
Network Working Group M. Nottingham
Internet-Draft Fastly
Intended status: Informational P-H. Kamp
Expires: May 3, 2018 The Varnish Cache Project
 October 30, 2017

 Structured Headers for HTTP
 draft-nottingham-structured-headers-00

Abstract

 This document describes Structured Headers, a way of simplifying HTTP
 header field definition and parsing. It is intended for use by new
 HTTP header fields.

Note to Readers

 RFC EDITOR: please remove this section before publication

 The issues list for this draft can be found at
 https://github.com/mnot/I-D/labels/structured-headers [1].

 The most recent (often, unpublished) draft is at
 https://mnot.github.io/I-D/structured-headers/ [2].

 Recent changes are listed at https://github.com/mnot/I-D/commits/gh-
 pages/structured-headers [3].

 See also the draft’s current status in the IETF datatracker, at
 https://datatracker.ietf.org/doc/draft-nottingham-structured-headers/
 [4].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Nottingham & Kamp Expires May 3, 2018 [Page 1]

Internet-Draft Structured Headers for HTTP October 2017

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notational Conventions 3
 2. Specifying Structured Headers 4
 3. Parsing Requirements for Textual Headers 5
 4. Structured Header Data Types 6
 4.1. Numbers . 6
 4.1.1. Parsing Numbers from Textual Headers 7
 4.2. Strings . 7
 4.2.1. Parsing a String from Textual Headers 7
 4.3. Labels . 8
 4.3.1. Parsing a Label from Textual Headers 9
 4.4. Parameterised Labels 9
 4.4.1. Parsing a Parameterised Label from Textual Headers . 10
 4.5. Binary Content . 10
 4.5.1. Parsing Binary Content from Textual Headers 11
 4.6. Items . 11
 4.6.1. Parsing an Item from Textual Headers 11
 4.7. Dictionaries . 12
 4.7.1. Parsing a Dictionary from Textual Headers 12
 4.8. Lists . 13
 4.8.1. Parsing a List from Textual Headers 14
 5. IANA Considerations . 14
 6. Security Considerations 14
 7. References . 14
 7.1. Normative References 14
 7.2. Informative References 15
 7.3. URIs . 15
 Authors’ Addresses . 16

Nottingham & Kamp Expires May 3, 2018 [Page 2]

Internet-Draft Structured Headers for HTTP October 2017

1. Introduction

 Specifying the syntax of new HTTP header fields is an onerous task;
 even with the guidance in [RFC7231], Section 8.3.1, there are many
 decisions - and pitfalls - for a prospective HTTP header field
 author.

 Likewise, bespoke parsers often need to be written for specific HTTP
 headers, because each has slightly different handling of what looks
 like common syntax.

 This document introduces structured HTTP header field values
 (hereafter, Structured Headers) to address these problems.
 Structured Headers define a generic, abstract model for data, along
 with a concrete serialisation for expressing that model in textual
 HTTP headers, as used by HTTP/1 [RFC7230] and HTTP/2 [RFC7540].

 HTTP headers that are defined as Structured Headers use the types
 defined in this specification to define their syntax and basic
 handling rules, thereby simplifying both their definition and
 parsing.

 Additionally, future versions of HTTP can define alternative
 serialisations of the abstract model of Structured Headers, allowing
 headers that use it to be transmitted more efficiently without being
 redefined.

 Note that it is not a goal of this document to redefine the syntax of
 existing HTTP headers; the mechanisms described herein are only
 intended to be used with headers that explicitly opt into them.

 To specify a header field that uses Structured Headers, see
 Section 2.

 Section 4 defines a number of abstract data types that can be used in
 Structured Headers, of which only three are allowed at the "top"
 level: lists, dictionaries, or items.

 Those abstract types can be serialised into textual headers - such as
 those used in HTTP/1 and HTTP/2 - using the algorithms described in
 Section 3.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

Nottingham & Kamp Expires May 3, 2018 [Page 3]

Internet-Draft Structured Headers for HTTP October 2017

 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the Augmented Backus-Naur Form (ABNF) notation of
 [RFC5234], including the DIGIT, ALPHA and DQUOTE rules from that
 document. It also includes the OWS rule from [RFC7230].

2. Specifying Structured Headers

 HTTP headers that use Structured Headers need to be defined to do so
 explicitly; recipients and generators need to know that the
 requirements of this document are in effect. The simplest way to do
 that is by referencing this document in its definition.

 The field’s definition will also need to specify the field-value’s
 allowed syntax, in terms of the types described in Section 4, along
 with their associated semantics.

 Field definitions MUST NOT relax or otherwise modify the requirements
 of this specification; doing so would preclude handling by generic
 software.

 However, field definitions are encouraged to clearly state additional
 constraints upon the syntax, as well as the consequences when those
 constraints are violated.

 For example:

 # FooExample Header

 The FooExample HTTP header field conveys a list of numbers about how
 much Foo the sender has.

 FooExample is a Structured header [RFCxxxx]. Its value MUST be a
 dictionary ([RFCxxxx], Section Y.Y).

 The dictionary MUST contain:

 * A member whose key is "foo", and whose value is an integer
 ([RFCxxxx], Section Y.Y), indicating the number of foos in
 the message.
 * A member whose key is "bar", and whose value is a string
 ([RFCxxxx], Section Y.Y), conveying the characteristic bar-ness
 of the message.

 If the parsed header field does not contain both, it MUST be ignored.

Nottingham & Kamp Expires May 3, 2018 [Page 4]

Internet-Draft Structured Headers for HTTP October 2017

 Note that empty header field values are not allowed by the syntax,
 and therefore will be considered errors.

3. Parsing Requirements for Textual Headers

 When a receiving implementation parses textual HTTP header fields
 (e.g., in HTTP/1 or HTTP/2) that are known to be Structured Headers,
 it is important that care be taken, as there are a number of edge
 cases that can cause interoperability or even security problems.
 This section specifies the algorithm for doing so.

 Given an ASCII string input_string that represents the chosen
 header’s field-value, return the parsed header value. Note that
 input_string may incorporate multiple header lines combined into one
 comma-separated field-value, as per [RFC7230], Section 3.2.2.

 1. Discard any OWS from the beginning of input_string.

 2. If the field-value is defined to be a dictionary, return the
 result of Parsing a Dictionary from Textual headers
 (Section 4.7).

 3. If the field-value is defined to be a list, return the result of
 Parsing a List from Textual Headers (Section 4.8).

 4. If the field-value is defined to be a parameterised label, return
 the result of Parsing a Parameterised Label from Textual headers
 (Section 4.4).

 5. Otherwise, return the result of Parsing an Item from Textual
 Headers (Section 4.6).

 Note that in the case of lists and dictionaries, this has the effect
 of combining multiple instances of the header field into one.
 However, for singular items and parameterised labels, it has the
 effect of selecting the first value and ignoring any subsequent
 instances of the field, as well as extraneous text afterwards.

 Additionally, note that the effect of the parsing algorithms as
 specified is generally intolerant of syntax errors; if one is
 encountered, the typical response is to throw an error, thereby
 discarding the entire header field value. This includes any non-
 ASCII characters in input_string.

Nottingham & Kamp Expires May 3, 2018 [Page 5]

Internet-Draft Structured Headers for HTTP October 2017

4. Structured Header Data Types

 This section defines the abstract value types that can be composed
 into Structured Headers, along with the textual HTTP serialisations
 of them.

4.1. Numbers

 Abstractly, numbers are integers with an optional fractional part.
 They have a maximum of fifteen digits available to be used in one or
 both of the parts, as reflected in the ABNF below; this allows them
 to be stored as IEEE 754 double precision numbers (binary64)
 ([IEEE754]).

 The textual HTTP serialisation of numbers allows a maximum of fifteen
 digits between the integer and fractional part, along with an
 optional "-" indicating negative numbers.

 number = ["-"] ("." 1*15DIGIT /
 DIGIT "." 1*14DIGIT /
 2DIGIT "." 1*13DIGIT /
 3DIGIT "." 1*12DIGIT /
 4DIGIT "." 1*11DIGIT /
 5DIGIT "." 1*10DIGIT /
 6DIGIT "." 1*9DIGIT /
 7DIGIT "." 1*8DIGIT /
 8DIGIT "." 1*7DIGIT /
 9DIGIT "." 1*6DIGIT /
 10DIGIT "." 1*5DIGIT /
 11DIGIT "." 1*4DIGIT /
 12DIGIT "." 1*3DIGIT /
 13DIGIT "." 1*2DIGIT /
 14DIGIT "." 1DIGIT /
 15DIGIT)

 integer = ["-"] 1*15DIGIT
 unsigned = 1*15DIGIT

 integer and unsigned are defined as conveniences to specification
 authors; if their use is specified and their ABNF is not matched, a
 parser MUST consider it to be invalid.

 For example, a header whose value is defined as a number could look
 like:

 ExampleNumberHeader: 4.5

Nottingham & Kamp Expires May 3, 2018 [Page 6]

Internet-Draft Structured Headers for HTTP October 2017

4.1.1. Parsing Numbers from Textual Headers

 TBD

4.2. Strings

 Abstractly, strings are ASCII strings [RFC0020], excluding control
 characters (i.e., the range 0x20 to 0x7E). Note that this excludes
 tabs, newlines and carriage returns. They may be at most 1024
 characters long.

 The textual HTTP serialisation of strings uses a backslash ("") to
 escape double quotes and backslashes in strings.

 string = DQUOTE 1*1024(char) DQUOTE
 char = unescaped / escape (DQUOTE / "\")
 unescaped = %x20-21 / %x23-5B / %x5D-7E
 escape = "\"

 For example, a header whose value is defined as a string could look
 like:

 ExampleStringHeader: "hello world"

 Note that strings only use DQUOTE as a delimiter; single quotes do
 not delimit strings. Furthermore, only DQUOTE and "" can be escaped;
 other sequences MUST generate an error.

 Unicode is not directly supported in Structured Headers, because it
 causes a number of interoperability issues, and - with few exceptions
 - header values do not require it.

 When it is necessary for a field value to convey non-ASCII string
 content, binary content (Section 4.5) SHOULD be specified, along with
 a character encoding (most likely, UTF-8).

4.2.1. Parsing a String from Textual Headers

 Given an ASCII string input_string, return an unquoted string.
 input_string is modified to remove the parsed value.

 1. Let output_string be an empty string.

 2. If the first character of input_string is not DQUOTE, throw an
 error.

 3. Discard the first character of input_string.

Nottingham & Kamp Expires May 3, 2018 [Page 7]

Internet-Draft Structured Headers for HTTP October 2017

 4. If input_string contains more than 1025 characters, throw an
 error.

 5. While input_string is not empty:

 1. Let char be the result of removing the first character of
 input_string.

 2. If char is a backslash ("\"):

 1. If input_string is now empty, throw an error.

 2. Else:

 1. Let next_char be the result of removing the first
 character of input_string.

 2. If next_char is not DQUOTE or "\", throw an error.

 3. Append next_char to output_string.

 3. Else, if char is DQUOTE, remove the first character of
 input_string and return output_string.

 4. Else, append char to output_string.

 6. Otherwise, throw an error.

4.3. Labels

 Labels are short (up to 256 characters) textual identifiers; their
 abstract model is identical to their expression in the textual HTTP
 serialisation.

 label = lcalpha *255(lcalpha / DIGIT / "_" / "-"/ "*" / "/")
 lcalpha = %x61-7A ; a-z

 Note that labels can only contain lowercase letters.

 For example, a header whose value is defined as a label could look
 like:

 ExampleLabelHeader: foo/bar

Nottingham & Kamp Expires May 3, 2018 [Page 8]

Internet-Draft Structured Headers for HTTP October 2017

4.3.1. Parsing a Label from Textual Headers

 Given an ASCII string input_string, return a label. input_string is
 modified to remove the parsed value.

 1. If input_string contains more than 256 characters, throw an
 error.

 2. If the first character of input_string is not lcalpha, throw an
 error.

 3. Let output_string be an empty string.

 4. While input_string is not empty:

 1. Let char be the result of removing the first character of
 input_string.

 2. If char is not one of lcalpha, DIGIT, "_", "-", "*" or "/":

 1. Prepend char to input_string.

 2. Return output_string.

 3. Append char to output_string.

 5. Return output_string.

4.4. Parameterised Labels

 Parameterised Labels are labels (Section 4.3) with up to 256
 parameters; each parameter has a label and an optional value that is
 an item (Section 4.6). Ordering between parameters is not
 significant, and duplicate parameters MUST be considered an error.

 The textual HTTP serialisation uses semicolons (";") to delimit the
 parameters from each other, and equals ("=") to delimit the parameter
 name from its value.

 parameterised = label *256(OWS ";" OWS label ["=" item])

 For example,

 ExampleParamHeader: abc; a=1; b=2; c

Nottingham & Kamp Expires May 3, 2018 [Page 9]

Internet-Draft Structured Headers for HTTP October 2017

4.4.1. Parsing a Parameterised Label from Textual Headers

 Given an ASCII string input_string, return a label with an mapping of
 parameters. input_string is modified to remove the parsed value.

 1. Let primary_label be the result of Parsing a Label from Textual
 Headers (Section 4.3) from input_string.

 2. Let parameters be an empty mapping.

 3. In a loop:

 1. Consume any OWS from the beginning of input_string.

 2. If the first character of input_string is not ";", exit the
 loop.

 3. Consume a ";" character from the beginning of input_string.

 4. Consume any OWS from the beginning of input_string.

 5. let param_name be the result of Parsing a Label from Textual
 Headers (Section 4.3) from input_string.

 6. If param_name is already present in parameters, throw an
 error.

 7. Let param_value be a null value.

 8. If the first character of input_string is "=":

 1. Consume the "=" character at the beginning of
 input_string.

 2. Let param_value be the result of Parsing an Item from
 Textual Headers (Section 4.6) from input_string.

 9. If parameters has more than 255 members, throw an error.

 10. Add param_name to parameters with the value param_value.

 4. Return the tuple (primary_label, parameters).

4.5. Binary Content

 Arbitrary binary content up to 16K in size can be conveyed in
 Structured Headers.

Nottingham & Kamp Expires May 3, 2018 [Page 10]

Internet-Draft Structured Headers for HTTP October 2017

 The textual HTTP serialisation indicates their presence by a leading
 "*", with the data encoded using Base 64 Encoding [RFC4648], without
 padding (as "=" might be confused with the use of dictionaries).

 binary = "*" 1*21846(base64)
 base64 = ALPHA / DIGIT / "+" / "/"

 For example, a header whose value is defined as binary content could
 look like:

 ExampleBinaryHeader: *cHJldGVuZCB0aGlzIGlzIGJpbmFyeSBjb250ZW50Lg

4.5.1. Parsing Binary Content from Textual Headers

 Given an ASCII string input_string, return binary content.
 input_string is modified to remove the parsed value.

 1. If the first character of input_string is not "*", throw an
 error.

 2. Discard the first character of input_string.

 3. Let b64_content be the result of removing content of input_string
 up to but not including the first character that is not in ALPHA,
 DIGIT, "+" or "/".

 4. Let binary_content be the result of Base 64 Decoding [RFC4648]
 b64_content, synthesising padding if necessary. If an error is
 encountered, throw it.

 5. Return binary_content.

4.6. Items

 An item is can be a number (Section 4.1), string (Section 4.2), label
 (Section 4.3) or binary content (Section 4.5).

 item = number / string / label / binary

4.6.1. Parsing an Item from Textual Headers

 Given an ASCII string input_string, return an item. input_string is
 modified to remove the parsed value.

 1. Discard any OWS from the beginning of input_string.

Nottingham & Kamp Expires May 3, 2018 [Page 11]

Internet-Draft Structured Headers for HTTP October 2017

 2. If the first character of input_string is a "-" or a DIGIT,
 process input_string as a number (Section 4.1) and return the
 result, throwing any errors encountered.

 3. If the first character of input_string is a DQUOTE, process
 input_string as a string (Section 4.2) and return the result,
 throwing any errors encountered.

 4. If the first character of input_string is "*", process
 input_string as binary content (Section 4.5) and return the
 result, throwing any errors encountered.

 5. If the first character of input_string is an lcalpha, process
 input_string as a label (Section 4.3) and return the result,
 throwing any errors encountered.

 6. Otherwise, throw an error.

4.7. Dictionaries

 Dictionaries are unordered maps of key-value pairs, where the keys
 are labels (Section 4.3) and the values are items (Section 4.6).
 There can be between 1 and 1024 members, and keys are required to be
 unique.

 In the textual HTTP serialisation, keys and values are separated by
 "=" (without whitespace), and key/value pairs are separated by a
 comma with optional whitespace.

 dictionary = label "=" item *1023(OWS "," OWS label "=" item)

 For example, a header field whose value is defined as a dictionary
 could look like:

 ExampleDictHeader: foo=1.23, da="Applepie", en=*w4ZibGV0w6ZydGUK

 Typically, a header field specification will define the semantics of
 individual keys, as well as whether their presence is required or
 optional. Recipients MUST ignore keys that are undefined or unknown,
 unless the header field’s specification specifically disallows them.

4.7.1. Parsing a Dictionary from Textual Headers

 Given an ASCII string input_string, return a mapping of (label,
 item). input_string is modified to remove the parsed value.

 1. Let dictionary be an empty mapping.

Nottingham & Kamp Expires May 3, 2018 [Page 12]

Internet-Draft Structured Headers for HTTP October 2017

 2. While input_string is not empty:

 1. Let this_key be the result of running Parse Label from
 Textual Headers (Section 4.3) with input_string. If an error
 is encountered, throw it.

 2. If dictionary already contains this_key, raise an error.

 3. Consume a "=" from input_string; if none is present, raise an
 error.

 4. Let this_value be the result of running Parse Item from
 Textual Headers (Section 4.6) with input_string. If an error
 is encountered, throw it.

 5. Add key this_key with value this_value to dictionary.

 6. Discard any leading OWS from input_string.

 7. If input_string is empty, return dictionary.

 8. Consume a COMMA from input_string; if no comma is present,
 raise an error.

 9. Discard any leading OWS from input_string.

 3. Return dictionary.

4.8. Lists

 Lists are arrays of items (Section 4.6) or parameterised labels
 (Section 4.4, with one to 1024 members.

 In the textual HTTP serialisation, each member is separated by a
 comma and optional whitespace.

 list = list_member 1*1024(OWS "," OWS list_member)
 list_member = item / paramterised_label

 For example, a header field whose value is defined as a list of
 labels could look like:

 ExampleLabelListHeader: foo, bar, baz_45

 and a header field whose value is defined as a list of parameterised
 labels could look like:

 ExampleParamListHeader: abc/def; g="hi";j, klm/nop

Nottingham & Kamp Expires May 3, 2018 [Page 13]

Internet-Draft Structured Headers for HTTP October 2017

4.8.1. Parsing a List from Textual Headers

 Given an ASCII string input_string, return a list of items.
 input_string is modified to remove the parsed value.

 1. Let items be an empty array.

 2. While input_string is not empty:

 1. Let item be the result of running Parse Item from Textual
 Headers (Section 4.6) with input_string. If an error is
 encountered, throw it.

 2. Append item to items.

 3. Discard any leading OWS from input_string.

 4. If input_string is empty, return items.

 5. Consume a COMMA from input_string; if no comma is present,
 raise an error.

 6. Discard any leading OWS from input_string.

 3. Return items.

5. IANA Considerations

 This draft has no actions for IANA.

6. Security Considerations

 TBD

7. References

7.1. Normative References

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Nottingham & Kamp Expires May 3, 2018 [Page 14]

Internet-Draft Structured Headers for HTTP October 2017

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", 2008,
 <http://grouper.ieee.org/groups/754/>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

7.3. URIs

 [1] https://github.com/mnot/I-D/labels/structured-headers

 [2] https://mnot.github.io/I-D/structured-headers/

 [3] https://github.com/mnot/I-D/commits/gh-pages/structured-headers

 [4] https://datatracker.ietf.org/doc/draft-nottingham-structured-
 headers/

Nottingham & Kamp Expires May 3, 2018 [Page 15]

Internet-Draft Structured Headers for HTTP October 2017

Authors’ Addresses

 Mark Nottingham
 Fastly

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

 Poul-Henning Kamp
 The Varnish Cache Project

 Email: phk@varnish-cache.org

Nottingham & Kamp Expires May 3, 2018 [Page 16]

