
HTTP Working Group K. Oku
Internet-Draft Fastly
Intended status: Experimental Y. Weiss
Expires: January 3, 2019 Akamai
 July 2, 2018

 Cache Digests for HTTP/2
 draft-ietf-httpbis-cache-digest-05

Abstract

 This specification defines a HTTP/2 frame type to allow clients to
 inform the server of their cache’s contents. Servers can then use
 this to inform their choices of what to push to clients.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 https://lists.w3.org/Archives/Public/ietf-http-wg/ .

 Working Group information can be found at http://httpwg.github.io/ ;
 source code and issues list for this draft can be found at
 https://github.com/httpwg/http-extensions/labels/cache-digest .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Oku & Weiss Expires January 3, 2019 [Page 1]

Internet-Draft Cache Digests for HTTP/2 July 2018

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 3
 2. The CACHE_DIGEST Frame 3
 2.1. Client Behavior . 4
 2.1.1. Creating a digest 4
 2.1.2. Adding a URL to the Digest-Value 5
 2.1.3. Removing a URL to the Digest-Value 7
 2.1.4. Computing a fingerprint value 8
 2.1.5. Computing the key 9
 2.1.6. Computing a Hash Value 9
 2.1.7. Computing an Alternative Hash Value 9
 2.2. Server Behavior . 10
 2.2.1. Querying the Digest for a Value 10
 3. The SETTINGS_SENDING_CACHE_DIGEST SETTINGS Parameter 11
 4. The SETTINGS_ACCEPT_CACHE_DIGEST SETTINGS Parameter 12
 5. IANA Considerations . 12
 6. Security Considerations 13
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 14
 Appendix A. Encoding the CACHE_DIGEST frame as an HTTP Header . 15
 Appendix B. Changes . 16
 B.1. Since draft-ietf-httpbis-cache-digest-04 16
 B.2. Since draft-ietf-httpbis-cache-digest-03 16
 B.3. Since draft-ietf-httpbis-cache-digest-02 16
 B.4. Since draft-ietf-httpbis-cache-digest-01 16
 B.5. Since draft-ietf-httpbis-cache-digest-00 17
 Appendix C. Acknowledgements 17
 Authors’ Addresses . 17

1. Introduction

 HTTP/2 [RFC7540] allows a server to "push" synthetic request/response
 pairs into a client’s cache optimistically. While there is strong
 interest in using this facility to improve perceived Web browsing

Oku & Weiss Expires January 3, 2019 [Page 2]

Internet-Draft Cache Digests for HTTP/2 July 2018

 performance, it is sometimes counterproductive because the client
 might already have cached the "pushed" response.

 When this is the case, the bandwidth used to "push" the response is
 effectively wasted, and represents opportunity cost, because it could
 be used by other, more relevant responses. HTTP/2 allows a stream to
 be cancelled by a client using a RST_STREAM frame in this situation,
 but there is still at least one round trip of potentially wasted
 capacity even then.

 This specification defines a HTTP/2 frame type to allow clients to
 inform the server of their freshly cached contents using a Cuckoo-
 filter [Cuckoo] based digest. Servers can then use this to inform
 their choices of what to push to clients.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The CACHE_DIGEST Frame

 The CACHE_DIGEST frame type is 0xd (decimal 13).

 +-------------------------------+-------------------------------+
 | Origin-Len (16) | Origin? (*) ...
 +-------------------------------+-------------------------------+
 | Digest-Value? (*) ...
 +---+

 The CACHE_DIGEST frame payload has the following fields:

 Origin-Len: An unsigned, 16-bit integer indicating the length, in
 octets, of the Origin field.

 Origin: A sequence of characters containing the ASCII serialization
 of an origin ([RFC6454], Section 6.2) that the Digest-Value
 applies to.

 Digest-Value: A sequence of octets containing the digest as computed
 in Section 2.1.1 and Section 2.1.2.

 The CACHE_DIGEST frame defines the following flags:

 o *RESET* (0x1): When set, indicates that any and all cache digests
 for the applicable origin held by the recipient MUST be considered
 invalid.

Oku & Weiss Expires January 3, 2019 [Page 3]

Internet-Draft Cache Digests for HTTP/2 July 2018

 o *COMPLETE* (0x2): When set, indicates that the currently valid set
 of cache digests held by the server constitutes a complete
 representation of the cache’s state regarding that origin.

2.1. Client Behavior

 A CACHE_DIGEST frame MUST be sent from a client to a server on stream
 0, and conveys a digest of the contents of the client’s cache for the
 indicated origin.

 In typical use, a client will send one or more CACHE_DIGESTs
 immediately after the first request on a connection for a given
 origin, on the same stream, because there is usually a short period
 of inactivity then, and servers can benefit most when they understand
 the state of the cache before they begin pushing associated assets
 (e.g., CSS, JavaScript and images). Clients MAY send CACHE_DIGEST at
 other times.

 If the cache’s state is cleared, lost, or the client otherwise wishes
 the server to stop using previously sent CACHE_DIGESTs, it can send a
 CACHE_DIGEST with the RESET flag set.

 When generating CACHE_DIGEST, a client MUST NOT include stale-cached
 responses or responses whose URLs do not share origins [RFC6454] with
 the indicated origin. Clients MUST NOT send CACHE_DIGEST frames on
 connections that are not authoritative (as defined in [RFC7540],
 10.1) for the indicated origin.

 When the CACHE_DIGEST frames sent represent the complete set of
 stored responses, the last such frame SHOULD have a COMPLETE flag
 set, to indicate to the server that it has all relevant state. Note
 that for the purposes of COMPLETE, responses cached since the
 beginning of the connection or the last RESET flag on a CACHE_DIGEST
 frame need not be included.

 CACHE_DIGEST has no defined meaning when sent from servers, and
 SHOULD be ignored by clients.

2.1.1. Creating a digest

 Given the following inputs:

 o "P", an integer smaller than 256, that indicates the probability
 of a false positive that is acceptable, expressed as "1/2**P".

 o "N", an integer that represents the number of entries - a prime
 number smaller than 2**32

Oku & Weiss Expires January 3, 2019 [Page 4]

Internet-Draft Cache Digests for HTTP/2 July 2018

 1. Let "f" be the number of bits per fingerprint, calculated as "P +
 3"

 2. Let "b" be the bucket size, defined as 4.

 3. Let "allocated" be the closest power of 2 that is larger than
 "N".

 4. Let "bytes" be "f"*"allocated"*"b"/8 rounded up to the nearest
 integer

 5. Add 5 to "bytes"

 6. Allocate memory of "bytes" and set it to zero. Assign it to
 "digest-value".

 7. Set the first byte to "P"

 8. Set the second till fifth bytes to "N" in big endian form

 9. Return the "digest-value".

 Note: "allocated" is necessary due to the nature of the way Cuckoo
 filters are creating the secondary hash, by XORing the initial hash
 and the fingerprint’s hash. The XOR operation means that secondary
 hash can pick an entry beyond the initial number of entries, up to
 the next power of 2. In order to avoid issues there, we allocate the
 table appropriately. For increased space efficiency, it is
 recommended that implementations pick a number of entries that’s
 close to the next power of 2.

2.1.2. Adding a URL to the Digest-Value

 Given the following inputs:

 o "URL" a string corresponding to the Effective Request URI
 ([RFC7230], Section 5.5) of a cached response [RFC7234]

 o "maxcount" - max number of cuckoo hops

 o "digest-value"

 1. Let "f" be the value of the first byte of "digest-value".

 2. Let "b" be the bucket size, defined as 4.

 3. Let "N" be the value of the second to fifth bytes of "digest-
 value" in big endian form.

Oku & Weiss Expires January 3, 2019 [Page 5]

Internet-Draft Cache Digests for HTTP/2 July 2018

 4. Let "key" be the return value of Section 2.1.5 with "URL" as
 input.

 5. Let "h1" be the return value of Section 2.1.6 with "key" and "N"
 as inputs.

 6. Let "dest_fingerprint" be the return value of Section 2.1.4 with
 "key" and "f" as inputs.

 7. Let "h2" be the return value of Section 2.1.7 with "h1",
 "dest_fingerprint" and "N" as inputs.

 8. Let "h" be either "h1" or "h2", picked in random.

 9. While "maxcount" is larger than zero:

 1. Let "position_start" be 40 + "h" * "f" * "b".

 2. Let "position_end" be "position_start" + "f" * "b".

 3. While "position_start" < "position_end":

 1. Let "bits" be "f" bits from "digest_value" starting at
 "position_start".

 2. If "bits" is all zeros, set "bits" to
 "dest_fingerprint" and terminate these steps.

 3. Add "f" to "position_start".

 4. Let "e" be a random number from 0 to "b".

 5. Subtract "f" * ("b" - "e") from "position_start".

 6. Let "bits" be "f" bits from "digest_value" starting at
 "position_start".

 7. Let "fingerprint" be the value of bits, read as big endian.

 8. Set "bits" to "dest_fingerprint".

 9. Set "dest_fingerprint" to "fingerprint".

 10. Let "h" be Section 2.1.7 with "h", "dest_fingerprint" and
 "N" as inputs.

 11. Subtract 1 from "maxcount".

Oku & Weiss Expires January 3, 2019 [Page 6]

Internet-Draft Cache Digests for HTTP/2 July 2018

 10. Subtract "f" from "position_start".

 11. Let "fingerprint" be the "f" bits starting at "position_start".

 12. Let "h1" be "h"

 13. Subtract 1 from "maxcount".

 14. If "maxcount" is zero, return an error.

 15. Go to step 7.

2.1.3. Removing a URL to the Digest-Value

 Given the following inputs:

 o "URL" a string corresponding to the Effective Request URI
 ([RFC7230], Section 5.5) of a cached response [RFC7234]

 o "digest-value"

 1. Let "f" be the value of the first byte of "digest-value".

 2. Let "b" be the bucket size, defined as 4.

 3. Let "N" be the value of the second to fifth bytes of "digest-
 value" in big endian form.

 4. Let "key" be the return value of Section 2.1.5 with "URL" as
 input.

 5. Let "h1" be the return value of Section 2.1.6 with "key" and "N"
 as inputs.

 6. Let "fingerprint" be the return value of Section 2.1.4 with "key"
 and "f" as inputs.

 7. Let "h2" be the return value of Section 2.1.7 with "h1",
 "fingerprint" and "N" as inputs.

 8. Let "hashes" be an array containing "h1" and "h2".

 9. For each "h" in "hashes":

 1. Let "position_start" be 40 + "h" * "f" * "b".

 2. Let "position_end" be "position_start" + "f" * "b".

Oku & Weiss Expires January 3, 2019 [Page 7]

Internet-Draft Cache Digests for HTTP/2 July 2018

 3. While "position_start" < "position_end":

 1. Let "bits" be "f" bits from "digest_value" starting at
 "position_start".

 2. If "bits" is "fingerprint", set "bits" to all zeros and
 terminate these steps.

 3. Add "f" to "position_start".

2.1.4. Computing a fingerprint value

 Given the following inputs:

 o "key", an array of characters

 o "f", an integer indicating the number of output bits

 1. Let "hash-value" be the SHA-256 message digest [RFC6234] of
 "key", expressed as an integer.

 2. Let "h" be the number of bits in "hash-value"

 3. Let "fingerprint-value" be 0

 4. While "fingerprint-value" is 0 and "h" > "f":

 1. Let "fingerprint-value" be the "f" least significant bits of
 "hash-value".

 2. Let "hash-value" be the "h"-"f" most significant bits of
 "hash-value".

 3. Subtract "f" from "h".

 5. If "fingerprint-value" is 0, let "fingerprint-value" be 1.

 6. Return "fingerprint-value".

 Note: Step 5 is to handle the extremely unlikely case where a SHA-256
 digest of "key" is all zeros. The implications of it means that
 there’s an infitisimaly larger probability of getting a "fingerprint-
 value" of 1 compared to all other values. This is not a problem for
 any practical purpose.

Oku & Weiss Expires January 3, 2019 [Page 8]

Internet-Draft Cache Digests for HTTP/2 July 2018

2.1.5. Computing the key

 Given the following inputs:

 o "URL", an array of characters

 1. Let "key" be "URL" converted to an ASCII string by percent-
 encoding as appropriate [RFC3986].

 2. Return "key"

2.1.6. Computing a Hash Value

 Given the following inputs:

 o "key", an array of characters.

 o "N", an integer

 "hash-value" can be computed using the following algorithm:

 1. Let "hash-value" be the SHA-256 message digest [RFC6234] of
 "key", truncated to 32 bits, expressed as an integer.

 2. Return "hash-value" modulo N.

2.1.7. Computing an Alternative Hash Value

 Given the following inputs:

 o "hash1", an integer indicating the previous hash.

 o "fingerprint", an integer indicating the fingerprint value.

 o "N", an integer indicating the number of entries in the digest.

 1. Let "fingerprint-string" be the value of "fingerprint" in base
 10, expressed as a string.

 2. Let "hash2" be the return value of Section 2.1.6 with
 "fingerprint-string" and "N" as inputs, XORed with "hash1".

 3. Return "hash2".

Oku & Weiss Expires January 3, 2019 [Page 9]

Internet-Draft Cache Digests for HTTP/2 July 2018

2.2. Server Behavior

 In typical use, a server will query (as per Section 2.2.1) the
 CACHE_DIGESTs received on a given connection to inform what it pushes
 to that client;

 o If a given URL has a match in a current CACHE_DIGEST, a complete
 response need not be pushed; The server MAY push a 304 response
 for that resource, indicating the client that it hasn’t changed.

 o If a given URL has no match in any current CACHE_DIGEST, the
 client does not have a cached copy, and a complete response can be
 pushed.

 Servers MAY use all CACHE_DIGESTs received for a given origin as
 current, as long as they do not have the RESET flag set; a
 CACHE_DIGEST frame with the RESET flag set MUST clear any previously
 stored CACHE_DIGESTs for its origin. Servers MUST treat an empty
 Digest-Value with a RESET flag set as effectively clearing all stored
 digests for that origin.

 Clients are not likely to send updates to CACHE_DIGEST over the
 lifetime of a connection; it is expected that servers will separately
 track what cacheable responses have been sent previously on the same
 connection, using that knowledge in conjunction with that provided by
 CACHE_DIGEST.

 Servers MUST ignore CACHE_DIGEST frames sent on a stream other than
 0.

2.2.1. Querying the Digest for a Value

 Given the following inputs:

 o "URL" a string corresponding to the Effective Request URI
 ([RFC7230], Section 5.5) of a cached response [RFC7234].

 o "digest-value", an array of bits.

 1. Let "f" be the value of the first byte of "digest-value".

 2. Let "b" be the bucket size, defined as 4.

 3. Let "N" be the value of the second to fifth bytes of "digest-
 value" in big endian form.

 4. Let "key" be the return value of Section 2.1.5 with "URL" as
 input.

Oku & Weiss Expires January 3, 2019 [Page 10]

Internet-Draft Cache Digests for HTTP/2 July 2018

 5. Let "h1" be the return value of Section 2.1.6 with "key" and "N"
 as inputs.

 6. Let "fingerprint" be the return value of Section 2.1.4 with
 "key" and "f" as inputs.

 7. Let "h2" be the return value of Section 2.1.7 with "h1",
 "fingerprint" and "N" as inputs.

 8. Let "hashes" be an array containing "h1" and "h2".

 9. For each "h" in "hashes":

 1. Let "position_start" be 40 + "h" * "f" * "b".

 2. Let "position_end" be "position_start" + "f" * "b".

 3. While "position_start" < "position_end":

 1. Let "bits" be "f" bits from "digest_value" starting at
 "position_start".

 2. If "bits" is "fingerprint", return true

 3. Add "f" to "position_start".

 10. Return false.

3. The SETTINGS_SENDING_CACHE_DIGEST SETTINGS Parameter

 A Client SHOULD notify its support for CACHE_DIGEST frames by sending
 the SETTINGS_SENDING_CACHE_DIGEST (0xXXX) SETTINGS parameter.

 The value of the parameter is a bit-field of which the following bits
 are defined:

 DIGEST_PENDING (0x1): When set it indicates that the client has a
 digest to send, and the server may choose to wait for a digest in
 order to make server push decisions.

 Rest of the bits MUST be ignored and MUST be left unset when sending.

 The initial value of the parameter is zero (0x0) meaning that the
 client has no digest to send the server.

Oku & Weiss Expires January 3, 2019 [Page 11]

Internet-Draft Cache Digests for HTTP/2 July 2018

4. The SETTINGS_ACCEPT_CACHE_DIGEST SETTINGS Parameter

 A server can notify its support for CACHE_DIGEST frame by sending the
 SETTINGS_ACCEPT_CACHE_DIGEST (0x7) SETTINGS parameter. If the server
 is tempted to making optimizations based on CACHE_DIGEST frames, it
 SHOULD send the SETTINGS parameter immediately after the connection
 is established.

 The value of the parameter is a bit-field of which the following bits
 are defined:

 ACCEPT (0x1): When set, it indicates that the server is willing to
 make use of a digest of cached responses.

 Rest of the bits MUST be ignored and MUST be left unset when sending.

 The initial value of the parameter is zero (0x0) meaning that the
 server is not interested in seeing a CACHE_DIGEST frame.

 Some underlying transports allow the server’s first flight of
 application data to reach the client at around the same time when the
 client sends it’s first flight data. When such transport (e.g., TLS
 1.3 [I-D.ietf-tls-tls13] in full-handshake mode) is used, a client
 can postpone sending the CACHE_DIGEST frame until it receives a
 SETTINGS_ACCEPT_CACHE_DIGEST settings value.

 When the underlying transport does not have such property (e.g., TLS
 1.3 in 0-RTT mode), a client can reuse the settings value found in
 previous connections to that origin [RFC6454] to make assumptions.

5. IANA Considerations

 This document registers the following entry in the Permanent Message
 Headers Registry, as per [RFC3864]:

 o Header field name: Cache-Digest

 o Applicable protocol: http

 o Status: experimental

 o Author/Change controller: IESG

 o Specification document(s): [this document]

 This document registers the following entry in the HTTP/2 Frame Type
 Registry, as per [RFC7540]:

Oku & Weiss Expires January 3, 2019 [Page 12]

Internet-Draft Cache Digests for HTTP/2 July 2018

 o Frame Type: CACHE_DIGEST

 o Code: 0xd

 o Specification: [this document]

 This document registers the following entry in the HTTP/2 Settings
 Registry, as per [RFC7540]:

 o Code: 0x7

 o Name: SETTINGS_ACCEPT_CACHE_DIGEST

 o Initial Value: 0x0

 o Reference: [this document]

6. Security Considerations

 The contents of a User Agent’s cache can be used to re-identify or
 "fingerprint" the user over time, even when other identifiers (e.g.,
 Cookies [RFC6265]) are cleared.

 CACHE_DIGEST allows such cache-based fingerprinting to become
 passive, since it allows the server to discover the state of the
 client’s cache without any visible change in server behaviour.

 As a result, clients MUST mitigate for this threat when the user
 attempts to remove identifiers (e.g., "clearing cookies"). This
 could be achieved in a number of ways; for example: by clearing the
 cache, by changing one or both of N and P, or by adding new,
 synthetic entries to the digest to change its contents.

 TODO: discuss how effective the suggested mitigations actually would
 be.

 Additionally, User Agents SHOULD NOT send CACHE_DIGEST when in
 "privacy mode."

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

Oku & Weiss Expires January 3, 2019 [Page 13]

Internet-Draft Cache Digests for HTTP/2 July 2018

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011, <https://www.rfc-
 editor.org/info/rfc6234>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011, <https://www.rfc-
 editor.org/info/rfc6454>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014, <https://www.rfc-
 editor.org/info/rfc7232>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
 RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-
 editor.org/info/rfc7540>.

7.2. Informative References

 [Cuckoo] "Cuckoo Filter: Practically Better Than Bloom", n.d.,
 <https://www.cs.cmu.edu/˜dga/papers/cuckoo-
 conext2014.pdf>.

 [Fetch] "Fetch Standard", n.d., <https://fetch.spec.whatwg.org/>.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

Oku & Weiss Expires January 3, 2019 [Page 14]

Internet-Draft Cache Digests for HTTP/2 July 2018

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004, <https://www.rfc-
 editor.org/info/rfc3864>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008, <https://www.rfc-
 editor.org/info/rfc5234>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011, <https://www.rfc-
 editor.org/info/rfc6265>.

 [Service-Workers]
 Russell, A., Song, J., Archibald, J., and M.
 Kruisselbrink, "Service Workers 1", W3C Working Draft WD-
 service-workers-1-20161011, October 2016,
 <https://www.w3.org/TR/2016/WD-service-workers-
 1-20161011/>.

Appendix A. Encoding the CACHE_DIGEST frame as an HTTP Header

 On some web browsers that support Service Workers [Service-Workers]
 but not Cache Digests (yet), it is possible to achieve the benefit of
 using Cache Digests by emulating the frame using HTTP Headers.

 For the sake of interoperability with such clients, this appendix
 defines how a CACHE_DIGEST frame can be encoded as an HTTP header
 named "Cache-Digest".

 The definition uses the Augmented Backus-Naur Form (ABNF) notation of
 [RFC5234] with the list rule extension defined in [RFC7230],
 Section 7.

 Cache-Digest = 1#digest-entity
 digest-entity = digest-value *(OWS ";" OWS digest-flag)
 digest-value = <Digest-Value encoded using base64url>
 digest-flag = token

 A Cache-Digest request header is defined as a list construct of
 cache-digest-entities. Each cache-digest-entity corresponds to a
 CACHE_DIGEST frame.

Oku & Weiss Expires January 3, 2019 [Page 15]

Internet-Draft Cache Digests for HTTP/2 July 2018

 Digest-Value is encoded using base64url [RFC4648], Section 5. Flags
 that are set are encoded as digest-flags by their names that are
 compared case-insensitively.

 Origin is omitted in the header form. The value is implied from the
 value of the ":authority" pseudo header. Client MUST only send
 Cache-Digest headers containing digests that belong to the origin
 specified by the HTTP request.

 The example below contains a digest of one resource and has only the
 "COMPLETE" flag set.

 Cache-Digest: AfdA; complete

 Clients MUST associate Cache-Digest headers to every HTTP request,
 since Fetch [Fetch] - the HTTP API supported by Service Workers -
 does not define the order in which the issued requests will be sent
 to the server nor guarantees that all the requests will be
 transmitted using a single HTTP/2 connection.

 Also, due to the fact that any header that is supplied to Fetch is
 required to be end-to-end, there is an ambiguity in what a Cache-
 Digest header respresents when a request is transmitted through a
 proxy. The header may represent the cache state of a client or that
 of a proxy, depending on how the proxy handles the header.

Appendix B. Changes

B.1. Since draft-ietf-httpbis-cache-digest-04

 o Remove ETag from the digest key calculations.

 o Add SETTINGS_ prefix to parameter names.

B.2. Since draft-ietf-httpbis-cache-digest-03

 o Yoav becomes an author; Mark steps down.

B.3. Since draft-ietf-httpbis-cache-digest-02

 o Switch to Cuckoo Filter.

B.4. Since draft-ietf-httpbis-cache-digest-01

 o Added definition of the Cache-Digest header.

 o Introduce ACCEPT_CACHE_DIGEST SETTINGS parameter.

Oku & Weiss Expires January 3, 2019 [Page 16]

Internet-Draft Cache Digests for HTTP/2 July 2018

 o Change intended status from Standard to Experimental.

B.5. Since draft-ietf-httpbis-cache-digest-00

 o Make the scope of a digest frame explicit and shift to stream 0.

Appendix C. Acknowledgements

 +{:numbered="false"}

 Thanks to Stefan Eissing for his suggestions.

Authors’ Addresses

 Kazuho Oku
 Fastly

 Email: kazuhooku@gmail.com

 Yoav Weiss
 Akamai

 Email: yoav@yoav.ws
 URI: https://blog.yoav.ws/

Oku & Weiss Expires January 3, 2019 [Page 17]

