
Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Standards Track D. Kaiser
Expires: April 18, 2019 University of Konstanz
 October 15, 2018

 Privacy Extensions for DNS-SD
 draft-ietf-dnssd-privacy-05

Abstract

 DNS-SD (DNS Service Discovery) normally discloses information about
 both the devices offering services and the devices requesting
 services. This information includes host names, network parameters,
 and possibly a further description of the corresponding service
 instance. Especially when mobile devices engage in DNS Service
 Discovery over Multicast DNS at a public hotspot, a serious privacy
 problem arises.

 We propose to solve this problem by a two-stage approach. In the
 first stage, hosts discover Private Discovery Service Instances via
 DNS-SD using special formats to protect their privacy. These service
 instances correspond to Private Discovery Servers running on peers.
 In the second stage, hosts directly query these Private Discovery
 Servers via DNS-SD over TLS. A pairwise shared secret necessary to
 establish these connections is only known to hosts authorized by a
 pairing system.

 Revisions of this draft are currently considered in the DNSSD working
 group.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2019.

Huitema & Kaiser Expires April 18, 2019 [Page 1]

Internet-Draft DNS-SD Privacy Extensions October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements . 4
 2. Design of the Private DNS-SD Discovery Service 4
 2.1. Device Pairing . 5
 2.2. Discovery of the Private Discovery Service 5
 2.2.1. Obfuscated Instance Names 5
 2.2.2. Using a Predictable Nonce 6
 2.2.3. Using a Short Proof 7
 2.2.4. Direct Queries 8
 2.3. Private Discovery Service 9
 2.3.1. A Note on Private DNS Services 10
 2.4. Randomized Host Names 11
 2.5. Timing of Obfuscation and Randomization 11
 3. Private Discovery Service Specification 11
 3.1. Host Name Randomization 12
 3.2. Device Pairing . 12
 3.3. Private Discovery Server 12
 3.3.1. Establishing TLS Connections 12
 3.4. Publishing Private Discovery Service Instances 13
 3.5. Discovering Private Discovery Service Instances 14
 3.6. Direct Discovery of Private Discovery Service Instances . 15
 3.7. Using the Private Discovery Service 16
 4. Security Considerations 16
 4.1. Attacks Against the Pairing System 16
 4.2. Denial of Discovery of the Private Discovery Service . . 16
 4.3. Replay Attacks Against Discovery of the Private Discovery
 Service . 17
 4.4. Denial of Private Discovery Service 17
 4.5. Replay Attacks against the Private Discovery Service . . 17
 4.6. Replay attacks and clock synchronization 18
 4.7. Fingerprinting the number of published instances 18

Huitema & Kaiser Expires April 18, 2019 [Page 2]

Internet-Draft DNS-SD Privacy Extensions October 2018

 5. IANA Considerations . 18
 6. Acknowledgments . 19
 7. References . 19
 7.1. Normative References 19
 7.2. Informative References 20
 Authors’ Addresses . 21

1. Introduction

 DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless
 service discovery in local networks. It is very convenient for
 users, but it requires the public exposure of the offering and
 requesting identities along with information about the offered and
 requested services. Parts of the published information can seriously
 breach the user’s privacy. These privacy issues and potential
 solutions are discussed in [KW14a] and [KW14b].

 There are cases when nodes connected to a network want to provide or
 consume services without exposing their identity to the other parties
 connected to the same network. Consider for example a traveler
 wanting to upload pictures from a phone to a laptop when connected to
 the Wi-Fi network of an Internet cafe, or two travelers who want to
 share files between their laptops when waiting for their plane in an
 airport lounge.

 We expect that these exchanges will start with a discovery procedure
 using DNS-SD [RFC6763] over mDNS [RFC6762]. One of the devices will
 publish the availability of a service, such as a picture library or a
 file store in our examples. The user of the other device will
 discover this service, and then connect to it.

 When analyzing these scenarios in [I-D.ietf-dnssd-prireq], we find
 that the DNS-SD messages leak identifying information such as the
 instance name, the host name or service properties. We review the
 design constraint of a solution in Section 2, and describe the
 proposed solution in Section 3.

 While we focus on a mDNS-based distribution of the DNS-SD resource
 records, our solution is agnostic about the distribution method and
 also works with other distribution methods, e.g. the classical
 hierarchical DNS.

 The solution presented here relies on 1-1 pairings between clients
 and servers. Discussions during the IETF 101 in London showed that
 this requirement of a full mesh of pairings poses some scalability
 issues, as explained in [I-D.ietf-dnssd-privacyscaling]. The next
 revision of this draft may propose a different mechanism.

Huitema & Kaiser Expires April 18, 2019 [Page 3]

Internet-Draft DNS-SD Privacy Extensions October 2018

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Design of the Private DNS-SD Discovery Service

 In this section, we present the design of a two-stage solution that
 enables private use of DNS-SD, without affecting existing users. The
 solution is largely based on the architecture proposed in [KW14b] and
 [K17], which separates the general private discovery problem in three
 components. The first component is an offline pairing mechanism,
 which is performed only once per pair of users. It establishes a
 shared secret over an authenticated channel, allowing devices to
 authenticate using this secret without user interaction at any later
 point in time. We use the pairing system proposed in
 [I-D.ietf-dnssd-pairing].

 The further two components are online (in contrast to pairing they
 are performed anew each time joining a network) and compose the two
 service discovery stages, namely

 o Discovery of the Private Discovery Service -- the first stage --
 in which hosts discover the Private Discovery Service (PDS), a
 special service offered by every host supporting our extension.
 After the discovery, hosts connect to the PSD offered by paired
 peers.

 o Actual Service Discovery -- the second stage -- is performed
 through the Private Discovery Service, which only accepts
 encrypted messages associated with an authenticated session; thus
 not compromising privacy.

 In other words, the hosts first discover paired peers and then
 directly engage in privacy preserving service discovery.

 The stages are independent with respect to means used for
 transmitting the necessary data. While in our extension the messages
 for the first stage are transmitted using IP multicast, the messages
 for the second stage are transmitted via unicast. One could also
 imagine using a Distributed Hash Table for the first stage, being
 completely independent of multicast.

Huitema & Kaiser Expires April 18, 2019 [Page 4]

Internet-Draft DNS-SD Privacy Extensions October 2018

2.1. Device Pairing

 Any private discovery solution needs to differentiate between
 authorized devices, which are allowed to get information about
 discoverable entities, and other devices, which should not be aware
 of the availability of private entities. The commonly used solution
 to this problem is establishing a "device pairing".

 Device pairing has to be performed only once per pair of users. This
 is important for user-friendliness, as it is the only step that
 demands user-interaction. After this single pairing, privacy
 preserving service discovery works fully automatically. In this
 document, we utilize [I-D.ietf-dnssd-pairing] as the pairing
 mechanism.

 The pairing yields a mutually authenticated shared secret, and
 optionally mutually authenticated public keys or certificates added
 to a local web of trust. Public key technology has many advantages,
 but shared secrets are typically easier to handle on small devices.

2.2. Discovery of the Private Discovery Service

 The first stage of service discovery is to check whether instances of
 compatible Private Discovery Services are available in the local
 scope. The goal of that stage is to identify devices that share a
 pairing with the querier, and are available locally. The service
 instances can be browsed using regular DNS-SD procedures, and then
 filtered so that only instances offered by paired devices are
 retained.

2.2.1. Obfuscated Instance Names

 The instance names for the Private Discovery Service are obfuscated,
 so that authorized peers can associate the instance with its
 publisher, but unauthorized peers can only observe what looks like a
 random name. To achieve this, the names are composed as the
 concatenation of a nonce and a proof, which is composed by hashing
 the nonce with a pairing key:

 PrivateInstanceName = <nonce>|<proof>
 proof = hash(<nonce>|<key>)

 The publisher will publish as many instances as it has established
 pairings.

 The discovering party that looks for instances of the service will
 receive lists of advertisements from nodes present on the network.
 For each advertisement, it will parse the instance name, and then,

Huitema & Kaiser Expires April 18, 2019 [Page 5]

Internet-Draft DNS-SD Privacy Extensions October 2018

 for each available pairing key, compares the proof to the hash of the
 nonce concatenated with this pairing key. If there is no match, it
 discards the instance name. If there is a match, it has discovered a
 peer.

2.2.2. Using a Predictable Nonce

 Assume that there are N nodes on the local scope, and that each node
 has on average M pairings. Each node will publish on average M
 records, and the node engaging in discovery may have to process on
 average N*M instance names. The discovering node will have to
 compute on average M potential hashes for each nonce. The number of
 hash computations would scale as O(N*M*M), which means that it could
 cause a significant drain of resource in large networks.

 In order to minimize the amount of computing resource, we suggest
 that the nonce be derived from the current time, for example set to a
 representation of the current time rounded to some period. With this
 convention, receivers can predict the nonces that will appear in the
 published instances.

 The publishers will have to create new records at the end of each
 rounding period. If the rounding period is set too short, they will
 have to repeat that very often, which is inefficient. On the other
 hand, if the rounding period is too long, the system may be exposed
 to replay attacks. We initially proposed a value of about 5 minutes,
 which would work well for the mDNS variant of DNS-SD. However, this
 may cause an excessive number of updates for the DNS server based
 version of DNS-SD. We propose to set a value of about 30 minutes,
 which seems to be a reasonable compromise.

 Receivers can pre-calculate all the M relevant proofs once per time
 interval and then establish a mapping from the corresponding instance
 names to the pairing data in form of a hash table. These M relevant
 proofs are the proofs resulting from hashing a host’s M pairing keys
 alongside the current nonce. Each time they receive an instance
 name, they can test in O(1) time if the received service information
 is relevant or not.

 Unix defines a 32 bit time stamp as the number of seconds elapsed
 since January 1st, 1970 not counting leap seconds. The most
 significant 20 bits of this 32 bit number represent the number of
 2048 seconds intervals since the epoch. 2048 seconds correspond to 34
 minutes and 8 seconds, which is close enough to our design goal of 30
 minutes. We will thus use this 20 bit number as nonce, which for
 simplicity will be padded zeroes to 24 bits and encoded in 3 octets.

Huitema & Kaiser Expires April 18, 2019 [Page 6]

Internet-Draft DNS-SD Privacy Extensions October 2018

 For coping with time skew, receivers pre-calculate proofs for the
 respective next time interval and store hash tables for the last, the
 current, and the next time interval. When receiving a service
 instance name, receivers first check whether the nonce corresponds to
 the current, the last or the next time interval, and if so, check
 whether the instance name is in the corresponding hash table. For
 (approximately) meeting our design goal of 5 min validity, the last
 time interval may only be considered if the current one is less than
 half way over and the next time interval may only be considered if
 the current time interval is more than half way over.

 Publishers will need to compute O(M) hashes at most once per time
 stamp interval. If records can be created "on the fly", publishers
 will only need to perform that computation upon receipt of the first
 query during a given interval, and cache the computed results for the
 remainder of the interval. There are however scenarios in which
 records have to be produced in advance, for example when records are
 published within a scope defined by a domain name and managed by a
 "classic" DNS server. In such scenarios, publishers will need to
 perform the computations and publication exactly once per time stamp
 interval.

2.2.3. Using a Short Proof

 Devices will have to publish as many instance names as they have
 peers. The instance names will have to be represented via a text
 string, which means that the binary concatenation of nonce and proof
 will have to be encoded using a binary-to-text conversion such as
 BASE64 ([RFC2045] section 6.8) or BASE32 ([RFC4648] section 6).

 Using long proofs, such as the full output of SHA256 [RFC4055], would
 generate fairly long instance names: 48 characters using BASE64, or
 56 using BASE32. These long names would inflate the network traffic
 required when discovering the privacy service. They would also limit
 the number of DNS-SD PTR records that could be packed in a single
 1500 octet sized packet, to 23 or fewer with BASE64, or 20 or fewer
 with BASE32.

 Shorter proofs lead to shorter messages, which is more efficient as
 long as we do not encounter too many collisions. A collision will
 happen if the proof computed by the publisher using one key matches a
 proof computed by a receiver using another key. If a receiver
 mistakenly believes that a proof fits one of its peers, it will
 attempt to connect to the service as explained in section Section 3.5
 but in the absence of the proper pairwise shared key, the connection
 will fail. This will not create an actual error, but the probability
 of such events should be kept low.

Huitema & Kaiser Expires April 18, 2019 [Page 7]

Internet-Draft DNS-SD Privacy Extensions October 2018

 The following table provides the probability that a discovery agent
 maintaining 100 pairings will observe a collision after receiving
 100000 advertisement records. It also provides the number of
 characters required for the encoding of the corresponding instance
 name in BASE64 or BASE32, assuming 24 bit nonces.

 +-------+------------+--------+--------+
 | Proof | Collisions | BASE64 | BASE32 |
 +-------+------------+--------+--------+
 | 24 | 5.96046% | 8 | 16 |
 | 32 | 0.02328% | 11 | 16 |
 | 40 | 0.00009% | 12 | 16 |
 | 48 | 3.6E-09 | 12 | 16 |
 | 56 | 1.4E-11 | 15 | 16 |
 +-------+------------+--------+--------+

 Table 1

 The table shows that for a proof, 24 bits would be too short. 32 bits
 might be long enough, but the BASE64 encoding requires padding if the
 input is not an even multiple of 24 bits, and BASE32 requires padding
 if the input is not a multiple of 40 bits. Given that, the desirable
 proof lengths are thus 48 bits if using BASE64, or 56 bits if using
 BASE32. The resulting instance name will be either 12 characters
 long with BASE64, allowing 54 advertisements in an 1500 byte mDNS
 message, or 16 characters long with BASE32, allowing 47
 advertisements per message.

 In the specification section, we will assume BASE64, and 48 bit
 proofs composed of the first 6 bytes of a SHA256 hash.

2.2.4. Direct Queries

 The preceding sections assume that the discovery is performed using
 the classic DNS-SD process, in which a query for all available
 "instance names" of a service provides a list of PTR records. The
 discoverer will then select the instance names that correspond to its
 peers, and request the SRV and TXT records corresponding to the
 service instance, and then obtain the relevant A or AAAA records.
 This is generally required in DNS-SD because the instance names are
 not known in advance, but for the Private Discovery Service the
 instance names can be predicted, and a more efficient Direct Query
 method can be used.

 At a given time, the node engaged in discovery can predict the nonce
 that its peer will use, since that nonce is composed by rounding the
 current time. The node can also compute the proofs that its peers
 might use, since it knows the nonce and the keys. The node can thus

Huitema & Kaiser Expires April 18, 2019 [Page 8]

Internet-Draft DNS-SD Privacy Extensions October 2018

 build a list of instance names, and directly query the SRV records
 corresponding to these names. If peers are present, they will answer
 directly.

 This "direct query" process will result in fewer network messages
 than the regular DNS-SD query process in some circumstances,
 depending on the number of peers per node and the number of nodes
 publishing the presence discovery service in the desired scope.

 When using mDNS, it is possible to pack multiple queries in a single
 broadcast message. Using name compression and 12 characters per
 instance name, it is possible to pack 70 queries in a 1500 octet mDNS
 multicast message. It is also possible to request unicast replies to
 the queries, resulting in significant efficiency gains in wireless
 networks.

2.3. Private Discovery Service

 The Private Discovery Service discovery allows discovering a list of
 available paired devices, and verifying that either party knows the
 corresponding shared secret. At that point, the querier can engage
 in a series of directed discoveries.

 We have considered defining an ad-hoc protocol for the private
 discovery service, but found that just using TLS would be much
 simpler. The directed Private Discovery Service is just a regular
 DNS-SD service, accessed over TLS, using the encapsulation of DNS
 over TLS defined in [RFC7858]. The main difference with plain DNS
 over TLS is the need for an authentication based on pre-shared keys.

 We assume that the pairing process has provided each pair of
 authorized client and server with a shared secret. We can use that
 shared secret to provide mutual authentication of clients and servers
 using "Pre-Shared Key" authentication, as defined in [RFC4279] and
 incorporated in the latest version of TLS [I-D.ietf-tls-tls13].

 One difficulty is the reliance on a key identifier in the protocol.
 For example, in TLS 1.3 the PSK extension is defined as:

Huitema & Kaiser Expires April 18, 2019 [Page 9]

Internet-Draft DNS-SD Privacy Extensions October 2018

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 uint16 selected_identity;
 }
 } PreSharedKeyExtension

 According to the protocol, the PSK identity is passed in clear text
 at the beginning of the key exchange. This is logical, since server
 and clients need to identify the secret that will be used to protect
 the connection. But if we used a static identifier for the key,
 adversaries could use that identifier to track server and clients.
 The solution is to use a time-varying identifier, constructed exactly
 like the "proof" described in Section 2.2, by concatenating a nonce
 and the hash of the nonce with the shared secret.

2.3.1. A Note on Private DNS Services

 Our solution uses a variant of the DNS over TLS protocol [RFC7858]
 defined by the DNS Private Exchange working group (DPRIVE). DPRIVE
 further published an UDP variant, DNS over DTLS [RFC8094], which
 would also be a candidate.

 DPRIVE and Private Discovery, however, solve two somewhat different
 problems. While DPRIVE is concerned with the confidentiality of DNS
 transactions addressing the problems outlined in [RFC7626], DPRIVE
 does not address the confidentiality or privacy issues with
 publication of services, and is not a direct solution to DNS-SD
 privacy:

 o Discovery queries are scoped by the domain name within which
 services are published. As nodes move and visit arbitrary
 networks, there is no guarantee that the domain services for these
 networks will be accessible using DNS over TLS or DNS over DTLS.

 o Information placed in the DNS is considered public. Even if the
 server does support DNS over TLS, third parties will still be able
 to discover the content of PTR, SRV and TXT records.

 o Neither DNS over TLS nor DNS over DTLS applies to mDNS.

Huitema & Kaiser Expires April 18, 2019 [Page 10]

Internet-Draft DNS-SD Privacy Extensions October 2018

 In contrast, we propose using mutual authentication of the client and
 server as part of the TLS solution, to ensure that only authorized
 parties learn the presence of a service.

2.4. Randomized Host Names

 Instead of publishing their actual host names in the SRV records,
 nodes could publish randomized host names. That is the solution
 argued for in [RFC8117].

 Randomized host names will prevent some of the tracking. Host names
 are typically not visible by the users, and randomizing host names
 will probably not cause much usability issues.

2.5. Timing of Obfuscation and Randomization

 It is important that the obfuscation of instance names is performed
 at the right time, and that the obfuscated names change in synchrony
 with other identifiers, such as MAC Addresses, IP Addresses or host
 names. If the randomized host name changed but the instance name
 remained constant, an adversary would have no difficulty linking the
 old and new host names. Similarly, if IP or MAC addresses changed
 but host names remained constant, the adversary could link the new
 addresses to the old ones using the published name.

 The problem is handled in [RFC8117], which recommends to pick a new
 random host name at the time of connecting to a new network. New
 instance names for the Private Discovery Services should be composed
 at the same time.

3. Private Discovery Service Specification

 The proposed solution uses the following components:

 o Host name randomization to prevent tracking.

 o Device pairing yielding pairwise shared secrets.

 o A Private Discovery Server (PDS) running on each host.

 o Discovery of the PDS instances using DNS-SD.

 These components are detailed in the following subsections.

Huitema & Kaiser Expires April 18, 2019 [Page 11]

Internet-Draft DNS-SD Privacy Extensions October 2018

3.1. Host Name Randomization

 Nodes publishing services with DNS-SD and concerned about their
 privacy MUST use a randomized host name. The randomized name MUST be
 changed when network connectivity changes, to avoid the correlation
 issues described in Section 2.5. The randomized host name MUST be
 used in the SRV records describing the service instance, and the
 corresponding A or AAAA records MUST be made available through DNS or
 mDNS, within the same scope as the PTR, SRV and TXT records used by
 DNS-SD.

 If the link-layer address of the network connection is properly
 obfuscated (e.g. using MAC Address Randomization), the Randomized
 Host Name MAY be computed using the algorithm described in section
 3.7 of [RFC7844]. If this is not possible, the randomized host name
 SHOULD be constructed by simply picking a 48 bit random number
 meeting the Randomness Requirements for Security expressed in
 [RFC4075], and then use the hexadecimal representation of this number
 as the obfuscated host name.

3.2. Device Pairing

 Nodes that want to leverage the Private Directory Service for private
 service discovery among peers MUST share a secret with each of these
 peers. Each shared secret MUST be a 256 bit randomly chosen number.
 We RECOMMEND using the pairing mechanism proposed in
 [I-D.ietf-dnssd-pairing] to establish these secrets.

3.3. Private Discovery Server

 A Private Discovery Server (PDS) is a minimal DNS server running on
 each host. Its task is to offer resource records corresponding to
 private services only to authorized peers. These peers MUST share a
 secret with the host (see Section 3.2). To ensure privacy of the
 requests, the service is only available over TLS [RFC5246], and the
 shared secrets are used to mutually authenticate peers and servers.

 The Private Name Server SHOULD support DNS push notifications
 [I-D.ietf-dnssd-push], e.g. to facilitate an up-to-date contact list
 in a chat application without polling.

3.3.1. Establishing TLS Connections

 The PDS MUST only answer queries via DNS over TLS [RFC7858] and MUST
 use a PSK authenticated TLS handshake [RFC4279]. The client and
 server SHOULD negotiate a forward secure cipher suite such as DHE-PSK
 or ECDHE-PSK when available. The shared secret exchanged during
 pairing MUST be used as PSK. To guarantee interoperability,

Huitema & Kaiser Expires April 18, 2019 [Page 12]

Internet-Draft DNS-SD Privacy Extensions October 2018

 implementations of the Private Name Server MUST support
 TLS_PSK_WITH_AES_256_GCM_SHA384.

 When using the PSK based authentication, the "psk_identity" parameter
 identifying the pre-shared key MUST be identical to the "Instance
 Identifier" defined in Section 3.4, i.e. 24 bit nonce and 48 bit
 proof encoded in BASE64 as 12 character string. The server will use
 the pairing key associated with this instance identifier.

3.4. Publishing Private Discovery Service Instances

 Nodes that provide the Private Discovery Service SHOULD advertise
 their availability by publishing instances of the service through
 DNS-SD.

 The DNS-SD service type for the Private Discovery Service is
 "_pds._tcp".

 Each published instance describes one server and one pairing. In the
 case where a node manages more than one pairing, it should publish as
 many instances as necessary to advertise the PDS to all paired peers.

 Each instance name is composed as follows:

 pick a 24 bit nonce, set to the 20 most significant bits of the
 32 bit Unix GMT time padded with 4 zeroes.

 For example, on August 22, 2017 at 20h 4 min and 54 seconds
 international time, the Unix 32 bit time had the
 hexadecimal value 0x599C8E68. The corresponding nonce
 would be set to the 24 bits: 0x599C80.

 compute a 48 bit proof:
 proof = first 48 bits of HASH(<nonce>|<pairing key>)

 set the 72 bit binary identifier as the concatenation
 of nonce and proof

 set instance_name = BASE64(binary identifier)

 In this formula, HASH SHOULD be the function SHA256 defined in
 [RFC4055], and BASE64 is defined in section 6.8 of [RFC2045]. The
 concatenation of a 24 bit nonce and 48 bit proof result in a 72 bit
 string. The BASE64 conversion is 12 characters long per [RFC6763].

Huitema & Kaiser Expires April 18, 2019 [Page 13]

Internet-Draft DNS-SD Privacy Extensions October 2018

3.5. Discovering Private Discovery Service Instances

 Nodes that wish to discover Private Discovery Service Instances
 SHOULD issue a DNS-SD discovery request for the service type
 "_pds._tcp". They MAY, as an alternative, use the Direct Discovery
 procedure defined in Section 3.6. When using the Direct Discovery
 procedure over mDNS, nodes SHOULD always set the QU-bit (unicast
 response requested, see [RFC6762] Section 5.4) because responses
 related to a "_pds._tcp" instance are only relevant for the querying
 node itself.

 When nodes send a DNS-SD discovery request, they will receive in
 response a series of PTR records, each providing the name of one of
 the instances present in the scope.

 For each time interval, the querier SHOULD pre-calculate a hash table
 mapping instance names to pairings according to the following
 conceptual algorithm:

 nonce = 20 bit rounded time stamp of the \
 respective next time interval padded to \
 24 bits with four zeroes
 for each available pairing
 retrieve the key Xj of pairing number j
 compute F = first 48 bits of hash(nonce, Xj)
 construct the binary instance_name as described \
 in the previous section
 instance_names[nonce][instance_name] = Xj;

 The querier SHOULD store the hash tables for the previous, the
 current, and the next time interval.

 The querier SHOULD examine each instance to see whether it
 corresponds to one of its available pairings, according to the
 following conceptual algorithm:

Huitema & Kaiser Expires April 18, 2019 [Page 14]

Internet-Draft DNS-SD Privacy Extensions October 2018

 for each received instance_name:
 convert the instance name to binary using BASE64
 if the conversion fails,
 discard the instance.
 if the binary instance length is not 72 bits,
 discard the instance.

 nonce = first 24 bits of binary.

 Check that the 4 least significant bits of the nonce
 have the value 0, and that the 20 most significant
 bits of the nonce match the first 20 bits of
 the current time, or the previous interval (20 bit number
 minus 1) if the current interval is less than half over,
 or the next interval (20 bit number plus 1) if the
 current interval is more than half over. If the
 nonce does not match an acceptable value, discard
 the instance.

 if ((Xj = instance_names[nonce][instance_name]) != null)
 mark the pairing number j as available

 The check of the current time is meant to mitigate replay attacks,
 while not mandating a time synchronization precision better than 15
 minutes.

 Once a pairing has been marked available, the querier SHOULD try
 connecting to the corresponding instance, using the selected key.
 The connection is likely to succeed, but it MAY fail for a variety of
 reasons. One of these reasons is the probabilistic nature of the
 proof, which entails a small chance of "false positive" match. This
 will occur if the hash of the nonce with two different keys produces
 the same result. In that case, the TLS connection will fail with an
 authentication error or a decryption error.

3.6. Direct Discovery of Private Discovery Service Instances

 Nodes that wish to discover Private Discovery Service Instances MAY
 use the following Direct Discovery procedure instead of the regular
 DNS-SD Discovery explained in Section 3.5.

 To perform Direct Discovery, nodes should compose a list of Private
 Discovery Service Instances Names. There will be one name for each
 pairing available to the node. The Instance name for each name will
 be composed of a nonce and a proof, using the algorithm specified in
 Section 3.4.

Huitema & Kaiser Expires April 18, 2019 [Page 15]

Internet-Draft DNS-SD Privacy Extensions October 2018

 The querier will issue SRV record queries for each of these names.
 The queries will only succeed if the corresponding instance is
 present, in which case a pairing is discovered. After that, the
 querier SHOULD try connecting to the corresponding instance, as
 explained in Section 3.4.

3.7. Using the Private Discovery Service

 Once instances of the Private Discovery Service have been discovered,
 peers can establish TLS connections and send DNS requests over these
 connections, as specified in DNS-SD.

4. Security Considerations

 This document specifies a method for protecting the privacy of nodes
 that offer and query for services. This is especially useful when
 operating in a public space. Hiding the identity of the publishing
 nodes prevents some forms of "targeting" of high value nodes.
 However, adversaries can attempt various attacks to break the
 anonymity of the service, or to deny it. A list of these attacks and
 their mitigations are described in the following sections.

4.1. Attacks Against the Pairing System

 There are a variety of attacks against pairing systems, which may
 result in compromised pairing secrets. If an adversary manages to
 acquire a compromised key, the adversary will be able to perform
 private service discovery according to Section 3.5. This will allow
 tracking of the service. The adversary will also be able to discover
 which private services are available for the compromised pairing.

 Attacks on pairing systems are detailed in [I-D.ietf-dnssd-pairing].

4.2. Denial of Discovery of the Private Discovery Service

 The algorithm described in Section 3.5 scales as O(M*N), where M is
 the number of pairings per node and N is the number of nodes in the
 local scope. Adversaries can attack this service by publishing
 "fake" instances, effectively increasing the number N in that scaling
 equation.

 Similar attacks can be mounted against DNS-SD: creating fake
 instances will generally increase the noise in the system and make
 discovery less usable. Private Discovery Service discovery SHOULD
 use the same mitigations as DNS-SD.

 The attack could be amplified if the clients needed to compute proofs
 for all the nonces presented in Private Discovery Service Instance

Huitema & Kaiser Expires April 18, 2019 [Page 16]

Internet-Draft DNS-SD Privacy Extensions October 2018

 names. This is mitigated by the specification of nonces as rounded
 time stamps in Section 3.5. If we assume that timestamps must not be
 too old, there will be a finite number of valid rounded timestamps at
 any time. Even if there are many instances present, they would all
 pick their nonces from this small number of rounded timestamps, and a
 smart client will make sure that proofs are only computed once per
 valid time stamp.

4.3. Replay Attacks Against Discovery of the Private Discovery Service

 Adversaries can record the service instance names published by
 Private Discovery Service instances, and replay them later in
 different contexts. Peers engaging in discovery can be misled into
 believing that a paired server is present. They will attempt to
 connect to the absent peer, and in doing so will disclose their
 presence in a monitored scope.

 The binary instance identifiers defined in Section 3.4 start with 24
 bits encoding the most significant bits of the "UNIX" time. In order
 to protect against replay attacks, clients SHOULD verify that this
 time is reasonably recent, as specified in Section 3.5.

4.4. Denial of Private Discovery Service

 The Private Discovery Service is only available through a mutually
 authenticated TLS connection, which provides state-of-the-art
 protection mechanisms. However, adversaries can mount a denial of
 service attack against the service. In the absence of shared
 secrets, the connections will fail, but the servers will expend some
 CPU cycles defending against them.

 To mitigate such attacks, nodes SHOULD restrict the range of network
 addresses from which they accept connections, matching the expected
 scope of the service.

 This mitigation will not prevent denial of service attacks performed
 by locally connected adversaries; but protecting against local denial
 of service attacks is generally very difficult. For example, local
 attackers can also attack mDNS and DNS-SD by generating a large
 number of multicast requests.

4.5. Replay Attacks against the Private Discovery Service

 Adversaries may record the PSK Key Identifiers used in successful
 connections to a private discovery service. They could attempt to
 replay them later against nodes advertising the private service at
 other times or at other locations. If the PSK identifier is still
 valid, the server will accept the TLS connection, and in doing so

Huitema & Kaiser Expires April 18, 2019 [Page 17]

Internet-Draft DNS-SD Privacy Extensions October 2018

 will reveal being the same server observed at a previous time or
 location.

 The PSK identifiers defined in Section 3.3.1 start with the 24 most
 significant bits of the "UNIX" time. In order to mitigate replay
 attacks, servers SHOULD verify that this time is reasonably recent,
 and fail the connection if it is too old, or if it occurs too far in
 the future.

 The processing of timestamps is however affected by the accuracy of
 computer clocks. If the check is too strict, reasonable connections
 could fail. To further mitigate replay attacks, servers MAY record
 the list of valid PSK identifiers received in a recent past, and fail
 connections if one of these identifiers is replayed.

4.6. Replay attacks and clock synchronization

 The mitigation of replay attacks relies on verification of the time
 encoded in the nonce. This verification assumes that the hosts
 engaged in discovery have a reasonably accurate sense of the current
 time.

4.7. Fingerprinting the number of published instances

 Adversaries could monitor the number of instances published by a
 particular device, which in the absence of mitigations will reflect
 the number of pairings established by that device. This number will
 probably vary between 1 and maybe 100, providing the adversary with
 maybe 6 or 7 bits of input in a fingerprinting algorithm.

 Devices MAY protect against this fingerprinting by publishing a
 number of "fake" instances in addition to the real ones. The fake
 instance identifiers will contain the same nonce as the genuine
 instance identifiers, and random bits instead of the proof. Peers
 should be able to quickly discard these fake instances, as the proof
 will not match any of the values that they expect. One plausible
 padding strategy is to ensure that the total number of published
 instances, either fake or genuine, matches one of a few values such
 as 16, 32, 64, or higher powers of 2.

5. IANA Considerations

 This draft does not require any IANA action.

Huitema & Kaiser Expires April 18, 2019 [Page 18]

Internet-Draft DNS-SD Privacy Extensions October 2018

6. Acknowledgments

 This draft results from initial discussions with Dave Thaler, and
 encouragements from the DNS-SD working group members. We would like
 to thank Stephane Bortzmeyer and Ted Lemon for their detailed reviews
 of the working draft.

7. References

7.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use in
 the Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC 4055,
 DOI 10.17487/RFC4055, June 2005,
 <https://www.rfc-editor.org/info/rfc4055>.

 [RFC4075] Kalusivalingam, V., "Simple Network Time Protocol (SNTP)
 Configuration Option for DHCPv6", RFC 4075,
 DOI 10.17487/RFC4075, May 2005,
 <https://www.rfc-editor.org/info/rfc4075>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

Huitema & Kaiser Expires April 18, 2019 [Page 19]

Internet-Draft DNS-SD Privacy Extensions October 2018

7.2. Informative References

 [I-D.ietf-dnssd-pairing]
 Huitema, C. and D. Kaiser, "Device Pairing Using Short
 Authentication Strings", draft-ietf-dnssd-pairing-04 (work
 in progress), April 2018.

 [I-D.ietf-dnssd-prireq]
 Huitema, C., "DNS-SD Privacy and Security Requirements",
 draft-ietf-dnssd-prireq-00 (work in progress), September
 2018.

 [I-D.ietf-dnssd-privacyscaling]
 Huitema, C., "DNS-SD Privacy Scaling Tradeoffs", draft-
 ietf-dnssd-privacyscaling-00 (work in progress), September
 2018.

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-15 (work in progress), September
 2018.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [K17] Kaiser, D., "Efficient Privacy-Preserving
 Configurationless Service Discovery Supporting Multi-Link
 Networks", 2017,
 <http://nbn-resolving.de/urn:nbn:de:bsz:352-0-422757>.

 [KW14a] Kaiser, D. and M. Waldvogel, "Adding Privacy to Multicast
 DNS Service Discovery", DOI 10.1109/TrustCom.2014.107,
 2014, <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7011331>.

 [KW14b] Kaiser, D. and M. Waldvogel, "Efficient Privacy Preserving
 Multicast DNS Service Discovery",
 DOI 10.1109/HPCC.2014.141, 2014,
 <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7056899>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

Huitema & Kaiser Expires April 18, 2019 [Page 20]

Internet-Draft DNS-SD Privacy Extensions October 2018

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
 DOI 10.17487/RFC7626, August 2015,
 <https://www.rfc-editor.org/info/rfc7626>.

 [RFC7844] Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity
 Profiles for DHCP Clients", RFC 7844,
 DOI 10.17487/RFC7844, May 2016,
 <https://www.rfc-editor.org/info/rfc7844>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017,
 <https://www.rfc-editor.org/info/rfc8094>.

 [RFC8117] Huitema, C., Thaler, D., and R. Winter, "Current Hostname
 Practice Considered Harmful", RFC 8117,
 DOI 10.17487/RFC8117, March 2017,
 <https://www.rfc-editor.org/info/rfc8117>.

Authors’ Addresses

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net
 URI: http://privateoctopus.com/

 Daniel Kaiser
 University of Konstanz
 Konstanz 78457
 Germany

 Email: daniel.kaiser@uni-konstanz.de

Huitema & Kaiser Expires April 18, 2019 [Page 21]

