
HTTP C. Pratt

Internet-Draft

Intended status: Experimental D. Thakore

Expires: September 7, 2019 CableLabs

 B. Stark

 AT&T

 March 6, 2019

 HTTP Random Access and Live Content

 draft-ietf-httpbis-rand-access-live-04

Abstract

 To accommodate byte range requests for content that has data appended

 over time, this document defines semantics that allow a HTTP client

 and server to perform byte-range GET and HEAD requests that start at

 an arbitrary byte offset within the representation and ends at an

 indeterminate offset.

Editorial Note (To be removed by RFC Editor before publication)

 Discussion of this draft takes place on the HTTPBIS working group

 mailing list (ietf-http-wg@w3.org), which is archived at

 <https://lists.w3.org/Archives/Public/ietf-http-wg/>.

 Working Group information can be found at <http://httpwg.github.io/>;

 source code and issues list for this draft can be found at

 <https://github.com/httpwg/http-extensions/labels/rand-access-live>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2019.

Pratt, et al. Expires September 7, 2019 [Page 1]

Internet-Draft HTTP Random Access and Live Content March 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Requirements Language 3

 1.2. Notational Conventions 3

 2. Performing Range requests on Random-Access Aggregating

 ("live") Content . 4

 2.1. Establishing the Randomly Accessible Byte Range 4

 2.2. Byte-Range Requests Beyond the Randomly Accessible Byte

 Range . 5

 3. Other Applications of Random-Access Aggregating Content . . . 7

 3.1. Requests Starting at the Aggregation ("Live") Point . . . 7

 3.2. Shift Buffer Representations 8

 4. Recommendations for Very Large Values 10

 5. IANA Considerations . 10

 6. Security Considerations 10

 7. References . 11

 7.1. Normative References 11

 7.2. Informative References 11

 Appendix A. Acknowledgements 11

 Authors’ Addresses . 12

1. Introduction

 Some Hypertext Transfer Protocol (HTTP) clients use byte-range

 requests (Range requests using the "bytes" Range Unit) to transfer

 select portions of large representations ([RFC7233]). And in some

 cases large representations require content to be continuously or

 periodically appended - such as representations consisting of live

 audio or video sources, blockchain databases, and log files. Clients

 cannot access the appended/live content using a Range request with

 the bytes range unit using the currently defined byte-range semantics

Pratt, et al. Expires September 7, 2019 [Page 2]

Internet-Draft HTTP Random Access and Live Content March 2019

 without accepting performance or behavior sacrifices which are not

 acceptable for many applications.

 For instance, HTTP clients have the ability to access appended

 content on an indeterminate-length resource by transferring the

 entire representation from the beginning and continuing to read the

 appended content as it’s made available. Obviously, this is highly

 inefficient for cases where the representation is large and only the

 most recently appended content is needed by the client.

 Alternatively, clients can also access appended content by sending

 periodic open-ended bytes Range requests using the last-known end

 byte position as the range start. Performing low-frequency periodic

 bytes Range requests in this fashion (polling) introduces latency

 since the client will necessarily be somewhat behind the aggregated

 content - mimicking the behavior (and latency) of segmented content

 representations such as "HTTP Live Streaming" (HLS, [RFC8216]) or

 "Dynamic Adaptive Streaming over HTTP" (MPEG-DASH, [DASH]). And

 while performing these Range requests at higher frequency can reduce

 this latency, it also incurs more processing overhead and HTTP

 exchanges as many of the requests will return no content - since

 content is usually aggregated in groups of bytes (e.g. a video frame,

 audio sample, block, or log entry).

 This document describes a usage model for range requests which

 enables efficient retrieval of representations that are appended to

 over time by using large values and associated semantics for

 communicating range end positions. This model allows representations

 to be progressively delivered by servers as new content is added. It

 also ensures compatibility with servers and intermediaries that don’t

 support this technique.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Notational Conventions

 This document cites productions in Augmented Backus-Naur Form (ABNF)

 productions from [RFC7233], using the notation defined in [RFC5234].

Pratt, et al. Expires September 7, 2019 [Page 3]

Internet-Draft HTTP Random Access and Live Content March 2019

2. Performing Range requests on Random-Access Aggregating ("live")

 Content

 This document recommends a two-step process for accessing resources

 that have indeterminate length representations.

 Two steps are necessary because of limitations with the Range request

 header fields and the Content-Range response header fields. A server

 cannot know from a range request that a client wishes to receive a

 response that does not have a definite end. More critically, the

 header fields do not allow the server to signal that a resource has

 indeterminate length without also providing a fixed portion of the

 resource.

 A client first learns that the resource has a representation of

 indeterminate length by requesting a range of the resource. The

 server responds with the range that is available, but indicates that

 the length of the representation is unknown using the existing

 Content-Range syntax. See Section 2.1 for details and examples.

 Once the client knows the resource has indeterminate length, it can

 request a range with a very large end position from the resource.

 The client chooses an explicit end value larger than can be

 transferred in the foreseeable term. A server which supports range

 requests of indeterminate length signals its understanding of the

 client’s indeterminate range request by indicating that the range it

 is providing has a range end that exactly matches the client’s

 requested range end rather than a range that is bounded by what is

 currently available. See Section 2.2 for details.

2.1. Establishing the Randomly Accessible Byte Range

 Establishing if a representation is continuously aggregating ("live")

 and determining the randomly-accessible byte range can both be

 determined using the existing definition for an open-ended byte-range

 request. Specifically, [RFC7233] defines a byte-range request of the

 form:

 byte-range-spec = first-byte-pos "-" [last-byte-pos]

 which allows a client to send a HEAD request with a first-byte-pos

 and leave last-byte-pos absent. A server that receives a satisfiable

 byte-range request (with first-byte-pos smaller than the current

 representation length) may respond with a 206 status code (Partial

 Content) with a Content-Range header field indicating the currently

 satisfiable byte range. For example:

Pratt, et al. Expires September 7, 2019 [Page 4]

Internet-Draft HTTP Random Access and Live Content March 2019

 HEAD /resource HTTP/1.1

 Host: example.com

 Range: bytes=0-

 returns a response of the form:

 HTTP/1.1 206 Partial Content

 Content-Range: bytes 0-1234567/*

 from the server indicating that (1) the complete representation

 length is unknown (via the "*" in place of the complete-length field)

 and (2) that only bytes 0-1234567 were accessible at the time the

 request was processed by the server. The client can infer from this

 response that bytes 0-1234567 of the representation can be requested

 and returned in a timely fashion (the bytes are immediately

 available).

2.2. Byte-Range Requests Beyond the Randomly Accessible Byte Range

 Once a client has determined that a representation has an

 indeterminate length and established the byte range that can be

 accessed, it may want to perform a request with a start position

 within the randomly-accessible content range and an end position at

 an indefinite "live" point - a point where the byte-range GET request

 is fulfilled on-demand as the content is aggregated.

 For example, for a large video asset, a client may wish to start a

 content transfer from the video "key" frame immediately before the

 point of aggregation and continue the content transfer indefinitely

 as content is aggregated - in order to support low-latency startup of

 a live video stream.

 Unlike a byte-range Range request, a byte-range Content-Range

 response header field cannot be "open ended", per [RFC7233]:

 byte-content-range = bytes-unit SP

 (byte-range-resp / unsatisfied-range)

 byte-range-resp = byte-range "/" (complete-length / "*")

 byte-range = first-byte-pos "-" last-byte-pos

 unsatisfied-range = "*/" complete-length

 complete-length = 1*DIGIT

 Specifically, last-byte-pos is required in byte-range. So in order

 to preserve interoperability with existing HTTP clients, servers,

 proxies, and caches, this document proposes a mechanism for a client

Pratt, et al. Expires September 7, 2019 [Page 5]

Internet-Draft HTTP Random Access and Live Content March 2019

 to indicate support for handling an indeterminate-length byte-range

 response, and a mechanism for a server to indicate if/when it’s

 providing an indeterminate-length response.

 A client can indicate support for handling indeterminate-length byte-

 range responses by providing a very large value for the last-byte-pos

 in the byte-range request. For example, a client can perform a byte-

 range GET request of the form:

 GET /resource HTTP/1.1

 Host: example.com

 Range: bytes=1230000-999999999999

 where the last-byte-pos in the Request is much larger than the last-

 byte-pos returned in response to an open-ended byte-range HEAD

 request, as described above, and much larger than the expected

 maximum size of the representation. See Section 6 for range value

 considerations.

 In response, a server may indicate that it is supplying a

 continuously aggregating ("live") response by supplying the client

 request’s last-byte-pos in the Content-Range response header field.

 For example:

 GET /resource HTTP/1.1

 Host: example.com

 Range: bytes=1230000-999999999999

 returns

 HTTP/1.1 206 Partial Content

 Content-Range: bytes 1230000-999999999999/*

 from the server to indicate that the response will start at byte

 1230000 and continues indefinitely to include all aggregated content,

 as it becomes available.

 A server that doesn’t support or supply a continuously aggregating

 ("live") response will supply the currently satisfiable byte range,

 as it would with an open-ended byte request.

 For example:

Pratt, et al. Expires September 7, 2019 [Page 6]

Internet-Draft HTTP Random Access and Live Content March 2019

 GET /resource HTTP/1.1

 Host: example.com

 Range: bytes=1230000-999999999999

 will return

 HTTP/1.1 206 Partial Content

 Content-Range: bytes 1230000-1234567/*

 from the server to indicate that the response will start at byte

 1230000 and end at byte 1234567 and will not include any aggregated

 content. This is the response expected from a typical HTTP server -

 one that doesn’t support byte-range requests on aggregating content.

 A client that doesn’t receive a response indicating it is

 continuously aggregating must use other means to access aggregated

 content (e.g. periodic byte-range polling).

 A server that does return a continuously aggregating ("live")

 response should return data using chunked transfer coding and not

 provide a Content-Length header field. A 0-length chunk indicates

 the end of the transfer, per [RFC7230].

3. Other Applications of Random-Access Aggregating Content

3.1. Requests Starting at the Aggregation ("Live") Point

 A client that wishes to only receive newly-aggregated portions of a

 resource (i.e., start at the "live" point), can use a HEAD request to

 learn what range the server has currently available and initiate an

 indeterminate-length transfer. For example:

 HEAD /resource HTTP/1.1

 Host: example.com

 Range: bytes=0-

 With the Content-Range response header field indicating the range (or

 ranges) available. For example:

 206 Partial Content

 Content-Range: bytes 0-1234567/*

 The client can then issue a request for a range starting at the end

 value (using a very large value for the end of a range) and receive

 only new content.

Pratt, et al. Expires September 7, 2019 [Page 7]

Internet-Draft HTTP Random Access and Live Content March 2019

 GET /resource HTTP/1.1

 Host: example.com

 Range: bytes=1234567-999999999999

 with a server returning a Content-Range response indicating that an

 indeterminate-length response body will be provided

 206 Partial Content

 Content-Range: bytes 1234567-999999999999/*

3.2. Shift Buffer Representations

 Some representations lend themselves to front-end content removal in

 addition to aggregation. While still supporting random access,

 representations of this type have a portion at the beginning (the "0"

 end) of the randomly-accessible region that become inaccessible over

 time. Examples of this kind of representation would be an audio-

 video time-shift buffer or a rolling log file.

 For example a Range request containing:

 HEAD /resource HTTP/1.1

 Host: example.com

 Range: bytes=0-

 returns

 206 Partial Content

 Content-Range: bytes 1000000-1234567/*

 indicating that the first 1000000 bytes were not accessible at the

 time the HEAD request was processed. Subsequent HEAD requests could

 return:

 Content-Range: bytes 1000000-1234567/*

 Content-Range: bytes 1010000-1244567/*

 Content-Range: bytes 1020000-1254567/*

 Note though that the difference between the first-byte-pos and last-

 byte-pos need not be constant.

 The client could then follow-up with a GET Range request containing

Pratt, et al. Expires September 7, 2019 [Page 8]

Internet-Draft HTTP Random Access and Live Content March 2019

 GET /resource HTTP/1.1

 Host: example.com

 Range: bytes=1020000-999999999999

 with the server returning

 206 Partial Content

 Content-Range: bytes 1020000-999999999999/*

 with the response body returning bytes 1020000-1254567 immediately

 and aggregated ("live") data being returned as the content is

 aggregated.

 A server that doesn’t support or supply a continuously aggregating

 ("live") response will supply the currently satisfiable byte range,

 as it would with an open-ended byte request.

 For example:

 GET /resource HTTP/1.1

 Host: example.com

 Range: bytes=0-999999999999

 will return

 HTTP/1.1 206 Partial Content

 Content-Range: bytes 1020000-1254567/*

 from the server to indicate that the response will start at byte

 1020000, end at byte 1254567, and will not include any aggregated

 content. This is the response expected from a typical HTTP server -

 one that doesn’t support byte-range requests on aggregating content.

 Note that responses to GET requests against shift-buffer

 representations using Range can be cached by intermediaries, since

 the Content-Range response header indicates which portion of the

 representation is being returned in the response body. However GET

 requests without a Range header cannot be cached since the first byte

 of the response body can vary from request to request. To ensure

 Range-less GET requests against shift-buffer representations are not

 cached, servers hosting a shift-buffer representation should either

 not return a 200-level response (e.g. sending a 300-level redirect

 response with a URI that represents the current start of the shift-

 buffer) or indicate the response is non-cacheable. See HTTP Caching

 ([RFC7234]) for details on HTTP cache control.

Pratt, et al. Expires September 7, 2019 [Page 9]

Internet-Draft HTTP Random Access and Live Content March 2019

4. Recommendations for Very Large Values

 While it would be ideal to define a single numerical Very Large

 Value, there’s no single value that would work for all applications

 and platforms. e.g. JavaScript numbers cannot represent all integer

 values above 2^^53, so a JavaScript application may want to use

 2^^53-1 for a Very Large Value. This value, however, would not be

 sufficient for all applications, such as continuously-streaming high-

 bitrate streams. So the value 2^^53-1 (9007199254740991) is

 recommended as a Very Large Value unless an application has a good

 justification to use a smaller or larger value. e.g. If it’s always

 known that the resource won’t exceed a value smaller than the

 recommended Very Large Value for an application, a smaller value can

 be used. And if it’s likely that an application will utilize

 resources larger than the recommended Very Large Value - such as a

 continuously aggregating high-bitrate media stream - a larger value

 should be used.

 Note that, in accordance with the semantics defined above, servers

 that support random-access live content will need to return the last-

 byte-pos provided in the Range request in some cases - even if the

 last-byte-pos cannot be represented as a numerical value internally

 by the server. As is the case with any live/continuously aggregating

 resource, the server should terminate the content transfer when the

 end of the resource is reached - whether the end is due to

 termination of the content source or the content length exceeds the

 server’s maximum representation length.

5. IANA Considerations

 This document has no actions for IANA.

6. Security Considerations

 As described above, servers need to be prepared to receive last-byte-

 pos values in Range requests that are numerically larger than the

 server implementation supports - and return these values in Content-

 Range response header fields. Servers should check the last-byte-pos

 value before converting and storing them into numeric form to ensure

 the value doesn’t cause an overflow or index incorrect data. The

 simplest way to satisfy the live-range semantics defined in this

 document without potential overflow issues is to store the last-byte-

 pos as a string value and return it in the byte-range Content-Range

 response header’s last-byte-pos field.

Pratt, et al. Expires September 7, 2019 [Page 10]

Internet-Draft HTTP Random Access and Live Content March 2019

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

 editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer

 Protocol (HTTP/1.1): Message Syntax and Routing",

 RFC 7230, DOI 10.17487/RFC7230, June 2014,

 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,

 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

 RFC 7233, DOI 10.17487/RFC7233, June 2014,

 <https://www.rfc-editor.org/info/rfc7233>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

 RFC 7234, DOI 10.17487/RFC7234, June 2014,

 <https://www.rfc-editor.org/info/rfc7234>.

7.2. Informative References

 [DASH] ISO, "Information technology -- Dynamic adaptive streaming

 over HTTP (DASH) -- Part 1: Media presentation description

 and segment formats", ISO/IEC 23009-1:2014, May 2014,

 <http://standards.iso.org/ittf/PubliclyAvailableStandards/

 c065274_ISO_IEC_23009-1_2014.zip>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", STD 68, RFC 5234,

 DOI 10.17487/RFC5234, January 2008, <https://www.rfc-

 editor.org/info/rfc5234>.

 [RFC8216] Pantos, R., Ed. and W. May, "HTTP Live Streaming",

 RFC 8216, DOI 10.17487/RFC8216, August 2017,

 <https://www.rfc-editor.org/info/rfc8216>.

Appendix A. Acknowledgements

 Mark Nottingham, Patrick McManus, Julian Reschke, Remy Lebeau, Rodger

 Combs, Thorsten Lohmar, Martin Thompson, Adrien de Croy, K. Morgan,

 Roy T. Fielding, Jeremy Poulter.

Pratt, et al. Expires September 7, 2019 [Page 11]

Internet-Draft HTTP Random Access and Live Content March 2019

Authors’ Addresses

 Craig Pratt

 Portland, OR 97229

 US

 Email: pratt@acm.org

 Darshak Thakore

 CableLabs

 858 Coal Creek Circle

 Louisville, CO 80027

 US

 Email: d.thakore@cablelabs.com

 Barbara Stark

 AT&T

 Atlanta, GA

 US

 Email: barbara.stark@att.com

Pratt, et al. Expires September 7, 2019 [Page 12]

