Net wor k Wor ki ng Group M Notti ngham

I nternet-Draft Fastly
I ntended status: |nformational P-H. Kanmp
Expires: May 3, 2018 The Varni sh Cache Proj ect

Cct ober 30, 2017

Structured Headers for HITP
draft-nottingham structured-headers-00

Abst ract

Thi s docunent describes Structured Headers, a way of sinplifying HTTP
header field definition and parsing. It is intended for use by new
HTTP header fi el ds.

Note to Readers
RFC EDI TOR: pl ease renove this section before publication

The issues list for this draft can be found at
https://github. com mot/I|-D/ | abel s/ structured-headers [1].

The nost recent (often, unpublished) draft is at
https://mot.github.io/l-D structured-headers/ [2].

Recent changes are listed at https://github.com mot/I-D/ comm ts/gh-
pages/ structured-headers [3].

See also the draft’s current status in the | ETF datatracker, at
https://datatracker.ietf.org/doc/draft-notti ngham structured-headers/

[4].
Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

Not t i ngham & Kanp Expires May 3, 2018 [Page 1]

Internet-Draft

Structured Headers for HITP

This Internet-Draft will expire on May 3, 2018.

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents

(https://trustee.ietf.org/license-info)

publication of this docunent. Please review these docunents

careful ly,
to this docunent.

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

Tabl e of Contents

in effect on the date of

Cct ober 2017

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

1. Introduction Coe e 3
1.1. Notational Conventions . 3
2. Specifying Structured Headers . Co 4
3. Parsing Requirenents for Textual Headers 5
4., Structured Header Data Types 6
4.1. Nunbers . . e 6
4.1.1. Parsing Nunbers fron1TextuaI Fbaders 7
4.2. Strings . . e 7
4.2.1. Parsing a Str|ng fron1TextuaI Headers . 7
4.3. Labels . e 8
4.3.1. Parsing a Label fron1TextuaI Fbaders 9
4.4. Paraneterised Labels .. e e 9
4.4.1. Parsing a Paraneterised Label from Textual Headers 10
4.5. Binary Content . e 10
4.5.1. Parsing Blnary Cbntent fron1TextuaI Headers . 11
4.6. ltens . . 11
4.6.1. Parsing an Iten1fron1TextuaI Fbaders 11
4.7. Dictionaries e 12
4.7.1. Parsing a Di ctlonary fron1TextuaI Headers . 12
4.8. Lists . . 13
4.8.1. Parsing a L|st fron1TextuaI Fbaders . 14

5. | ANA Consi derations . 14
6. Security Considerations . 14
7. References . 14
7.1. Normative References 14
7.2. Informative References 15
7.3. URIs 15
Aut hors’ Addresses 16
Not t i ngham & Kanp Expires May 3, 2018 [Page 2]

Internet-Draft Structured Headers for HITP Cct ober 2017

1.

1.

I nt roducti on

Speci fying the syntax of new HTTP header fields is an onerous task;
even with the guidance in [RFC7231], Section 8.3.1, there are nany
decisions - and pitfalls - for a prospective HITP header field

aut hor.

Li kewi se, bespoke parsers often need to be witten for specific HITP
headers, because each has slightly different handling of what |ooks
I i ke conmpbn synt ax.

Thi s docunent introduces structured HTTP header field val ues
(hereafter, Structured Headers) to address these problens.
Structured Headers define a generic, abstract nodel for data, along
with a concrete serialisation for expressing that nodel in textua
HTTP headers, as used by HTTP/1 [RFC7230] and HTTP/ 2 [RFC7540].

HTTP headers that are defined as Structured Headers use the types
defined in this specification to define their syntax and basic
handling rules, thereby sinplifying both their definition and
par si ng.

Additionally, future versions of HTTP can define alternative
serialisations of the abstract nmodel of Structured Headers, allow ng
headers that use it to be transmitted nore efficiently w thout being
r edef i ned.

Note that it is not a goal of this docunent to redefine the syntax of
exi sting HTTP headers; the nechani sns described herein are only
i ntended to be used with headers that explicitly opt into them

To specify a header field that uses Structured Headers, see
Section 2.

Section 4 defines a nunber of abstract data types that can be used in
Structured Headers, of which only three are allowed at the "top"
level: lists, dictionaries, or itens.

Those abstract types can be serialised into textual headers - such as
those used in HITP/1 and HTTP/2 - using the algorithnms described in
Section 3.

1. Notational Conventions
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP

Not t i ngham & Kanp Expires May 3, 2018 [Page 3]

Internet-Draft Structured Headers for HITP Cct ober 2017

14 [RFC2119] [RFCB174] when, and only when, they appear in al
capitals, as shown here

Thi s docunment uses the Augnented Backus- Naur Form (ABNF) notation of
[RFC5234], including the DIA T, ALPHA and DQUOTE rul es fromthat
docunment. It also includes the OA5 rule from [RFC7230].

2. Specifying Structured Headers

HTTP headers that use Structured Headers need to be defined to do so
explicitly; recipients and generators need to know that the
requirenents of this docunent are in effect. The sinplest way to do
that is by referencing this docunent in its definition

The field s definition will also need to specify the field-value’'s
al l oned syntax, in terns of the types described in Section 4, along
with their associated semantics

Field definitions MUST NOT relax or otherwi se nodify the requirenments
of this specification; doing so would preclude handling by generic
sof t war e

However, field definitions are encouraged to clearly state additiona
constraints upon the syntax, as well as the consequences when those
constraints are viol ated.

For exanpl e:

FooExanpl e Header

The FooExanpl e HTTP header field conveys a list of nunbers about how
much Foo the sender has.

FooExanple is a Structured header [RFCxxxx]. Its value MJIST be a
dictionary ([RFCxxxx], Section Y.YV)

The dictionary MJST contain:

* A menber whose key is "foo", and whose value is an integer
([RFCxxxx], Section Y.Y), indicating the nunber of foos in
t he nmessage.
* A menber whose key is "bar", and whose value is a string
([RFCxxxx], Section Y.Y), conveying the characteristic bar-ness
of the message.

If the parsed header field does not contain both, it MJST be ignored.

Not t i ngham & Kanp Expires May 3, 2018 [Page 4]

Internet-Draft Structured Headers for HITP Cct ober 2017

Note that enpty header field values are not allowed by the syntax,
and therefore will be considered errors.

3. Parsing Requirenents for Textual Headers

When a receiving inplenentation parses textual HTTP header fields
(e.g., in HTTP/1 or HITP/2) that are known to be Structured Headers,
it is inportant that care be taken, as there are a nunber of edge
cases that can cause interoperability or even security problens.
This section specifies the algorithmfor doing so.

Gven an ASCI| string input_string that represents the chosen
header’s field-value, return the parsed header value. Note that

i nput _string may incorporate multiple header |ines conbined into one
comma- separated fiel d-val ue, as per [RFC7230], Section 3.2.2.

1. Discard any OA5 fromthe begi nning of input_string.

2. If the field-value is defined to be a dictionary, return the
result of Parsing a Dictionary from Textual headers
(Section 4.7).

3. If the field-value is defined to be a list, return the result of
Parsing a List from Textual Headers (Section 4.8).

4. 1If the field-value is defined to be a paraneterised |abel, return
the result of Parsing a Paraneterised Label from Textual headers
(Section 4.4).

5. O herwise, return the result of Parsing an Item from Textua
Headers (Section 4.6).

Note that in the case of lists and dictionaries, this has the effect
of conbining nmultiple instances of the header field into one.
However, for singular itens and paraneterised |labels, it has the

ef fect of selecting the first value and ignoring any subsequent
instances of the field, as well as extraneous text afterwards.

Additionally, note that the effect of the parsing al gorithns as
specified is generally intolerant of syntax errors; if one is
encountered, the typical response is to throw an error, thereby
di scarding the entire header field value. This includes any non-
ASCI | characters in input_string.

Not t i ngham & Kanp Expires May 3, 2018 [Page 5]

Internet-Draft Structured Headers for HITP Cct ober 2017

4. Structured Header Data Types

This section defines the abstract value types that can be conposed
into Structured Headers, along with the textual HTTP serialisations
of them

4.1. Nunbers

Abstractly, nunbers are integers with an optional fractional part.
They have a maximum of fifteen digits available to be used in one or
both of the parts, as reflected in the ABNF below, this allows them
to be stored as | EEE 754 doubl e precision nunbers (binary64)

([I EEE754]) .

The textual HTTP serialisation of nunbers allows a maxi num of fifteen
digits between the integer and fractional part, along with an
optional "-" indicating negative nunbers.

RO

nunber = ["o 1*15DIG T /
"ov 1*14ADIG T /
"o" 1*13DIG T /
"o" 1*12DIG T /
"ot 1*1IDIG T /
"ot 1*10DIG T /
"ov 1*9D|
" 1*8Dl
"o" 1% 7D
"' 1*6D|
"' 1*5D|
"ov o 1*4D|
"ov 13D
"ov 12D
14D "' 1D G
15DIG T)

PR Re
WNPFPOOWO~NOOUTD,WN
vjvivivlvivivlvivivluRulu g

AdAddAd 444444444~

400000000
R e e i i i

i nt eger
unsi gned

["-"] 1*15DIG T
1*15DIG T

i nteger and unsi gned are defined as conveni ences to specification
authors; if their use is specified and their ABNF is not nmatched, a
parser MJST consider it to be invalid.

For exanpl e, a header whose value is defined as a nunber could | ook
I'ike:

Exanpl eNunber Header: 4.5

Not t i ngham & Kanp Expires May 3, 2018 [Page 6]

Internet-Draft Structured Headers for HITP Cct ober 2017

4.1.1. Parsing Nunmbers from Textual Headers
TBD

4.2. Strings
Abstractly, strings are ASCI| strings [RFC0020], excluding control
characters (i.e., the range 0x20 to Ox7E). Note that this excludes
tabs, newlines and carriage returns. They may be at nobst 1024
characters | ong.

The textual HTTP serialisation of strings uses a backslash ("") to
escape doubl e quotes and backsl ashes in strings.

string = DQUOTE 1*1024(char) DQUOTE

char = unescaped / escape (DQUOTE / "\")
unescaped = %20-21 / %23-5B / %5D-7E

escape = "\"

For exanple, a header whose value is defined as a string could | ook
l'i ke:

Exanpl eSt ri ngHeader: "hello worl d"
Note that strings only use DQUOTE as a delimiter; single quotes do
not delimt strings. Furthernmore, only DQUOTE and "" can be escaped;
ot her sequences MJST generate an error.
Uni code is not directly supported in Structured Headers, because it
causes a nunber of interoperability issues, and - with few exceptions
- header values do not require it.
When it is necessary for a field value to convey non-ASCI| string
content, binary content (Section 4.5) SHOULD be specified, along with
a character encoding (nost |ikely, UTF-8).

4.2.1. Parsing a String from Textual Headers

G ven an ASCI| string input_string, return an unquoted string.
input_string is nodified to renove the parsed val ue.

1. Let output _string be an enpty string.

2. If the first character of input_string is not DQUOTE, throw an
error.

3. Discard the first character of input_string.

Not t i ngham & Kanp Expires May 3, 2018 [Page 7]

Internet-Draft Structured Headers for HITP

4. If input_string contains nore than 1025 characters,
error.

5. Wiile input_string is not enpty:

Cct ober 2017

t hrow an

1. Let char be the result of rempbving the first character of

i nput _string.

2. If char is a backslash ("\"):

1. If input_string is now enpty, throw an error

2. El se:

1. Let next_char be the result of renmoving the first

character of input_string.

2. If next_char is not DQUOTE or "\", throw an error.

3. Append next _char to output_string.

3. Else, if char is DQUOTE, renove the first character of

i nput_string and return output_string.
4. Else, append char to output_string.
6. O herwise, throw an error

4.3. Labels

Label s are short (up to 256 characters) textual identifiers; their
abstract nodel is identical to their expression in the textual HITP

serialisation.

| abel = Ical pha *255(lcalpha/ DIG@T / " " ["-"[] "*"
| cal pha = %61-7A ; a-z

Note that |abels can only contain | owercase |etters.

For exanple, a header whose value is defined as a | abe
like:

Exanpl eLabel Header: f oo/ bar

Not t i ngham & Kanp Expires May 3, 2018

/

)

coul d | ook

[Page 8]

Internet-Draft Structured Headers for HITP Cct ober 2017

4.3.1. Parsing a Label from Textual Headers

G ven an ASCI| string input_string, return a label. input_string is

nodi fied to renove the parsed val ue.

1. If input_string contains nore than 256 characters, throw an
error.

2. If the first character of input_string is not |cal pha, throw an
error.

3. Let output_string be an enpty string.
4. Wiile input_string is not enpty:

1. Let char be the result of renobving the first character of
i nput _string.

2. If char is not one of Icalpha, DAQT, "_", "-", "*" or "/"
1. Prepend char to input_string.
2. Return output_string.
3. Append char to output_string.
5. Return output_string.
4.4, Paranmeterised Labels
Paraneteri sed Labels are labels (Section 4.3) with up to 256
paraneters; each parameter has a | abel and an optional value that is
an item (Section 4.6). Ordering between paraneters is not
significant, and duplicate paraneters MJST be considered an error
The textual HTTP serialisation uses semicolons (";") to delimt the
paraneters from each other, and equals ("=") to delimt the paraneter
nane fromits val ue.
paraneteri sed = | abel *256(OAN8 ";" OA5 label ["=" item])

For exanpl e,

Exanpl ePar anmHeader: abc; a=1; b=2; c

Not t i ngham & Kanp Expires May 3, 2018 [Page 9]

Internet-Draft Structured Headers for HITP Cct ober 2017

4.4.

1.

Parsing a Paraneterised Label from Textual Headers

G ven an ASCI| string input_string, return a |abel with an mappi ng of
paraneters. input_string is nodified to renove the parsed val ue.

1.

4.

4.5.

Let primary_| abel be the result of Parsing a Label from Textua

Headers (Section 4.3) frominput_string.

1.

2

9.

10.

Let paraneters be an enpty mapping.

In a | oop:

Consunme any OA5 from the begi nning of input_string.

If the first character of input_string is not ";", exit the
| oop.
Consume a ";" character fromthe beginning of input_string.

Consune any OAS fromthe begi nning of input_string.

| et param nane be the result of Parsing a Label from Textua
Headers (Section 4.3) frominput_string.

If paramnanme is already present in paranmeters, throw an
error.

Let paramval ue be a null val ue.

If the first character of input_string is "=":

1. Consune the "=" character at the begi nning of
i nput _string.

2. Let paramvalue be the result of Parsing an Itemfrom
Textual Headers (Section 4.6) frominput_string.

If parameters has nore than 255 nmenbers, throw an error.

Add param nane to paraneters with the val ue paramval ue

Return the tuple (primary_| abel, paraneters).

Bi nary Content

Arbitrary binary content up to 16K in size can be conveyed in
Structured Headers.

Not t i ngham & Kanp Expires May 3, 2018 [Page 10]

Internet-Draft Structured Headers for HITP Cct ober 2017

The textual HTTP serialisation indicates their presence by a | eading
"*" wth the data encoded using Base 64 Encodi ng [RFC4648], wi thout
paddi ng (as "=" mght be confused with the use of dictionaries).

bi nary
base64

st 1%21846(base64)
ALPHA / DIGT / "+ [/"

For exanple, a header whose value is defined as binary content could
| ook |ike:

Exanpl eBi nar yHeader: *cHIJl dGvuzZCB0ad zIl d zl QpbnFyeSBj b250ZWs0Lg
4.5.1. Parsing Binary Content from Textual Headers

G ven an ASCI| string input_string, return binary content.
input_string is nodified to renove the parsed val ue.

1. If the first character of input_string is not "*", throw an
error.

2. Discard the first character of input_string.

3. Let b64 content be the result of renoving content of input_string
up to but not including the first character that is not in ALPHA
u G T, n +II Or II/ n i

4. Let binary_content be the result of Base 64 Decodi ng [RFC4648]
b64 content, synthesising padding if necessary. |If an error is
encountered, throwit.

5. Return binary_content.

4.6. Iltens

An itemis can be a nunber (Section 4.1), string (Section 4.2), |abe
(Section 4.3) or binary content (Section 4.5).

item= nunber / string / |abel / binary
4.6.1. Parsing an Item from Textual Headers

Gven an ASCI| string input_string, return an item input_string is
nmodi fied to renove the parsed val ue.

1. Discard any OA5 fromthe begi nning of input_string.

Not t i ngham & Kanp Expires May 3, 2018 [Page 11]

Internet-Draft Structured Headers for HITP Cct ober 2017

2. If the first character of input_stringis a"-" or a DAT,
process input_string as a nunber (Section 4.1) and return the
result, throwi ng any errors encountered.

3. If the first character of input_string is a DQUOTE, process
input_string as a string (Section 4.2) and return the result,
throwi ng any errors encount er ed.

4. If the first character of input_string is "*", process
i nput_string as binary content (Section 4.5) and return the
result, throwi ng any errors encountered.

5. If the first character of input_string is an Ical pha, process
i nput_string as a label (Section 4.3) and return the result,
throwi ng any errors encountered.

6. Oherwise, throw an error.
4.7. Dictionaries

Dictionaries are unordered maps of key-value pairs, where the keys
are labels (Section 4.3) and the values are itens (Section 4.6).
There can be between 1 and 1024 nenbers, and keys are required to be
uni que.

In the textual HTTP serialisation, keys and val ues are separated by
" (wi t hout whitespace), and key/value pairs are separated by a
comma wi th optional whitespace

dictionary = label "=" item*1023(O "," ON5 |l abel "=" item)

For exanple, a header field whose value is defined as a dictionary
coul d ook Iike:

Exanpl eDi ct Header: foo=1.23, da="Applepie", en=*waZi bGVOW6ZydGUK

Typically, a header field specification will define the semantics of

i ndi vi dual keys, as well as whether their presence is required or

optional. Recipients MJIST ignore keys that are undefined or unknown,

unl ess the header field s specification specifically disallows them
4.7.1. Parsing a Dictionary from Textual Headers

G ven an ASCI| string input_string, return a mapping of (I abel
item. input_string is nodified to renove the parsed val ue.

1. Let dictionary be an enpty nappi ng.

Not t i ngham & Kanp Expires May 3, 2018 [Page 12]

Internet-Draft Structured Headers for HITP Cct ober 2017

2. Wiile input_string is not enpty:

1. Let this_key be the result of running Parse Label from
Textual Headers (Section 4.3) with input_string. |If an error
is encountered, throwit.

2. If dictionary already contains this_key, raise an error

3. Consume a
error.

frominput_string; if none is present, raise an

4. Let this_value be the result of running Parse Itemfrom
Textual Headers (Section 4.6) with input_string. |If an error
is encountered, throwit.

5. Add key this key with value this value to dictionary.

6. Discard any | eading OA5 frominput_string.

7. If input_string is enpty, return dictionary.

8. Consune a COWA frominput_string; if no corma is present,
rai se an error.

9. Discard any leading OA5 frominput_string.
3. Return dictionary.
4.8. Lists

Lists are arrays of itens (Section 4.6) or paraneterised | abels
(Section 4.4, with one to 1024 nenbers.

In the textual HTTP serialisation, each nenber is separated by a
comma and optional whitespace.

list = list_nenmber 1*1024(OANE "," OB |ist_nenber)
list_menber = item/ paranterised_| abe

For exanple, a header field whose value is defined as a |ist of
| abel s could | ook like:

Exanpl eLabel Li st Header: foo, bar, baz_45

and a header field whose value is defined as a |list of paraneterised
| abel s could | ook Iike:

Exanpl ePar anli st Header: abc/def; g="hi";j, klnnop

Not t i ngham & Kanp Expires May 3, 2018 [Page 13]

Internet-Draft Structured Headers for HITP Cct ober 2017

4.8.1. Parsing a List from Textual Headers

G ven an ASCI| string input_string, return a list of itens.
input_string is nodified to renove the parsed val ue.

1. Let itenms be an enpty array.
2. Wile input_string is not enpty:

1. Let itembe the result of running Parse Item from Text ual
Headers (Section 4.6) with input_string. |If an error is
encountered, throwit.

2. Append itemto itens.

3. Discard any | eading OA5 from i nput_string.

4. If input_string is enpty, return itens.

5. Consune a COWA frominput_string; if no comma is present,
rai se an error.

6. Discard any |leading OA5 frominput_string.
3. Return itens.
5. | ANA Consi derati ons
This draft has no actions for | ANA
6. Security Considerations
TBD
7. References
7.1. Normative References
[RFC0020] Cerf, V., "ASCIl format for network interchange", STD 80,
RFC 20, DO 10.17487/ RFC0020, Cctober 1969,
<https://www. rfc-editor.org/info/rfc20>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,

DO 10.17487/ RFC2119, March 1997,
<https://ww.rfc-editor.org/info/rfc2119>.

Not t i ngham & Kanp Expires May 3, 2018 [Page 14]

Internet-Draft Structured Headers for HITP Cct ober 2017

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<https://www. rfc-editor.org/info/rfc4648>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234,
DA 10. 17487/ RFC5234, January 2008,
<https://www. rfc-editor.org/info/rfc5234>.

[RFC7230] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFC 7230, DO 10.17487/ RFC7230, June 2014,
<https://ww. rfc-editor.org/info/rfc7230>.

[RFC8174] Leiba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DO 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.
7.2. Informative References

[EEE754] |1 EEE, "IEEE Standard for Floating-Point Arithnmetic", 2008,
<http://grouper.ieee.org/ groups/ 754/ >.

[RFC7231] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DO 10.17487/ RFC7231, June 2014,
<https://www. rfc-editor.org/info/rfc7231>.

[RFC7540] Belshe, M, Peon, R, and M Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
DO 10.17487/ RFC7540, May 2015,
<https://www.rfc-editor.org/info/rfc7540>.

7.3. WRIs

[1] https://github.comimot/|-D/ | abel s/structured-headers

[2] https://mot.github.io/l-D structured-headers/

[3] https://github.com mot/I-D/ conmits/gh-pages/structured-headers

[4] https://datatracker.ietf.org/doc/draft-nottingham structured-
header s/

Not t i ngham & Kanp Expires May 3, 2018 [Page 15]

Internet-Draft Structured Headers for HITP Cct ober 2017

Aut hors’ Addr esses

Mar k Not ti ngham
Fastly

Emai | : mot @mot . net
URI : https://wwmv. mot . net/

Poul - Henni ng Kanp
The Varni sh Cache Project

Emai | : phk@ar ni sh-cache. org

Not t i ngham & Kanp Expires May 3, 2018 [Page 16]

