
HTTP M. Bishop
Internet-Draft
Intended status: Standards Track N. Sullivan
Expires: May 3, 2018 Cloudflare
 M. Thomson
 Mozilla
 October 30, 2017

 Secondary Certificate Authentication in HTTP/2
 draft-bishop-httpbis-http2-additional-certs-05

Abstract

 TLS provides fundamental mutual authentication services for HTTP,
 supporting up to one server certificate and up to one client
 certificate associated to the session to prove client and server
 identities as necessary. This draft provides mechanisms for
 providing additional such certificates at the HTTP layer when these
 constraints are not sufficient.

 Many HTTP servers host content from several origins. HTTP/2
 [RFC7540] permits clients to reuse an existing HTTP connection to a
 server provided that the secondary origin is also in the certificate
 provided during the TLS [I-D.ietf-tls-tls13] handshake.

 In many cases, servers will wish to maintain separate certificates
 for different origins but still desire the benefits of a shared HTTP
 connection. Similarly, servers may require clients to present
 authentication, but have different requirements based on the content
 the client is attempting to access.

 This document describes how TLS exported authenticators
 [I-D.ietf-tls-exported-authenticator] can be used to provide proof of
 ownership of additional certificates to the HTTP layer to support
 both scenarios.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Bishop, et al. Expires May 3, 2018 [Page 1]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Server Certificate Authentication 3
 1.2. Client Certificate Authentication 4
 1.2.1. HTTP/1.1 using TLS 1.2 and previous 5
 1.2.2. HTTP/1.1 using TLS 1.3 6
 1.2.3. HTTP/2 . 6
 1.3. HTTP-Layer Certificate Authentication 7
 1.4. Terminology . 8
 2. Discovering Additional Certificates at the HTTP/2 Layer . . . 8
 2.1. Indicating support for HTTP-layer certificate
 authentication . 8
 2.2. Making certificates or requests available 8
 2.3. Requiring certificate authentication 9
 3. Certificates Frames for HTTP/2 11
 3.1. The CERTIFICATE_NEEDED frame 11
 3.2. The USE_CERTIFICATE Frame 12
 3.3. The CERTIFICATE_REQUEST Frame 13
 3.4. The CERTIFICATE Frame 14
 3.4.1. Exported Authenticator Characteristics 15
 4. Indicating failures during HTTP-Layer Certificate
 Authentication . 15
 5. Security Considerations 16
 5.1. Impersonation . 16
 5.2. Fingerprinting . 17

Bishop, et al. Expires May 3, 2018 [Page 2]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 5.3. Denial of Service . 17
 5.4. Confusion About State 17
 6. IANA Considerations . 18
 6.1. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting 18
 6.2. New HTTP/2 Frames . 18
 6.3. New HTTP/2 Error Codes 19
 7. Acknowledgements . 19
 8. References . 19
 8.1. Normative References 19
 8.2. Informative References 21
 Authors’ Addresses . 21

1. Introduction

 HTTP clients need to know that the content they receive on a
 connection comes from the origin that they intended to retrieve in
 from. The traditional form of server authentication in HTTP has been
 in the form of X.509 certificates provided during the TLS RFC5246
 [I-D.ietf-tls-tls13] handshake.

 Many existing HTTP [RFC7230] servers also have authentication
 requirements for the resources they serve. Of the bountiful
 authentication options available for authenticating HTTP requests,
 client certificates present a unique challenge for resource-specific
 authentication requirements because of the interaction with the
 underlying TLS layer.

 TLS 1.2 [RFC5246] supports one server and one client certificate on a
 connection. These certificates may contain multiple identities, but
 only one certificate may be provided.

1.1. Server Certificate Authentication

 Section 9.1.1 of [RFC7540] describes how connections may be used to
 make requests from multiple origins as long as the server is
 authoritative for both. A server is considered authoritative for an
 origin if DNS resolves the origin to the IP address of the server and
 (for TLS) if the certificate presented by the server contains the
 origin in the Subject Alternative Names field.

 [RFC7838] enables a step of abstraction from the DNS resolution. If
 both hosts have provided an Alternative Service at hostnames which
 resolve to the IP address of the server, they are considered
 authoritative just as if DNS resolved the origin itself to that
 address. However, the server’s one TLS certificate is still required
 to contain the name of each origin in question.

Bishop, et al. Expires May 3, 2018 [Page 3]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 [I-D.ietf-httpbis-origin-frame] relaxes the requirement to perform
 the DNS lookup if already connected to a server with an appropriate
 certificate which claims support for a particular origin.

 Servers which host many origins often would prefer to have separate
 certificates for some sets of origins. This may be for ease of
 certificate management (the ability to separately revoke or renew
 them), due to different sources of certificates (a CDN acting on
 behalf of multiple origins), or other factors which might drive this
 administrative decision. Clients connecting to such origins cannot
 currently reuse connections, even if both client and server would
 prefer to do so.

 Because the TLS SNI extension is exchanged in the clear, clients
 might also prefer to retrieve certificates inside the encrypted
 context. When this information is sensitive, it might be
 advantageous to request a general-purpose certificate or anonymous
 ciphersuite at the TLS layer, while acquiring the "real" certificate
 in HTTP after the connection is established.

1.2. Client Certificate Authentication

 For servers that wish to use client certificates to authenticate
 users, they might request client authentication during or immediately
 after the TLS handshake. However, if not all users or resources need
 certificate-based authentication, a request for a certificate has the
 unfortunate consequence of triggering the client to seek a
 certificate, possibly requiring user interaction, network traffic, or
 other time-consuming activities. During this time, the connection is
 stalled in many implementations. Such a request can result in a poor
 experience, particularly when sent to a client that does not expect
 the request.

 The TLS 1.3 CertificateRequest can be used by servers to give clients
 hints about which certificate to offer. Servers that rely on
 certificate-based authentication might request different certificates
 for different resources. Such a server cannot use contextual
 information about the resource to construct an appropriate TLS
 CertificateRequest message during the initial handshake.

 Consequently, client certificates are requested at connection
 establishment time only in cases where all clients are expected or
 required to have a single certificate that is used for all resources.
 Many other uses for client certificates are reactive, that is,
 certificates are requested in response to the client making a
 request.

Bishop, et al. Expires May 3, 2018 [Page 4]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

1.2.1. HTTP/1.1 using TLS 1.2 and previous

 In HTTP/1.1, a server that relies on client authentication for a
 subset of users or resources does not request a certificate when the
 connection is established. Instead, it only requests a client
 certificate when a request is made to a resource that requires a
 certificate. TLS 1.2 [RFC5246] accomodates this by permitting the
 server to request a new TLS handshake, in which the server will
 request the client’s certificate.

 Figure 1 shows the server initiating a TLS-layer renegotiation in
 response to receiving an HTTP/1.1 request to a protected resource.

 Client Server
 -- (HTTP) GET /protected -------------------> *1
 <---------------------- (TLS) HelloRequest -- *2
 -- (TLS) ClientHello ----------------------->
 <------------------ (TLS) ServerHello, ... --
 <---------------- (TLS) CertificateRequest -- *3
 -- (TLS) ..., Certificate ------------------> *4
 -- (TLS) Finished -------------------------->
 <-------------------------- (TLS) Finished --
 <--------------------------- (HTTP) 200 OK -- *5

 Figure 1: HTTP/1.1 Reactive Certificate Authentication with TLS 1.2

 In this example, the server receives a request for a protected
 resource (at *1 on Figure 1). Upon performing an authorization
 check, the server determines that the request requires authentication
 using a client certificate and that no such certificate has been
 provided.

 The server initiates TLS renegotiation by sending a TLS HelloRequest
 (at *2). The client then initiates a TLS handshake. Note that some
 TLS messages are elided from the figure for the sake of brevity.

 The critical messages for this example are the server requesting a
 certificate with a TLS CertificateRequest (*3); this request might
 use information about the request or resource. The client then
 provides a certificate and proof of possession of the private key in
 Certificate and CertificateVerify messages (*4).

 When the handshake completes, the server performs any authorization
 checks a second time. With the client certificate available, it then
 authorizes the request and provides a response (*5).

Bishop, et al. Expires May 3, 2018 [Page 5]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

1.2.2. HTTP/1.1 using TLS 1.3

 TLS 1.3 [I-D.ietf-tls-tls13] introduces a new client authentication
 mechanism that allows for clients to authenticate after the handshake
 has been completed. For the purposes of authenticating an HTTP
 request, this is functionally equivalent to renegotiation. Figure 2
 shows the simpler exchange this enables.

 Client Server
 -- (HTTP) GET /protected ------------------->
 <---------------- (TLS) CertificateRequest --
 -- (TLS) Certificate, CertificateVerify,
 Finished ----------------------->
 <--------------------------- (HTTP) 200 OK --

 Figure 2: HTTP/1.1 Reactive Certificate Authentication with TLS 1.3

 TLS 1.3 does not support renegotiation, instead supporting direct
 client authentication. In contrast to the TLS 1.2 example, in TLS
 1.3, a server can simply request a certificate.

1.2.3. HTTP/2

 An important part of the HTTP/1.1 exchange is that the client is able
 to easily identify the request that caused the TLS renegotiation.
 The client is able to assume that the next unanswered request on the
 connection is responsible. The HTTP stack in the client is then able
 to direct the certificate request to the application or component
 that initiated that request. This ensures that the application has
 the right contextual information for processing the request.

 In HTTP/2, a client can have multiple outstanding requests. Without
 some sort of correlation information, a client is unable to identify
 which request caused the server to request a certificate.

 Thus, the minimum necessary mechanism to support reactive certificate
 authentication in HTTP/2 is an identifier that can be use to
 correlate an HTTP request with a request for a certificate. Since
 streams are used for individual requests, correlation with a stream
 is sufficient.

 [RFC7540] prohibits renegotiation after any application data has been
 sent. This completely blocks reactive certificate authentication in
 HTTP/2 using TLS 1.2. If this restriction were relaxed by an
 extension or update to HTTP/2, such an identifier could be added to
 TLS 1.2 by means of an extension to TLS. Unfortunately, many TLS 1.2
 implementations do not permit application data to continue during a

Bishop, et al. Expires May 3, 2018 [Page 6]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 renegotiation. This is problematic for a multiplexed protocol like
 HTTP/2.

1.3. HTTP-Layer Certificate Authentication

 This draft defines HTTP/2 frames to carry the relevant certificate
 messages, enabling certificate-based authentication of both clients
 and servers independent of TLS version. This mechanism can be
 implemented at the HTTP layer without breaking the existing interface
 between HTTP and applications above it.

 This could be done in a naive manner by replicating the TLS messages
 as HTTP/2 frames on each stream. However, this would create needless
 redundancy between streams and require frequent expensive signing
 operations. Instead, TLS Exported Authenticators
 [I-D.ietf-tls-exported-authenticator] are exchanged on stream zero
 and the on-stream frames incorporate them by reference as needed.

 TLS Exported Authenticators are structured messages that can be
 exported by either party of a TLS connection and validated by the
 other party. An authenticator message can be constructed by either
 the client or the server given an established TLS connection, a
 certificate, and a corresponding private key. Exported
 Authenticators use the message structures from section 4.4 of
 [I-D.ietf-tls-tls13], but different parameters.

 Each Authenticator is computed using a Handshake Context and Finished
 MAC Key derived from the TLS session. The Handshake Context is
 identical for both parties of the TLS connection, while the Finished
 MAC Key is dependent on whether the Authenticator is created by the
 client or the server.

 Successfully verified Authenticators result in certificate chains,
 with verified possession of the corresponding private key, which can
 be supplied into a collection of available certificates. Likewise,
 descriptions of desired certificates can be supplied into these
 collections. These pre-supplied elements are then available for
 automatic use (in some situations) or for reference by individual
 streams.

 Section 2 describes how the feature is employed, defining means to
 detect support in peers (Section 2.1), make certificates and requests
 available (Section 2.2), and indicate when streams are blocked
 waiting on an appropriate certificate (Section 2.3). Section 3
 defines the required frame types, which parallel the TLS 1.3 message
 exchange. Finally, Section 4 defines new error types which can be
 used to notify peers when the exchange has not been successful.

Bishop, et al. Expires May 3, 2018 [Page 7]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

1.4. Terminology

 RFC 2119 [RFC2119] defines the terms "MUST", "MUST NOT", "SHOULD" and
 "MAY".

2. Discovering Additional Certificates at the HTTP/2 Layer

 A certificate chain with proof of possession of the private key
 corresponding to the end-entity certificate is sent as a single
 "CERTIFICATE" frame (see Section 3.4) on stream zero. Once the
 holder of a certificate has sent the chain and proof, this
 certificate chain is cached by the recipient and available for future
 use. If the certificate is marked as "AUTOMATIC_USE", the
 certificate may be used by the recipient to authorize any current or
 future request. Otherwise, the recipient requests the required
 certificate on each stream, but the previously-supplied certificates
 are available for reference without having to resend them.

 Likewise, the details of a request are sent on stream zero and stored
 by the recipient. These details will be referenced by subsequent
 "CERTIFICATE_NEEDED" frames.

 Data sent by each peer is correlated by the ID given in each frame.
 This ID is unrelated to values used by the other peer, even if each
 uses the same ID in certain cases.

2.1. Indicating support for HTTP-layer certificate authentication

 Clients and servers that will accept requests for HTTP-layer
 certificate authentication indicate this using the HTTP/2
 "SETTINGS_HTTP_CERT_AUTH" (0xSETTING-TBD) setting.

 The initial value for the "SETTINGS_HTTP_CERT_AUTH" setting is 0,
 indicating that the peer does not support HTTP-layer certificate
 authentication. If a peer does support HTTP-layer certificate
 authentication, the value is 1.

2.2. Making certificates or requests available

 When a peer has advertised support for HTTP-layer certificates as in
 Section 2.1, either party can supply additional certificates into the
 connection at any time. These certificates then become available for
 the peer to consider when deciding whether a connection is suitable
 to transport a particular request.

 Available certificates which have the "AUTOMATIC_USE" flag set MAY be
 used by the recipient without further notice. This means that
 clients or servers which predict a certificate will be required could

Bishop, et al. Expires May 3, 2018 [Page 8]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 pre-supply the certificate without being asked. Regardless of
 whether "AUTOMATIC_USE" is set, these certificates are available for
 reference by future "USE_CERTIFICATE" frames.

 Client Server
 <-------- (stream 0) CERTIFICATE (AU flag) --
 ...
 -- (stream N) GET /from-new-origin --------->
 <----------------------- (stream N) 200 OK --

 Figure 3: Proactive Server Certificate

 Client Server
 -- (stream 0) CERTIFICATE (AU flag) -------->
 -- (streams 1,3) GET /protected ------------>
 <-------------------- (streams 1,3) 200 OK --

 Figure 4: Proactive Client Certificate

 Likewise, either party can supply a "CERTIFICATE_REQUEST" that
 outlines parameters of a certificate they might request in the
 future. It is important to note that this does not currently request
 such a certificate, but makes the contents of the request available
 for reference by a future "CERTIFICATE_NEEDED" frame.

2.3. Requiring certificate authentication

 As defined in [RFC7540], when a client finds that a https:// origin
 (or Alternative Service [RFC7838]) to which it needs to make a
 request has the same IP address as a server to which it is already
 connected, it MAY check whether the TLS certificate provided contains
 the new origin as well, and if so, reuse the connection.

 If the TLS certificate does not contain the new origin, but the
 server has claimed support for that origin (with an ORIGIN frame, see
 [I-D.ietf-httpbis-origin-frame]) and advertised support for HTTP-
 layer certificates (see Section 2.1), it MAY send a
 "CERTIFICATE_NEEDED" frame on the stream it will use to make the
 request. (If the request parameters have not already been made
 available using a "CERTIFICATE_REQUEST" frame, the client will need
 to send the "CERTIFICATE_REQUEST" in order to generate the
 "CERTIFICATE_NEEDED" frame.) The stream represents a pending request
 to that origin which is blocked until a valid certificate is
 processed.

Bishop, et al. Expires May 3, 2018 [Page 9]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 The request is blocked until the server has responded with a
 "USE_CERTIFICATE" frame pointing to a certificate for that origin.
 If the certificate is already available, the server SHOULD
 immediately respond with the appropriate "USE_CERTIFICATE" frame.
 (If the certificate has not already been transmitted, the server will
 need to make the certificate available as described in Section 2.2
 before completing the exchange.)

 If the server does not have the desired certificate, it MUST respond
 with an empty "USE_CERTIFICATE" frame. In this case, or if the
 server has not advertised support for HTTP-layer certificates, the
 client MUST NOT send any requests for resources in that origin on the
 current connection.

 Client Server
 <----------------------- (stream 0) ORIGIN --
 -- (stream 0) CERTIFICATE_REQUEST ---------->
 ...
 -- (stream N) CERTIFICATE_NEEDED ----------->
 <------------------ (stream 0) CERTIFICATE --
 <-------------- (stream N) USE_CERTIFICATE --
 -- (stream N) GET /from-new-origin --------->
 <----------------------- (stream N) 200 OK --

 Figure 5: Client-Requested Certificate

 Likewise, on each stream where certificate authentication is
 required, the server sends a "CERTIFICATE_NEEDED" frame, which the
 client answers with a "USE_CERTIFICATE" frame indicating the
 certificate to use. If the request parameters or the responding
 certificate are not already available, they will need to be sent as
 described in Section 2.2 as part of this exchange.

 Client Server
 <---------- (stream 0) CERTIFICATE_REQUEST --
 ...
 -- (stream N) GET /protected --------------->
 <----------- (stream N) CERTIFICATE_NEEDED --
 -- (stream 0) CERTIFICATE ------------------>
 -- (stream N) USE_CERTIFICATE -------------->
 <----------------------- (stream N) 200 OK --

 Figure 6: Reactive Certificate Authentication

 A server SHOULD provide certificates for an origin before pushing
 resources from it or supplying content referencing the origin. If a

Bishop, et al. Expires May 3, 2018 [Page 10]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 client receives a "PUSH_PROMISE" referencing an origin for which it
 has not yet received the server’s certificate, the client MUST verify
 the server’s possession of an appropriate certificate by sending a
 "CERTIFICATE_NEEDED" frame on the pushed stream to inform the server
 that progress is blocked until the request is satisfied. The client
 MUST NOT use the pushed resource until an appropriate certificate has
 been received and validated.

3. Certificates Frames for HTTP/2

 The "CERTIFICATE_REQUEST" and "CERTIFICATE_NEEDED" frames are
 correlated by their "Request-ID" field. Subsequent
 "CERTIFICATE_NEEDED" frames with the same "Request-ID" value MAY be
 sent on other streams where the sender is expecting a certificate
 with the same parameters.

 The "CERTIFICATE", and "USE_CERTIFICATE" frames are correlated by
 their "Cert-ID" field. Subsequent "USE_CERTIFICATE" frames with the
 same "Cert-ID" MAY be sent in response to other "CERTIFICATE_NEEDED"
 frames and refer to the same certificate.

 "Request-ID" and "Cert-ID" are sender-local, and the use of the same
 value by the other peer does not imply any correlation between their
 frames. These values MUST be unique per sender over the lifetime of
 the connection.

3.1. The CERTIFICATE_NEEDED frame

 The "CERTIFICATE_NEEDED" frame (0xFRAME-TBD1) is sent to indicate
 that the HTTP request on the current stream is blocked pending
 certificate authentication. The frame includes a request identifier
 which can be used to correlate the stream with a previous
 "CERTIFICATE_REQUEST" frame sent on stream zero. The
 "CERTIFICATE_REQUEST" describes the certificate the sender requires
 to make progress on the stream in question.

 The "CERTIFICATE_NEEDED" frame contains 2 octets, which is the
 authentication request identifier, "Request-ID". A peer that
 receives a "CERTIFICATE_NEEDED" of any other length MUST treat this
 as a stream error of type "PROTOCOL_ERROR". Frames with identical
 request identifiers refer to the same "CERTIFICATE_REQUEST".

 A server MAY send multiple "CERTIFICATE_NEEDED" frames on the same
 stream. If a server requires that a client provide multiple
 certificates before authorizing a single request, each required
 certificate MUST be indicated with a separate "CERTIFICATE_NEEDED"
 frame, each of which MUST have a different request identifier
 (referencing different "CERTIFICATE_REQUEST" frames describing each

Bishop, et al. Expires May 3, 2018 [Page 11]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 required certificate). To reduce the risk of client confusion,
 servers SHOULD NOT have multiple outstanding "CERTIFICATE_NEEDED"
 frames on the same stream at any given time.

 Clients MUST NOT send multiple "CERTIFICATE_NEEDED" frames on the
 same stream.

 The "CERTIFICATE_NEEDED" frame MUST NOT be sent to a peer which has
 not advertised support for HTTP-layer certificate authentication.

 The "CERTIFICATE_NEEDED" frame MUST NOT be sent on stream zero, and
 MUST NOT be sent on a stream in the "half-closed (local)" state
 [RFC7540]. A client that receives a "CERTIFICATE_NEEDED" frame on a
 stream which is not in a valid state SHOULD treat this as a stream
 error of type "PROTOCOL_ERROR".

3.2. The USE_CERTIFICATE Frame

 The "USE_CERTIFICATE" frame (0xFRAME-TBD4) is sent in response to a
 "CERTIFICATE_NEEDED" frame to indicate which certificate is being
 used to satisfy the requirement.

 A "USE_CERTIFICATE" frame with no payload refers to the certificate
 provided at the TLS layer, if any. If no certificate was provided at
 the TLS layer, the stream should be processed with no authentication,
 likely returning an authentication-related error at the HTTP level
 (e.g. 403) for servers or routing the request to a new connection for
 clients.

 Otherwise, the "USE_CERTIFICATE" frame contains the two-octet "Cert-
 ID" of the certificate the sender wishes to use. This MUST be the ID
 of a certificate for which proof of possession has been presented in
 a "CERTIFICATE" frame. Recipients of a "USE_CERTIFICATE" frame of
 any other length MUST treat this as a stream error of type
 "PROTOCOL_ERROR". Frames with identical certificate identifiers
 refer to the same certificate chain.

 The "USE_CERTIFICATE" frame MUST NOT be sent on stream zero or a
 stream on which a "CERTIFICATE_NEEDED" frame has not been received.
 Receipt of a "USE_CERTIFICATE" frame in these circumstances SHOULD be
 treated as a stream error of type "PROTOCOL_ERROR". Each
 "USE_CERTIFICATE" frame should reference a preceding "CERTIFICATE"
 frame. Receipt of a "USE_CERTIFICATE" frame before the necessary
 frames have been received on stream zero MUST also result in a stream
 error of type "PROTOCOL_ERROR".

 The referenced certificate chain MUST conform to the requirements
 expressed in the "CERTIFICATE_REQUEST" to the best of the sender’s

Bishop, et al. Expires May 3, 2018 [Page 12]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 ability. Specifically, if the "CERTIFICATE_REQUEST" contained a non-
 empty "Cert-Extensions" element, the end-entity certificate MUST
 match with regard to the extensions recognized by the sender.

 If these requirements are not satisfied, the recipient MAY at its
 discretion either return an error at the HTTP semantic layer, or
 respond with a stream error [RFC7540] on any stream where the
 certificate is used. Section 4 defines certificate-related error
 codes which might be applicable.

3.3. The CERTIFICATE_REQUEST Frame

 TLS 1.3 defines the "CertificateRequest" message, which prompts the
 client to provide a certificate which conforms to certain properties
 specified by the server. This draft defines the
 "CERTIFICATE_REQUEST" frame (0xFRAME-TBD2), which uses the same set
 of extensions to specify a desired certificate, but can be sent over
 any TLS version and can be sent by either peer.

 The "CERTIFICATE_REQUEST" frame SHOULD NOT be sent to a peer which
 has not advertised support for HTTP-layer certificate authentication.

 The "CERTIFICATE_REQUEST" frame MUST be sent on stream zero. A
 "CERTIFICATE_REQUEST" frame received on any other stream MUST be
 rejected with a stream error of type "PROTOCOL_ERROR".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Request-ID (16) | Extension-Count (16) |
 +-------------------------------+-------------------------------+
 | Extensions(?) ...
 +---+

 Figure 7: CERTIFICATE_REQUEST frame payload

 The frame contains the following fields:

 Request-ID: "Request-ID" is a 16-bit opaque identifier used to
 correlate subsequent certificate-related frames with this request.
 The identifier MUST be unique in the session for the sender.

 Extension-Count and Extensions: A list of certificate selection
 criteria, represented in a series of "Extension" structures (see
 [I-D.ietf-tls-tls13] section 4.2). This criteria MUST be used in
 certificate selection as described in [I-D.ietf-tls-tls13]. The
 number of "Extension" structures is given by the 16-bit
 "Extension-Count" field, which MAY be zero.

Bishop, et al. Expires May 3, 2018 [Page 13]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 Some extensions used for certificate selection allow multiple values
 (e.g. oid_filters on Extended Key Usage). If the sender has
 included a non-empty Extensions list, the certificate MUST match all
 criteria specified by extensions the recipient recognizes. However,
 the recipient MUST ignore and skip any unrecognized certificate
 selection extensions.

 Servers MUST be able to recognize the "server_name" extension
 ([RFC6066]) at a minimum. Clients MUST always specify the desired
 origin using this extension, though other extensions MAY also be
 included.

3.4. The CERTIFICATE Frame

 The "CERTIFICATE" frame (id=0xFRAME-TBD3) provides a exported
 authenticator message from the TLS layer that provides a chain of
 certificates, associated extensions and proves possession of the
 private key corresponding to the end-entity certificate.

 The "CERTIFICATE" frame defines two flags:

 AUTOMATIC_USE (0x01): Indicates that the certificate can be used
 automatically on future requests.

 TO_BE_CONTINUED (0x02): Indicates that the exported authenticator
 spans more than one frame.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Cert-ID (16) | Authenticator Fragment (*)...
 +---+

 Figure 8: CERTIFICATE frame payload

 The "Exported Authenticator Fragment" field contains a portion of the
 opaque data returned from the TLS connection exported authenticator
 "authenticate" API. See Section 3.4.1 for more details on the input
 to this API.

 This opaque data is transported in zero or more "CERTIFICATE" frames
 with the "TO_BE_CONTINUED" flag set, followed by one "CERTIFICATE"
 frame with the "TO_BE_CONTINUED" flag unset. Each of these frames
 contains the same "Cert-ID" field, permitting them to be associated
 with each other. Receipt of any "CERTIFICATE" frame with the same
 "Cert-ID" following the receipt of a "CERTIFICATE" frame with
 "TO_BE_CONTINUED" unset MUST be treated as a connection error of type
 "PROTOCOL_ERROR".

Bishop, et al. Expires May 3, 2018 [Page 14]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 If the "AUTOMATIC_USE" flag is set, the recipient MAY omit sending
 "CERTIFICATE_NEEDED" frames on future streams which would require a
 similar certificate and use the referenced certificate for
 authentication without further notice to the holder. This behavior
 is optional, and receipt of a "CERTIFICATE_NEEDED" frame does not
 imply that previously-presented certificates were unacceptable, even
 if "AUTOMATIC_USE" was set. Servers MUST set the "AUTOMATIC_USE"
 flag when sending a "CERTIFICATE" frame. A server MUST NOT send
 certificates for origins which it is not prepared to service on the
 current connection.

 Upon receiving a complete series of "CERTIFICATE" frames, the
 receiver may validate the Exported Authenticator value by using the
 exported authenticator API. This returns either an error indicating
 that the message was invalid, or the certificate chain and extensions
 used to create the message.

 The "CERTIFICATE" frame MUST be sent on stream zero. A "CERTIFICATE"
 frame received on any other stream MUST be rejected with a stream
 error of type "PROTOCOL_ERROR".

3.4.1. Exported Authenticator Characteristics

 The Exported Authenticator API defined in
 [I-D.ietf-tls-exported-authenticator] takes as input a certificate,
 supporting information about the certificate (OCSP, SCT, etc.), and
 an optional "certificate_request_context". When generating exported
 authenticators for use with this extension, the
 "certificate_request_context" MUST be the two-octet Cert-ID.

 Upon receipt of a completed authenticator, an endpoint MUST check
 that:

 o the "validate" API confirms the validity of the authenticator
 itself

 o the "certificate_request_context" matches the Cert-ID of the
 frame(s) in which it was received

 Once the authenticator is accepted, the endpoint can perform any
 other checks for the acceptability of the certificate itself.

4. Indicating failures during HTTP-Layer Certificate Authentication

 Because this draft permits certificates to be exchanged at the HTTP
 framing layer instead of the TLS layer, several certificate-related
 errors which are defined at the TLS layer might now occur at the HTTP

Bishop, et al. Expires May 3, 2018 [Page 15]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 framing layer. In this section, those errors are restated and added
 to the HTTP/2 error code registry.

 BAD_CERTIFICATE (0xERROR-TBD1): A certificate was corrupt, contained
 signatures that did not verify correctly, etc.

 UNSUPPORTED_CERTIFICATE (0xERROR-TBD2): A certificate was of an
 unsupported type or did not contain required extensions

 CERTIFICATE_REVOKED (0xERROR-TBD3): A certificate was revoked by its
 signer

 CERTIFICATE_EXPIRED (0xERROR-TBD4): A certificate has expired or is
 not currently valid

 CERTIFICATE_GENERAL (0xERROR-TBD5): Any other certificate-related
 error

 As described in [RFC7540], implementations MAY choose to treat a
 stream error as a connection error at any time. Of particular note,
 a stream error cannot occur on stream 0, which means that
 implementations cannot send non-session errors in response to
 "CERTIFICATE_REQUEST", and "CERTIFICATE" frames. Implementations
 which do not wish to terminate the connection MAY either send
 relevant errors on any stream which references the failing
 certificate in question or process the requests as unauthenticated
 and provide error information at the HTTP semantic layer.

5. Security Considerations

 This mechanism defines an alternate way to obtain server and client
 certificates other than in the initial TLS handshake. While the
 signature of exported authenticator values is expected to be equally
 secure, it is important to recognize that a vulnerability in this
 code path is at least equal to a vulnerability in the TLS handshake.

5.1. Impersonation

 This mechanism could increase the impact of a key compromise. Rather
 than needing to subvert DNS or IP routing in order to use a
 compromised certificate, a malicious server now only needs a client
 to connect to _some_ HTTPS site under its control in order to present
 the compromised certificate. As recommended in
 [I-D.ietf-httpbis-origin-frame], clients opting not to consult DNS
 ought to employ some alternative means to increase confidence that
 the certificate is legitimate.

Bishop, et al. Expires May 3, 2018 [Page 16]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 As noted in the Security Considerations of
 [I-D.ietf-tls-exported-authenticator], it difficult to formally prove
 that an endpoint is jointly authoritative over multiple certificates,
 rather than individually authoritative on each certificate. As a
 result, clients MUST NOT assume that because one origin was
 previously colocated with another, those origins will be reachable
 via the same endpoints in the future. Clients MUST NOT consider
 previous secondary certificates to be validated after TLS session
 resumption. However, clients MAY proactively query for previously-
 presented secondary certificates.

5.2. Fingerprinting

 This draft defines a mechanism which could be used to probe servers
 for origins they support, but opens no new attack versus making
 repeat TLS connections with different SNI values. Servers SHOULD
 impose similar denial-of-service mitigations (e.g. request rate
 limits) to "CERTIFICATE_REQUEST" frames as to new TLS connections.

 While the extensions in the "CERTIFICATE_REQUEST" frame permit the
 sender to enumerate the acceptable Certificate Authorities for the
 requested certificate, it might not be prudent (either for security
 or data consumption) to include the full list of trusted Certificate
 Authorities in every request. Senders, particularly clients, SHOULD
 send only the extensions that narrowly specify which certificates
 would be acceptable.

5.3. Denial of Service

 Failure to provide a certificate on a stream after receiving
 "CERTIFICATE_NEEDED" blocks processing, and SHOULD be subject to
 standard timeouts used to guard against unresponsive peers.

 Validating a multitude of signatures can be computationally
 expensive, while generating an invalid signature is computationally
 cheap. Implementations will require checks for attacks from this
 direction. Invalid exported authenticators SHOULD be treated as a
 session error, to avoid further attacks from the peer, though an
 implementation MAY instead disable HTTP-layer certificates for the
 current connection instead.

5.4. Confusion About State

 Implementations need to be aware of the potential for confusion about
 the state of a connection. The presence or absence of a validated
 certificate can change during the processing of a request,
 potentially multiple times, as "USE_CERTIFICATE" frames are received.
 A server that uses certificate authentication needs to be prepared to

Bishop, et al. Expires May 3, 2018 [Page 17]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 reevaluate the authorization state of a request as the set of
 certificates changes.

 Client implementations need to carefully consider the impact of
 setting the "AUTOMATIC_USE" flag. This flag is a performance
 optimization, permitting the client to avoid a round-trip on each
 request where the server checks for certificate authentication.
 However, once this flag has been sent, the client has zero knowledge
 about whether the server will use the referenced cert for any future
 request, or even for an existing request which has not yet completed.
 Clients MUST NOT set this flag on any certificate which is not
 appropriate for currently-in-flight requests, and MUST NOT make any
 future requests on the same connection which they are not willing to
 have associated with the provided certificate.

6. IANA Considerations

 This draft adds entries in three registries.

 The HTTP/2 "SETTINGS_HTTP_CERT_AUTH" setting is registered in
 Section 6.1. Four frame types are registered in Section 6.2. Six
 error codes are registered in Section 6.3.

6.1. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting

 The SETTINGS_HTTP_CERT_AUTH setting is registered in the "HTTP/2
 Settings" registry established in [RFC7540].

 Name: SETTINGS_HTTP_CERT_AUTH

 Code: 0xSETTING-TBD

 Initial Value: 0

 Specification: This document.

6.2. New HTTP/2 Frames

 Four new frame types are registered in the "HTTP/2 Frame Types"
 registry established in [RFC7540]. The entries in the following
 table are registered by this document.

Bishop, et al. Expires May 3, 2018 [Page 18]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 +---------------------+--------------+---------------+
 | Frame Type | Code | Specification |
 +---------------------+--------------+---------------+
 | CERTIFICATE_NEEDED | 0xFRAME-TBD1 | Section 3.1 |
 | | | |
 | CERTIFICATE_REQUEST | 0xFRAME-TBD2 | Section 3.3 |
 | | | |
 | CERTIFICATE | 0xFRAME-TBD3 | Section 3.4 |
 | | | |
 | USE_CERTIFICATE | 0xFRAME-TBD4 | Section 3.2 |
 +---------------------+--------------+---------------+

6.3. New HTTP/2 Error Codes

 Five new error codes are registered in the "HTTP/2 Error Code"
 registry established in [RFC7540]. The entries in the following
 table are registered by this document.

 +-------------------------+--------------+---------------+
 | Name | Code | Specification |
 +-------------------------+--------------+---------------+
 | BAD_CERTIFICATE | 0xERROR-TBD1 | Section 4 |
 | | | |
 | UNSUPPORTED_CERTIFICATE | 0xERROR-TBD2 | Section 4 |
 | | | |
 | CERTIFICATE_REVOKED | 0xERROR-TBD3 | Section 4 |
 | | | |
 | CERTIFICATE_EXPIRED | 0xERROR-TBD4 | Section 4 |
 | | | |
 | CERTIFICATE_GENERAL | 0xERROR-TBD5 | Section 4 |
 +-------------------------+--------------+---------------+

7. Acknowledgements

 Eric Rescorla pointed out several failings in an earlier revision.
 Andrei Popov contributed to the TLS considerations.

8. References

8.1. Normative References

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-
 ietf-tls-exported-authenticator-03 (work in progress),
 July 2017.

Bishop, et al. Expires May 3, 2018 [Page 19]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC2459] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 2459, DOI 10.17487/RFC2459, January 1999,
 <https://www.rfc-editor.org/info/rfc2459>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-
 editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011, <https://www.rfc-
 editor.org/info/rfc6066>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-
 editor.org/info/rfc7540>.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO ISO/IEC 8825-1:2002, 2002,
 <http://www.itu.int/ITU-T/studygroups/com17/languages/
 X.690-0207.pdf>.

Bishop, et al. Expires May 3, 2018 [Page 20]

Internet-Draft Secondary Cert Auth in HTTP/2 October 2017

8.2. Informative References

 [I-D.ietf-httpbis-origin-frame]
 Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",
 draft-ietf-httpbis-origin-frame-04 (work in progress),
 August 2017.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

Authors’ Addresses

 Mike Bishop

 Email: mbishop@evequefou.be

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Bishop, et al. Expires May 3, 2018 [Page 21]

