should be taken into consideration, and
 should be avoided when not required.

 When used without TLS or similar cryptographic protection, a
 malicious entity maybe able to inject a malicious unidirectional DSO
 Retry Delay Message into the data stream, specifying an unreasonably
 large RETRY DELAY, causing a denial-of-service attack against the
 client.

 The establishment of DSO sessions has an impact on the number of open
 TCP connections on a DNS server. Additional resources may be used on
 the server as a result. However, because the server can limit the
 number of DSO sessions established and can also close existing DSO
 sessions as needed, denial of service or resource exhaustion should
 not be a concern.

11.1. TLS 0-RTT Considerations

 DSO permits zero round-trip operation using TCP Fast Open [RFC7413]
 with TLS 1.3 [RFC8446] 0-RTT to reduce or eliminate round trips in
 session establishment. TCP Fast Open is only permitted in
 combination with TLS 0-RTT. In the rest of this section we refer to
 TLS 1.3 early data in a TLS 0-RTT initial handshake message, whether
 or not it is included in a TCP SYN packet with early data using the
 TCP Fast Open option, as "early data."

 A DSO message may or may not be permitted to be sent as early data.
 The definition for each TLV that can be used as a primary TLV is
 required to state whether or not that TLV is permitted as early data.
 Only response-requiring messages are ever permitted as early data,
 and only clients are permitted to send any DSO message as early data,
 unless there is an implicit session (see Section 5.1).

 For DSO messages that are permitted as early data, a client MAY
 include one or more such messages as early data without having to
 wait for a DSO response to the first DSO request message to confirm
 successful establishment of a DSO session.

 However, unless there is an implicit session, a client MUST NOT send
 DSO unidirectional messages until after a DSO Session has been
 mutually established.

Bellis, et al. Expires June 9, 2019 [Page 61]

Internet-Draft DNS Stateful Operations December 2018

 Similarly, unless there is an implicit session, a server MUST NOT
 send DSO request messages until it has received a response-requiring
 DSO request message from a client and transmitted a successful
 NOERROR response for that request.

 Caution must be taken to ensure that DSO messages sent as early data
 are idempotent, or are otherwise immune to any problems that could be
 result from the inadvertent replay that can occur with zero round-
 trip operation.

 It would be possible to add a TLV that requires the server to do some
 significant work, and send that to the server as initial data in a
 TCP SYN packet. A flood of such packets could be used as a DoS
 attack on the server. None of the TLVs defined here have this
 property.

 If a new TLV is specified that does have this property, that TLV must
 be specified as not permitted in 0-RTT messages. This prevents work
 from being done until a round-trip has occurred from the server to
 the client to verify that the source address of the packet is
 reachable.

 Documents that define new TLVs must state whether each new TLV may be
 sent as early data. Such documents must include a threat analysis in
 the security considerations section for each TLV defined in the
 document that may be sent as early data. This threat analysis should
 be done based on the advice given in [RFC8446] Section 2.3, 8 and
 Appendix E.5.

12. Acknowledgements

 Thanks to Stephane Bortzmeyer, Tim Chown, Ralph Droms, Paul Hoffman,
 Jan Komissar, Edward Lewis, Allison Mankin, Rui Paulo, David
 Schinazi, Manju Shankar Rao, Bernie Volz and Bob Harold for their
 helpful contributions to this document.

13. References

13.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Bellis, et al. Expires June 9, 2019 [Page 62]

Internet-Draft DNS Stateful Operations December 2018

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC7766] Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC7830] Mayrhofer, A., "The EDNS(0) Padding Option", RFC 7830,
 DOI 10.17487/RFC7830, May 2016,
 <https://www.rfc-editor.org/info/rfc7830>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [I-D.ietf-dnsop-no-response-issue]
 Andrews, M. and R. Bellis, "A Common Operational Problem
 in DNS Servers - Failure To Respond.", draft-ietf-dnsop-
 no-response-issue-12 (work in progress), November 2018.

Bellis, et al. Expires June 9, 2019 [Page 63]

Internet-Draft DNS Stateful Operations December 2018

 [I-D.ietf-dnssd-mdns-relay]
 Lemon, T. and S. Cheshire, "Multicast DNS Discovery
 Relay", draft-ietf-dnssd-mdns-relay-01 (work in progress),
 July 2018.

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-16 (work in progress), November
 2018.

 [I-D.ietf-doh-dns-over-https]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", draft-ietf-doh-dns-over-https-14 (work in
 progress), August 2018.

 [I-D.ietf-dprive-padding-policy]
 Mayrhofer, A., "Padding Policy for EDNS(0)", draft-ietf-
 dprive-padding-policy-06 (work in progress), July 2018.

 [NagleDA] Cheshire, S., "TCP Performance problems caused by
 interaction between Nagle’s Algorithm and Delayed ACK",
 May 2005,
 <http://www.stuartcheshire.org/papers/nagledelayedack/>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <https://www.rfc-editor.org/info/rfc2132>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

Bellis, et al. Expires June 9, 2019 [Page 64]

Internet-Draft DNS Stateful Operations December 2018

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7828] Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The
 edns-tcp-keepalive EDNS0 Option", RFC 7828,
 DOI 10.17487/RFC7828, April 2016,
 <https://www.rfc-editor.org/info/rfc7828>.

 [RFC7857] Penno, R., Perreault, S., Boucadair, M., Ed., Sivakumar,
 S., and K. Naito, "Updates to Network Address Translation
 (NAT) Behavioral Requirements", BCP 127, RFC 7857,
 DOI 10.17487/RFC7857, April 2016,
 <https://www.rfc-editor.org/info/rfc7857>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Authors’ Addresses

 Ray Bellis
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City CA 94063
 USA

 Phone: +1 (650) 423-1200
 Email: ray@isc.org

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino CA 95014
 USA

 Phone: +1 (408) 996-1010
 Email: cheshire@apple.com

Bellis, et al. Expires June 9, 2019 [Page 65]

Internet-Draft DNS Stateful Operations December 2018

 John Dickinson
 Sinodun Internet Technologies
 Magadalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jad@sinodun.com

 Sara Dickinson
 Sinodun Internet Technologies
 Magadalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: sara@sinodun.com

 Ted Lemon
 Nibbhaya Consulting
 P.O. Box 958
 Brattleboro VT 05302-0958
 USA

 Email: mellon@fugue.com

 Tom Pusateri
 Unaffiliated
 Raleigh NC 27608
 USA

 Phone: +1 (919) 867-1330
 Email: pusateri@bangj.com

Bellis, et al. Expires June 9, 2019 [Page 66]

