
I2NSF L. Xia
Internet-Draft J. Strassner
Intended status: Standard Track Huawei
Expires: January 5, 2018 C. Basile
 PoliTO
 D. Lopez
 TID
 July 3, 2017

 Information Model of NSFs Capabilities
 draft-xibassnez-i2nsf-capability-02.txt

Abstract

 This document defines the concept of an NSF (Network Security
 Function) Capability, as well as its information model. Capabilities
 are a set of features that are available from a managed entity, and
 are represented as data that unambiguously characterizes an NSF.
 Capabilities enable management entities to determine the set offer
 features from available NSFs that will be used, and simplify the
 management of NSFs.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current
 Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 This Internet-Draft will expire on January 5, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided
 without warranty as described in the Simplified BSD License.

Xia, et al. Expires December 5, 2018 [Page 1]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Table of Contents

 1. Introduction ... 4
 2. Conventions used in this document 5
 2.1. Acronyms .. 5
 3. Capability Information Model Design 6
 3.1. Design Principles and ECA Policy Model Overview 6
 3.2. Relation with the External Information Model 8
 3.3. I2NSF Capability Information Model Theory of Operation ... 10
 3.3.1. I2NSF Condition Clause Operator Types 11
 3.3.2 Capability Selection and Usage 12
 3.3.3. Capability Algebra 13
 3.4. Initial NSFs Capability Categories 16
 3.4.1. Network Security Capabilities 16
 3.4.2. Content Security Capabilities 17
 3.4.3. Attack Mitigation Capabilities 17
 4. Information Sub-Model for Network Security Capabilities 18
 4.1. Information Sub-Model for Network Security 18
 4.1.1. Network Security Policy Rule Extensions 19
 4.1.2. Network Security Policy Rule Operation 20
 4.1.3. Network Security Event Sub-Model 22
 4.1.4. Network Security Condition Sub-Model 23
 4.1.5. Network Security Action Sub-Model 25
 4.2. Information Model for I2NSF Capabilities 26
 4.3. Information Model for Content Security Capabilities 27
 4.4. Information Model for Attack Mitigation Capabilities 28
 5. Security Considerations 29
 6. IANA Considerations ... 29
 7. Contributors .. 29
 8. References .. 29
 8.1. Normative References 29
 8.2. Informative References 30
 Appendix A. Network Security Capability Policy Rule Definitions .. 32
 A.1. AuthenticationECAPolicyRule Class Definition 32
 A.2. AuthorizationECAPolicyRuleClass Definition 34
 A.3. AccountingECAPolicyRuleClass Definition 35
 A.4. TrafficInspectionECAPolicyRuleClass Definition 37
 A.5. ApplyProfileECAPolicyRuleClass Definition 38
 A.6. ApplySignatureECAPolicyRuleClass Definition 40
 Appendix B. Network Security Event Class Definitions 42
 B.1. UserSecurityEvent Class Description 42
 B.1.1. The usrSecEventContent Attribute 42
 B.1.2. The usrSecEventFormat Attribute 42
 B.1.3. The usrSecEventType Attribute 42
 B.2. DeviceSecurityEvent Class Description 43
 B.2.1. The devSecEventContent Attribute 43
 B.2.2. The devSecEventFormat Attribute 43
 B.2.3. The devSecEventType Attribute 44
 B.2.4. The devSecEventTypeInfo[0..n] Attribute 44
 B.2.5. The devSecEventTypeSeverity Attribute 44

Xia, et al. Expires September 12, 2017 [Page 2]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Table of Contents (continued)

 B.3. SystemSecurityEvent Class Description 44
 B.3.1. The sysSecEventContent Attribute 45
 B.3.2. The sysSecEventFormat Attribute 45
 B.3.3. The sysSecEventType Attribute 45
 B.4. TimeSecurityEvent Class Description 45
 B.4.1. The timeSecEventPeriodBegin Attribute 46
 B.4.2. The timeSecEventPeriodEnd Attribute 46
 B.4.3. The timeSecEventTimeZone Attribute 46
 Appendix C. Network Security Condition Class Definitions 47
 C.1. PacketSecurityCondition 47
 C.1.1. PacketSecurityMACCondition 47
 C.1.1.1. The pktSecCondMACDest Attribute 47
 C.1.1.2. The pktSecCondMACSrc Attribute 47
 C.1.1.3. The pktSecCondMAC8021Q Attribute 48
 C.1.1.4. The pktSecCondMACEtherType Attribute 48
 C.1.1.5. The pktSecCondMACTCI Attribute 48
 C.1.2. PacketSecurityIPv4Condition 48
 C.1.2.1. The pktSecCondIPv4SrcAddr Attribute 48
 C.1.2.2. The pktSecCondIPv4DestAddr Attribute 48
 C.1.2.3. The pktSecCondIPv4ProtocolUsed Attribute 48
 C.1.2.4. The pktSecCondIPv4DSCP Attribute 48
 C.1.2.5. The pktSecCondIPv4ECN Attribute 48
 C.1.2.6. The pktSecCondIPv4TotalLength Attribute 49
 C.1.2.7. The pktSecCondIPv4TTL Attribute 49
 C.1.3. PacketSecurityIPv6Condition 49
 C.1.3.1. The pktSecCondIPv6SrcAddr Attribute 49
 C.1.3.2. The pktSecCondIPv6DestAddr Attribute 49
 C.1.3.3. The pktSecCondIPv6DSCP Attribute 49
 C.1.3.4. The pktSecCondIPv6ECN Attribute 49
 C.1.3.5. The pktSecCondIPv6FlowLabel Attribute 49
 C.1.3.6. The pktSecCondIPv6PayloadLength Attribute 49
 C.1.3.7. The pktSecCondIPv6NextHeader Attribute 50
 C.1.3.8. The pktSecCondIPv6HopLimit Attribute 50
 C.1.4. PacketSecurityTCPCondition 50
 C.1.4.1. The pktSecCondTCPSrcPort Attribute 50
 C.1.4.2. The pktSecCondTCPDestPort Attribute 50
 C.1.4.3. The pktSecCondTCPSeqNum Attribute 50
 C.1.4.4. The pktSecCondTCPFlags Attribute 50
 C.1.5. PacketSecurityUDPCondition 50
 C.1.5.1.1. The pktSecCondUDPSrcPort Attribute 50
 C.1.5.1.2. The pktSecCondUDPDestPort Attribute 51
 C.1.5.1.3. The pktSecCondUDPLength Attribute 51
 C.2. PacketPayloadSecurityCondition 51
 C.3. TargetSecurityCondition 51
 C.4. UserSecurityCondition 51
 C.5. SecurityContextCondition 52
 C.6. GenericContextSecurityCondition 52

Xia, et al. Expires September 12, 2017 [Page 3]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Table of Contents (continued)

 Appendix D. Network Security Action Class Definitions 53
 D.1. IngressAction .. 53
 D.2. EgressAction ... 53
 D.3. ApplyProfileAction 53
 Appendix E. Geometric Model 54
 Authors’ Addresses ... 57

1. Introduction

 The rapid development of virtualized systems requires advanced
 security protection in various scenarios. Examples include network
 devices in an enterprise network, User Equipment in a mobile network,
 devices in the Internet of Things, or residential access users
 [I-D.draft-ietf-i2nsf-problem-and-use-cases].

 NSFs produced by multiple security vendors provide various security
 Capabilities to customers. Multiple NSFs can be combined together to
 provide security services over the given network traffic, regardless
 of whether the NSFs are implemented as physical or virtual functions.

 Security Capabilities describe the set of network security-related
 features that are available to use for security policy enforcement
 purposes. Security Capabilities are independent of the actual
 security control mechanisms that will implement them. Every NSF
 registers the set of Capabilities it offers. Security Capabilities
 are a market enabler, providing a way to define customized security
 protection by unambiguously describing the security features offered
 by a given NSF. Moreover, Security Capabilities enable security
 functionality to be described in a vendor-neutral manner. That is,
 it is not required to refer to a specific product when designing the
 network; rather, the functionality characterized by their
 Capabilities are considered.

 According to [I-D.draft-ietf-i2nsf-framework], there are two types
 of I2NSF interfaces available for security policy provisioning:

 o Interface between I2NSF users and applications, and a security
 controller (Consumer-Facing Interface): this is a service-
 oriented interface that provides a communication channel
 between consumers of NSF data and services and the network
 operator’s security controller. This enables security
 information to be exchanged between various applications (e.g.,
 OpenStack, or various BSS/OSS components) and the security
 controller. The design goal of the Consumer-Facing Interface
 is to decouple the specification of security services from
 their implementation.

Xia, et al. Expires September 12, 2017 [Page 4]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 o Interface between NSFs (e.g., firewall, intrusion prevention,
 or anti-virus) and the security controller (NSF-Facing
 Interface): The NSF-Facing Interface is used to decouple the
 security management scheme from the set of NSFs and their
 various implementations for this scheme, and is independent
 of how the NSFs are implemented (e.g., run in Virtual
 Machines or physical appliances). This document defines an
 object-oriented information model for network security, content
 security, and attack mitigation Capabilities, along with
 associated I2NSF Policy objects.

 This document is organized as follows. Section 2 defines conventions
 and acronyms used. Section 3 discusses the design principles for the
 I2NSF Capability information model and related policy model objects.
 Section 4 defines the structure of the information model, which
 describes the policy and capability objects design; details of the
 model elements are contained in the appendices.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

 This document uses terminology defined in
 [I-D.draft-ietf-i2nsf-terminology] for security related and I2NSF
 scoped terminology.

2.1. Acronyms

 AAA: Access control, Authorization, Authentication
 ACL: Access Control List
 (D)DoD: (Distributed) Denial of Service (attack)
 ECA: Event-Condition-Action
 FMR: First Matching Rule (resolution strategy)
 FW: Firewall
 GNSF: Generic Network Security Function
 HTTP: HyperText Transfer Protocol
 I2NSF: Interface to Network Security Functions
 IPS: Intrusion Prevention System
 LMR: Last Matching Rule (resolution strategy)
 MIME: Multipurpose Internet Mail Extensions
 NAT: Network Address Translation
 NSF: Network Security Function
 RPC: Remote Procedure Call
 SMA: String Matching Algorithm
 URL: Uniform Resource Locator
 VPN: Virtual Private Network

Xia, et al. Expires September 12, 2017 [Page 5]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

3. Information Model Design

 The starting point of the design of the Capability information model
 is the categorization of types of security functions. For instance,
 experts agree on what is meant by the terms "IPS", "Anti-Virus", and
 "VPN concentrator". Network security experts unequivocally refer to
 "packet filters" as stateless devices able to allow or deny packet
 forwarding based on various conditions (e.g., source and destination
 IP addresses, source and destination ports, and IP protocol type
 fields) [Alshaer].

 However, more information is required in case of other devices, like
 stateful firewalls or application layer filters. These devices
 filter packets or communications, but there are differences in the
 packets and communications that they can categorize and the states
 they maintain. Analogous considerations can be applied for channel
 protection protocols, where we all understand that they will protect
 packets by means of symmetric algorithms whose keys could have been
 negotiated with asymmetric cryptography, but they may work at
 different layers and support different algorithms and protocols. To
 ensure protection, these protocols apply integrity, optionally
 confidentiality, anti-reply protections, and authenticate peers.

3.1. Capability Information Model Overview

 This document defines a model of security Capabilities that provides
 the foundation for automatic management of NSFs. This includes
 enabling the security controller to properly identify and manage
 NSFs, and allow NSFs to properly declare their functionality, so
 that they can be used in the correct way.

 Some basic design principles for security Capabilities and the
 systems that have to manage them are:

 o Independence: each security Capability should be an independent
 function, with minimum overlap or dependency on other
 Capabilities. This enables each security Capability to be
 utilized and assembled together freely. More importantly,
 changes to one Capability will not affect other Capabilities.
 This follows the Single Responsibility Principle
 [Martin] [OODSRP].
 o Abstraction: each Capability should be defined in a vendor-
 independent manner, and associated to a well-known interface
 to provide a standardized ability to describe and report its
 processing results. This facilitates multi-vendor
 interoperability.
 o Automation: the system must have the ability to auto-discover,
 auto-negotiate, and auto-update its security Capabilities
 (i.e., without human intervention). These features are
 especially useful for the management of a large number of
 NSFs. They are essential to add smart services (e.g., analysis,

Xia, et al. Expires September 12, 2017 [Page 6]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 refinement, Capability reasoning, and optimization) for the
 security scheme employed. These features are supported by many
 design patterns, including the Observer Pattern [OODOP], the
 Mediator Pattern [OODMP], and a set of Message Exchange
 Patterns [Hohpe].
 o Scalability: the management system must have the Capability to
 scale up/down or scale in/out. Thus, it can meet various
 performancerequirements derived from changeable network traffic
 or service requests. In addition, security Capabilities that are
 affected by scalability changes must support reporting statistics
 to the security controller to assist its decision on whether it
 needs to invoke scaling or not. However, this requirement is for
 information only, and is beyond the scope of this document.

 Based on the above principles, a set of abstract and vendor-neutral
 Capabilities with standard interfaces is defined. This provides a
 Capability model that enables a set of NSFs that are required at a
 given time to be selected, as well as the unambiguous definition of
 the security offered by the set of NSFs used. The security
 controller can compare the requirements of users and applications to
 the set of Capabilities that are currently available in order to
 choose which NSFs are needed to meet those requirements. Note that
 this choice is independent of vendor, and instead relies specifically
 on the Capabilities (i.e., the description) of the functions
 provided. The security controller may also be able to customize the
 functionality of selected NSFs.

 Furthermore, when an unknown threat (e.g., zero-day exploits and
 unknown malware) is reported by a NSF, new Capabilities may be
 created, and/or existing Capabilities may be updated (e.g., by
 updating its signature and algorithm). This results in enhancing
 existing NSFs (and/or creating new NSFs) to address the new threats.
 New Capabilities may be sent to and stored in a centralized
 repository, or stored separately in a vendor’s local repository.
 In either case, a standard interface facilitates the update process.

 Note that most systems cannot dynamically create a new Capability
 without human interaction. This is an area for further study.

3.2. ECA Policy Model Overview

 The "Event-Condition-Action" (ECA) policy model is used as the basis
 for the design of I2NSF Policy Rules; definitions of all I2NSF
 policy-related terms are also defined in
 [I-D.draft-ietf-i2nsf-terminology]:

 o Event: An Event is any important occurrence in time of a change
 in the system being managed, and/or in the environment of the
 system being managed. When used in the context of I2NSF
 Policy Rules, it is used to determine whether the Condition
 clause of the I2NSF Policy Rule can be evaluated or not.

Xia, et al. Expires September 12, 2017 [Page 7]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 Examples of an I2NSF Event include time and user actions (e.g.,
 logon, logoff, and actions that violate an ACL).
 o Condition: A condition is defined as a set of attributes,
 features, and/or values that are to be compared with a set of
 known attributes, features, and/or values in order to determine
 whether or not the set of Actions in that (imperative) I2NSF
 Policy Rule can be executed or not. Examples of I2NSF Conditions
 include matching attributes of a packet or flow, and comparing
 the internal state of an NSF to a desired state.
 o Action: An action is used to control and monitor aspects of
 flow-based NSFs when the event and condition clauses are
 satisfied. NSFs provide security functions by executing various
 Actions. Examples of I2NSF Actions include providing intrusion
 detection and/or protection, web and flow filtering, and deep
 packet inspection for packets and flows.

 An I2NSF Policy Rule is made up of three Boolean clauses: an Event
 clause, a Condition clause, and an Action clause. A Boolean clause
 is a logical statement that evaluates to either TRUE or FALSE. It
 may be made up of one or more terms; if more than one term, then a
 Boolean clause connects the terms using logical connectives (i.e.,
 AND, OR, and NOT). It has the following semantics:

 IF <event-clause> is TRUE
 IF <condition-clause> is TRUE
 THEN execute <action-clause>
 END-IF
 END-IF

 Technically, the "Policy Rule" is really a container that aggregates
 the above three clauses, as well as metadata.

 The above ECA policy model is very general and easily extensible,
 and can avoid potential constraints that could limit the
 implementation of generic security Capabilities.

3.3. Relation with the External Information Model

 Note: the symbology used from this point forward is taken from
 section 3.3 of [I-D.draft-ietf-supa-generic-policy-info-model].

 The I2NSF NSF-Facing Interface is in charge of selecting and
 managing the NSFs using their Capabilities. This is done using
 the following approach:

 1) Each NSF registers its Capabilities with the management system
 when it "joins", and hence makes its Capabilities available to
 the management system;
 2) The security controller selects the set of Capabilities
 required to meet the needs of the security service from all
 available NSFs that it manages;

Xia, et al. Expires September 12, 2017 [Page 8]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 3) The security controller uses the Capability information model
 to match chosen Capabilities to NSFs, independent of vendor;
 4) The security controller takes the above information and
 creates or uses one or more data models from the Capability
 information model to manage the NSFs;
 5) Control and monitoring can then begin.

 This assumes that an external information model is used to define
 the concept of an ECA Policy Rule and its components (e.g., Event,
 Condition, and Action objects). This enables I2NSF Policy Rules
 [I-D.draft-ietf-i2nsf-terminology] to be subclassed from an external
 information model.

 Capabilities are defined as classes (e.g., a set of objects that
 exhibit a common set of characteristics and behavior
 [I-D.draft-ietf-supa-generic-policy-info-model].

 Each Capability is made up of at least one model element (e.g.,
 attribute, method, or relationship) that differentiates it from all
 other objects in the system. Capabilities are, generically, a type
 of metadata (i.e., information that describes, and/or prescribes,
 the behavior of objects); hence, it is also assumed that an external
 information model is used to define metadata (preferably, in the
 form of a class hierarchy). Therefore, it is assumed that
 Capabilities are subclassed from an external metadata model.

 The Capability sub-model is used for advertising, creating,
 selecting, and managing a set of specific security Capabilities
 independent of the type and vendor of device that contains the NSF.
 That is, the user of the NSF-Facing Interface does not care whether
 the NSF is virtualized or hosted in a physical device, who the
 vendor of the NSF is, and which set of entities the NSF is
 communicating with (e.g., a firewall or an IPS). Instead, the user
 only cares about the set of Capabilities that the NSF has, such as
 packet filtering or deep packet inspection. The overall structure
 is illustrated in the figure below:

 +-------------------------+ 0..n 0..n +---------------+
 | |/ \ \| External |
 | External ECA Info Model + A ----------------+ Metadata |
 | |\ / Aggregates /| Info Model |
 +-----------+------------+ Metadata +-------+-------+
 | / \
 | |
 / \ |
 Subclasses derived for I2NSF +-----+------+
 Security Policies | Capability |
 | Sub-Model |
 +------------+

 Figure 1. The Overall I2NSF Information Model Design

Xia, et al. Expires September 12, 2017 [Page 9]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 This draft defines a set of extensions to a generic, external, ECA
 Policy Model to represent various NSF ECA Security Policy Rules. It
 also defines the Capability Sub-Model; this enables ECA Policy
 Rules to control which Capabilities are seen by which actors, and
 used by the I2NSF system. Finally, it places requirements on what
 type of extensions are required to the generic, external, ECA
 information model and metadata models, in order to manage the
 lifecycle of I2NSF Capabilities.

 Both of the external models shown in Figure 1 could, but do not have
 to, be based on the SUPA information model
 [I-D.draft-ietf-supa-generic-policy-info-model]. Note that classes in
 the Capability Sub-Model will inherit the AggregatesMetadata
 aggregation from the External Metadata Information Model.

 The external ECA Information Model supplies at least a set of classes
 that represent a generic ECA Policy Rule, and a set of classes that
 represent Events, Conditions, and Actions that can be aggregated by
 the generic ECA Policy Rule. This enables I2NSF to reuse this
 generic model for different purposes, as well as refine it (i.e.,
 create new subclasses, or add attributes and relationships) to
 represent I2NSF-specific concepts.

 It is assumed that the external ECA Information Model has the
 ability to aggregate metadata. Capabilities are then sub-classed
 from an appropriate class in the external Metadata Information Model;
 this enables the ECA objects to use the existing aggregation between
 them and Metadata to add Metadata to appropriate ECA objects.

 Detailed descriptions of each portion of the information model are
 given in the following sections.

3.4. I2NSF Capability Information Model: Theory of Operation

 Capabilities are typically used to represent NSF functions that can
 be invoked. Capabilities are objects, and hence, can be used in the
 event, condition, and/or action clauses of an I2NSF ECA Policy Rule.
 The I2NSF Capability information model refines a predefined metadata
 model; the application of I2NSF Capabilities is done by refining a
 predefined ECA Policy Rule information model that defines how to
 use, manage, or otherwise manipulate a set of Capabilities. In this
 approach, an I2NSF Policy Rule is a container that is made up of
 three clauses: an event clause, a condition clause, and an action
 clause. When the I2NSF policy engine receives a set of events, it
 matches those events to events in active ECA Policy Rules. If the
 event matches, then this triggers the evaluation of the condition
 clause of the matched I2NSF Policy Rule. The condition clause is
 then evaluated; if it matches, then the set of actions in the
 matched I2NSF Policy Rule MAY be executed.

Xia, et al. Expires September 12, 2017 [Page 10]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 This document defines additional important extensions to both the
 external ECA Policy Rule model and the external Metadata model that
 are used by the I2NSF Information Model; examples include
 resolution strategy, external data, and default action. All these
 extensions come from the geometric model defined in [Bas12]. A more
 detailed description is provided in Appendix E; a summary of the
 important points follows.

 Formally, given a set of actions in an I2NSF Policy Rule, the
 resolution strategy maps all the possible subsets of actions to an
 outcome. In other words, the resolution strategy is included in the
 I2NSF Policy Rule to decide how to evaluate all the actions in a
 particular I2NSF Policy Rule. This is then extended to include all
 possible I2NSF Policy Rules that can be applied in a particular
 scenario. Hence, the final action set from all I2NSF Policy Rules
 is deduced.

 Some concrete examples of resolution strategy are the First Matching
 Rule (FMR) or Last Matching Rule (LMR) resolution strategies. When
 no rule matches a packet, the NSFs may select a default action, if
 they support one.

 Resolution strategies may use, besides intrinsic rule data (i.e.,
 event, condition, and action clauses), "external data" associated to
 each rule, such as priority, identity of the creator, and creation
 time. Two examples of this are attaching metadata to the policy
 action and/or policy rule, and associating the policy rule with
 another class to convey such information.

3.4.1. I2NSF Condition Clause Operator Types

 After having analyzed the literature and some existing NSFs, the
 types of selectors are categorized as exact-match, range-based,
 regex-based, and custom-match [Bas15][Lunt].

 Exact-match selectors are (unstructured) sets: elements can only be
 checked for equality, as no order is defined on them. As an example,
 the protocol type field of the IP header is an unordered set of
 integer values associated to protocols. The assigned protocol
 numbers are maintained by the IANA (http://www.iana.org/assignments/
 protocol-numbers/protocol-numbers.xhtml).

 In this selector, it is only meaningful to specify condition clauses
 that use either the "equals" or "not equals" operators:

 proto = tcp, udp (protocol type field equals to TCP or UDP)
 proto != tcp (protocol type field different from TCP)

 No other operators are allowed on exact-match selectors. For example,
 the following is an invalid condition clause, even if protocol types
 map to integers:

Xia, et al. Expires September 12, 2017 [Page 11]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 proto < 62 (invalid condition)

 Range-based selectors are ordered sets where it is possible to
 naturally specify ranges as they can be easily mapped to integers.
 As an example, the ports in the TCP protocol may be represented with
 a range-based selector (e.g., 1024-65535). As another example, the
 following are examples of valid condition clauses:

 source_port = 80
 source_port < 1024
 source_port < 30000 && source_port >= 1024

 We include, in range-based selectors, the category of selectors that
 have been defined by Al-Shaer et al. as "prefix-match" [Alshaer].
 These selectors allow the specification of ranges of values by means
 of simple regular expressions. The typical case is the IP address
 selector (e.g., 10.10.1.*).

 There is no need to distinguish between prefix match and range-based
 selectors; for example, the address range "10.10.1.*" maps to
 "[10.10.1.0,10.10.1.255]".

 Another category of selector types includes those based on regular
 expressions. This selector type is used frequently at the application
 layer, where data are often represented as strings of text. The
 regex-based selector type also includes string-based selectors, where
 matching is evaluated using string matching algorithms (SMA)
 [Cormen]. Indeed, for our purposes, string matching can be mapped to
 regular expressions, even if in practice SMA are much faster. For
 instance, Squid (http://www.squid-cache.org/), a popular Web caching
 proxy that offers various access control Capabilities, allows the
 definition of conditions on URLs that can be evaluated with SMA
 (e.g., dstdomain) or regex matching (e.g., dstdom_regex).

 As an example, the condition clause:

 "URL = *.website.*"

 matches all the URLs that contain a subdomain named website and the
 ones whose path contain the string ".website.". As another example,
 the condition clause:

 "MIME_type = video/*"

 matches all MIME objects whose type is video.

 Finally, the idea of a custom check selector is introduced. For
 instance, malware analysis can look for specific patterns, and
 returns a Boolean value if the pattern is found or not.

Xia, et al. Expires September 12, 2017 [Page 12]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 In order to be properly used by high-level policy-based processing
 systems (such as reasoning systems and policy translation systems),
 these custom check selectors can be modeled as black-boxes (i.e., a
 function that has a defined set of inputs and outputs for a
 particular state), which provide an associated Boolean output.

 More examples of custom check selectors will be presented in the
 next versions of the draft. Some examples are already present in
 Section 6.

3.4.2. Capability Selection and Usage

 Capability selection and usage are based on the set of security
 traffic classification and action features that an NSF provides;
 these are defined by the Capability model. If the NSF has the
 classification features needed to identify the packets/flows
 required by a policy, and can enforce the needed actions, then
 that particular NSF is capable of enforcing the policy.

 NSFs may also have specific characteristics that automatic processes
 or administrators need to know when they have to generate
 configurations, like the available resolution strategies and the
 possibility to set default actions.

 The Capability information model can be used for two purposes:
 describing the features provided by generic security functions, and
 describing the features provided by specific products. The term
 Generic Network Security Function (GNSF) refers to the classes of
 security functions that are known by a particular system. The idea
 is to have generic components whose behavior is well understood, so
 that the generic component can be used even if it has some vendor-
 specific functions. These generic functions represent a point of
 interoperability, and can be provided by any product that offers the
 required Capabilities. GNSF examples include packet filter, URL
 filter, HTTP filter, VPN gateway, anti-virus, anti-malware, content
 filter, monitoring, and anonymity proxy; these will be described
 later in a revision of this draft as well as in an upcoming data
 model contribution.

 The next section will introduce the algebra to define the
 information model of Capability registration. This associates
 NSFs to Capabilities, and checks whether a NSF has the
 Capabilities needed to enforce policies.

3.4.3. Capability Algebra

 We introduce a Capability Algebra to ensure that the actions of
 different policy rules do not conflict with each other.

 Formally, two I2NSF Policy Actions conflict with each other if:

Xia, et al. Expires September 12, 2017 [Page 13]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 o the event clauses of each evaluate to TRUE
 o the condition clauses of each evaluate to TRUE
 o the action clauses affect the same object in different ways

 For example, if we have two Policies:

 P1: During 8am-6pm, if traffic is external, then run through FW
 P2: During 7am-8pm, conduct anti-malware investigation

 There is no conflict between P1 and P2, since the actions are
 different. However, consider these two policies:

 P3: During 8am-6pm, John gets GoldService
 P4: During 10am-4pm, FTP from all users gets BronzeService

 P3 and P4 are now in conflict, because between the hours of 10am and
 4pm, the actions of P3 and P4 are different and apply to the same
 user (i.e., John).

 Let us define the concept of a "matched" policy rule as one in which
 its event and condition clauses both evaluate to true. This enables
 the actions in this policy rule to be evaluated. Then, the
 conflict matrix is defined by a 5-tuple {Ac, Cc, Ec, RSc, Dc},
 where:

 o Ac is the set of Actions currently available from the NSF;
 o Cc is the set of Conditions currently available from the NSF;
 o Ec is the set of Events the NSF is able to respond to.
 Therefore, the event clause of an I2NSF ECA Policy Rule that is
 written for an NSF will only allow a set of designated events
 in Ec. For compatibility purposes, we will assume that if Ec={}
 (that is, Ec is empty), the NSF only accepts CA policies.
 o RSc is the set of Resolution Strategies that can be used to
 specify how to resolve conflicts that occur between the actions
 of the same or different policy rules that are matched and
 contained in this particular NSF;
 o Dc defines the notion of a Default action that can be used to
 specify a predefined action when no other alternative action
 was matched by the currently executing I2NSF Policy Rule. An
 analogy is the use of a default statement in a C switch
 statement. This field of the Capability algebra can take the
 following values:
 - An explicit action (that has been predefined; typically,
 this means that it is fixed and not configurable), denoted
 as Dc ={a}. In this case, the NSF will always use the
 action as as the default action.
 - A set of explicit actions, denoted Dc={a1,a2, ...};
 typically, this means that any **one** action can be used
 as the default action. This enables the policy writer to
 choose one of a predefined set of actions {a1, a2, ...} to
 serve as the default action.

Xia, et al. Expires September 12, 2017 [Page 14]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 - A fully configurable default action, denoted as Dc={F}.
 Here, F is a dummy symbol (i.e., a placeholder value) that
 can be used to indicate that the default action can be
 freely selected by the policy editor from the actions Ac
 available at the NSF. In other words, one of the actions
 Ac may be selected by the policy writer to act as the
 default action.
 - No default action, denoted as Dc={}, for cases where the
 NSF does not allow the explicit selection of a default
 action.

*** Note to WG: please review the following paragraphs
*
* Interesting Capability concepts that could be considered for a next
* version of the Capability model and algebra include:
*
* o Event clause representation (e.g., conjunctive vs. disjunctive
* normal form for Boolean clauses)
* o Event clause evaluation function, which would enable more
* complex expressions than simple Boolean expressions to be used
*
*
* o Condition clause representation (e.g., conjunctive vs.
* disjunctive normal form for Boolean clauses)
* o Condition clause evaluation function, which would enable more
* complex expressions than simple Boolean expressions to be used
* o Action clause evaluation strategies (e.g., execute first
* action only, execute last action only, execute all actions,
* execute all actions until an action fails)
* o The use of metadata, which can be associated to both an I2NSF
* Policy Rule as well as objects contained in the I2NSF Policy
* Rule (e.g., an action), that describe the object and/or
* prescribe behavior. Descriptive examples include adding
* authorship information and defining a time period when an NSF
* can be used to be defined; prescriptive examples include
* defining rule priorities and/or ordering.
*
* Given two sets of Capabilities, denoted as
*
* cap1=(Ac1,Cc1,Ec1,RSc1,Dc1) and
* cap2=(Ac2,Cc2,Ec2,RSc2,Dc2),
*
* two set operations are defined for manipulating Capabilities:
*
* o Capability addition:
* cap1+cap2 = {Ac1 U Ac2, Cc1 U Cc2, Ec1 U Ec2, RSc1, Dc1}
* o Capability subtraction:
* cap1-cap2 = {Ac1 \ Ac2, Cc1 \ Cc2, Ec1 \ Ec2, RSc1, Dc1}
*
* In the above formulae, "U" is the set union operator and "\" is the
* set difference operator.

Xia, et al. Expires September 12, 2017 [Page 15]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

* The addition and subtraction of Capabilities are defined as the
* addition (set union) and subtraction (set difference) of both the
* Capabilities and their associated actions. Note that **only** the
* leftmost (in this case, the first matched policy rule) Resolution
* Strategy and Default Action are used.
*
* Note: actions, events, and conditions are **symmetric**. This means
* that when two matched policy rules are merged, the resultant actions
* and Capabilities are defined as the union of each individual matched
* policy rule. However, both resolution strategies and default actions
* are **asymmetric** (meaning that in general, they can **not** be
* combined, as one has to be chosen). In order to simplify this, we
* have chosen that the **leftmost** resolution strategy and the
* **leftmost** default action are chosen. This enables the developer
* to view the leftmost matched rule as the "base" to which other
* elements are added.
*
* As an example, assume that a packet filter Capability, Cpf, is
* defined. Further, assume that a second Capability, called Ctime,
* exists, and that it defines time-based conditions. Suppose we need
* to construct a new generic packet filter, Cpfgen, that adds
* time-based conditions to Cpf.
*
*
* Conceptually, this is simply the addition of the Cpf and Ctime
* Capabilities, as follows:
* Apf = {Allow, Deny}
* Cpf = {IPsrc,IPdst,Psrc,Pdst,protType}
* Epf = {}
* RSpf = {FMR}
* Dpf = {A1}
*
* Atime = {Allow, Deny, Log}
* Ctime = {timestart, timeend, datestart, datestop}
* Etime = {}
* RStime = {LMR}
* Dtime = {A2}
*
* Then, Cpfgen is defined as:
* Cpfgen = {Apf U Atime, Cpf U Ctime, Epf U Etime, RSpf, Dpf}
* = {Allow, Deny, Log},
* {{IPsrc, IPdst, Psrc, Pdst, protType} U
* {timestart, timeend, datestart, datestop}},
* {},
* {FMR},
* {A1}
*
* In other words, Cpfgen provides three actions (Allow, Deny, Log),
* filters traffic based on a 5-tuple that is logically ANDed with a
* time period, and uses FMR; it provides A1 as a default action, and
* it does not react to events.

Xia, et al. Expires September 12, 2017 [Page 16]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

* Note: We are investigating, for a next revision of this draft, the
* possibility to add further operations that do not follow the
* symmetric vs. asymmetric properties presented in the previous note.
* We are looking for use cases that may justify the complexity added
* by the availability of more Capability manipulation operations.
*
*** End Note to WG

3.5. Initial NSFs Capability Categories

 The following subsections define three common categories of
 Capabilities: network security, content security, and attack
 mitigation. Future versions of this document may expand both the
 number of categories as well as the types of Capabilities within a
 given category.

3.5.1. Network Security Capabilities

 Network security is a category that describes the inspecting and
 processing of network traffic based on the use of pre-defined
 security policies.

 The inspecting portion may be thought of as a packet-processing
 engine that inspects packets traversing networks, either directly or
 in the context of flows with which the packet is associated. From
 the perspective of packet-processing, implementations differ in the
 depths of packet headers and/or payloads they can inspect, the
 various flow and context states they can maintain, and the actions
 that can be applied to the packets or flows.

3.5.2. Content Security Capabilities

 Content security is another category of security Capabilities
 applied to the application layer. Through analyzing traffic contents
 carried in, for example, the application layer, content security
 Capabilities can be used to identify various security functions that
 are required. These include defending against intrusion, inspecting
 for viruses, filtering malicious URL or junk email, blocking illegal
 web access, or preventing malicious data retrieval.

 Generally, each type of threat in the content security category has
 a set of unique characteristics, and requires handling using a set
 of methods that are specific to that type of content. Thus, these
 Capabilities will be characterized by their own content-specific
 security functions.

Xia, et al. Expires September 12, 2017 [Page 17]

Internet-Draft Information Model of I2NSF Capabilities Mar 2017

3.5.3. Attack Mitigation Capabilities

 This category of security Capabilities is used to detect and mitigate
 various types of network attacks. Today’s common network attacks can
 be classified into the following sets:

 o DDoS attacks:
 - Network layer DDoS attacks: Examples include SYN flood, UDP
 flood, ICMP flood, IP fragment flood, IPv6 Routing header
 attack, and IPv6 duplicate address detection attack;
 - Application layer DDoS attacks: Examples include HTTP flood,
 https flood, cache-bypass HTTP floods, WordPress XML RPC
 floods, and ssl DDoS.
 o Single-packet attacks:
 - Scanning and sniffing attacks: IP sweep, port scanning, etc.
 - malformed packet attacks: Ping of Death, Teardrop, etc.
 - special packet attacks: Oversized ICMP, Tracert, IP timestamp
 option packets, etc.

 Each type of network attack has its own network behaviors and
 packet/flow characteristics. Therefore, each type of attack needs a
 special security function, which is advertised as a set of
 Capabilities, for detection and mitigation. The implementation and
 management of this category of security Capabilities of attack
 mitigation control is very similar to the content security control
 category. A standard interface, through which the security controller
 can choose and customize the given security Capabilities according to
 specific requirements, is essential.

4. Information Sub-Model for Network Security Capabilities

 The purpose of the Capability Information Sub-Model is to define the
 concept of a Capability, and enable Capabilities to be aggregated to
 appropriate objects. The following sections present the Network
 Security, Content Security, and Attack Mitigation Capability
 sub-models.

4.1. Information Sub-Model for Network Security

 The purpose of the Network Security Information Sub-Model is to
 define how network traffic is defined, and determine if one or more
 network security features need to be applied to the traffic or not.
 Its basic structure is shown in the following figure:

Xia, et al. Expires September 12, 2017 [Page 18]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +---------------------+
 +---------------+ 1..n 1..n | |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule + A -------------+ for ECA Objects |
 | |\ / /| |
 +-------+-------+ +---------+-----------+
 / \ / \
 | |
 | |
 (subclasses to define Network (subclasses of Event,
 Security ECA Policy Rules Condition, and Action Objects
 extensibly, so that other for Network Security
 Policy Rules can be added) Policy Rules)

 Figure 2. Network Security Information Sub-Model Overview

 In the above figure, the ECAPolicyRule, along with the Event,
 Condition, and Action Objects, are defined in the external ECA
 Information Model. The Network Security Sub-Model extends all of
 these objects in order to define security-specific ECA Policy Rules,
 as well as extensions to the (generic) Event, Condition, and
 Action objects.

 An I2NSF Policy Rule is a special type of Policy Rule that is in
 event-condition-action (ECA) form. It consists of the Policy Rule,
 components of a Policy Rule (e.g., events, conditions, actions, and
 some extensions like resolution policy, default action and external
 data), and optionally, metadata. It can be applied to both uni- and
 bi-directional traffic across the NSF.

 Each rule is triggered by one or more events. If the set of events
 evaluates to true, then a set of conditions are evaluated and, if
 true, enable a set of actions to be executed. This takes the
 following conceptual form:

 IF <event-clause> is TRUE
 IF <condition-clause> is TRUE
 THEN execute <action-clause>
 END-IF
 END-IF

 In the above example, the Event, Condition, and Action portions of a
 Policy Rule are all **Boolean Clauses**. Hence, they can contain
 combinations of terms connected by the three logical connectives
 operators (i.e., AND, OR, NOT). An example is:

 ((SLA==GOLD) AND ((numPackets>burstRate) OR NOT(bwAvail<minBW)))

 Note that Metadata, such as Capabilities, can be aggregated by I2NSF
 ECA Policy Rules.

Xia, et al. Expires September 12, 2017 [Page 19]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

4.1.1. Network Security Policy Rule Extensions

 Figure 3 shows an example of more detailed design of the ECA Policy
 Rule subclasses that are contained in the Network Security
 Information Sub-Model, which just illustrates how more specific
 Network Security Policies are inherited and extended from the
 SecurityECAPolicyRule class. Any new kinds of specific Network
 Security Policy can be created by following the same pattern of
 class design as below.

 +---------------+
 | External |
 | ECAPolicyRule |
 +-------+-------+
 / \
 |
 |
 +------------+----------+
 | SecurityECAPolicyRule |
 +------------+----------+
 |
 |
 +----+-----+--------+-----+----+---------+---------+--- ...
 | | | | | |
 | | | | | |
 +------+-------+ | +-----+-------+ | +------+------+ |
 |Authentication| | | Accounting | | |ApplyProfile | |
 |ECAPolicyRule | | |ECAPolicyRule| | |ECAPolicyRule| |
 +--------------+ | +-------------+ | +-------------+ |
 | | |
 +------+------+ +------+------+ +--------------+
 |Authorization| | Traffic | |ApplySignature|
 |ECAPolicyRule| | Inspection | |ECAPolicyRule |
 +-------------+ |ECAPolicyRule| +--------------+
 +-------------+

 Figure 3. Network Security Info Sub-Model ECAPolicyRule Extensions

 The SecurityECAPolicyRule is the top of the I2NSF ECA Policy Rule
 hierarchy. It inherits from the (external) generic ECA Policy Rule,
 and represents the specialization of this generic ECA Policy Rule to
 add security-specific ECA Policy Rules. The SecurityECAPolicyRule
 contains all of the attributes, methods, and relationships defined in
 its superclass, and adds additional concepts that are required for
 Network Security (these will be defined in the next version of this
 draft). The six SecurityECAPolicyRule subclasses extend the
 SecurityECAPolicyRule class to represent six different types of
 Network Security ECA Policy Rules. It is assumed that the (external)
 generic ECAPolicyRule class defines basic information in the form of
 attributes, such as an unique object ID, as well as a description
 and other necessary information.

Xia, et al. Expires September 12, 2017 [Page 20]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

*** Note to WG
*
* The design in Figure 3 represents the simplest conceptual design
* for network security. An alternative model would be to use a
* software pattern (e.g., the Decorator pattern); this would result
* in the SecurityECAPolicyRule class being "wrapped" by one or more
* of the six subclasses shown in Figure 3. The advantage of such a
* pattern is to reduce the number of active objects at runtime, as
* well as offer the ability to combine multiple actions of different
* policy rules (e.g., inspect traffic and then apply a filter) into
* one. The disadvantage is that it is a more complex software design.
* The design team is requesting feedback from the WG regarding this.
*
*** End of Note to WG

 It is assumed that the (external) generic ECA Policy Rule is
 abstract; the SecurityECAPolicyRule is also abstract. This enables
 data model optimizations to be made while making this information
 model detailed but flexible and extensible. For example, abstract
 classes may be collapsed into concrete classes.

 The SecurityECAPolicyRule defines network security policy as a
 container that aggregates Event, Condition, and Action objects,
 which are described in Section 4.1.3, 4.1.4, and 4.1.5,
 respectively. Events, Conditions, and Actions can be generic or
 security-specific.

 Brief class descriptions of these six ECA Policy Rules are provided
 in Appendix A.

4.1.2. Network Security Policy Rule Operation

 A Network Security Policy consists of one or more ECA Policy Rules
 formed from the information model described above. In simpler cases,
 where the Event and Condition clauses remain unchanged, then the
 action of one Policy Rule may invoke additional network security
 actions from other Policy Rules. Network security policy examines
 and performs basic processing of the traffic as follows:

 1. The NSF evaluates the Event clause of a given
 SecurityECAPolicyRule (which can be generic or specific to
 security, such as those in Figure 3). It may use security
 Event objects to do all or part of this evaluation, which are
 defined in section 4.1.3. If the Event clause evaluates to
 TRUE, then the Condition clause of this SecurityECAPolicyRule
 is evaluated; otherwise, the execution of this
 SecurityECAPolicyRule is stopped, and the next
 SecurityECAPolicyRule (if one exists) is evaluated.

Xia, et al. Expires September 12, 2017 [Page 21]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 2. The Condition clause is then evaluated. It may use security
 Condition objects to do all or part of this evaluation, which
 are defined in section 4.1.4. If the Condition clause
 evaluates to TRUE, it is defined as "matching" the
 SecurityECAPolicyRule; otherwise, execution of this
 SecurityECAPolicyRule is stopped, and the next
 SecurityECAPolicyRule (if one exists) is evaluated.
 3. The set of actions to be executed are retrieved, and then the
 resolution strategy is used to define their execution order.
 This process includes using any optional external data
 associated with the SecurityECAPolicyRule.
 4. Execution then takes one of the following three forms:
 a. If one or more actions is selected, then the NSF may
 perform those actions as defined by the resolution
 strategy. For example, the resolution strategy may only
 allow a single action to be executed (e.g., FMR or LMR),
 or it may allow all actions to be executed (optionally,
 in a particular order). In these and other cases, the NSF
 Capability MUST clearly define how execution will be done.
 It may use security Action objects to do all or part of
 this execution, which are defined in section 4.1.5. If the
 basic Action is permit or mirror, the NSF firstly performs
 that function, and then checks whether certain other
 security Capabilities are referenced in the rule. If yes,
 go to step 5. If no, the traffic is permitted.
 b. If no actions are selected, and if a default action exists,
 then the default action is performed. Otherwise, no actions
 are performed.
 c. Otherwise, the traffic is denied.
 5. If other security Capabilities (e.g., the conditions and/or
 actions implied by Anti-virus or IPS profile NSFs) are
 referenced in the action set of the SecurityECAPolicyRule, the
 NSF can be configured to use the referenced security
 Capabilities (e.g., check conditions or enforce actions).
 Execution then terminates.

 One policy or rule can be applied multiple times to different
 managed objects (e.g., links, devices, networks, VPNS). This not
 only guarantees consistent policy enforcement, but also decreases
 the configuration workload.

4.1.3. Network Security Event Sub-Model

 Figure 4 shows a more detailed design of the Event subclasses that
 are contained in the Network Security Information Sub-Model.

 The four Event classes shown in Figure 4 extend the (external)
 generic Event class to represent Events that are of interest to
 Network Security. It is assumed that the (external) generic Event
 class defines basic Event information in the form of attributes,
 such as a unique event ID, a description, as well as the date and
 time that the event occurred.

Xia, et al. Expires September 12, 2017 [Page 22]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +---------------------+
 +---------------+ 1..n 1..n| |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule + A ---------+ for ECA Objects |
 | |\ / /| |
 +---------------+ +---------+-----------+
 / \
 |
 |
 +---------------+-----------+------+
 | | |
 | | |
 +-----+----+ +------+------+ +-----+-----+
 | An Event | | A Condition | | An Action |
 | Class | | Class | | Class |
 +-----+----+ +-------------+ +-----------+
 / \
 |
 |
 +-----+---------+----------------+--------------+-- ...
 | | | |
 | | | |
 +-------+----+ +--------+-----+ +--------+-----+ +------+-----+
 |UserSecurity| | Device | | System | |TimeSecurity|
 | Event | | SecurityEvent| | SecurityEvent| | Event |
 +------------+ +--------------+ +--------------+ +------------+

 Figure 4. Network Security Info Sub-Model Event Class Extensions

 The following are assumptions that define the functionality of the
 generic Event class. If desired, these could be defined as
 attributes in a SecurityEvent class (which would be a subclass of
 the generic Event class, and a superclass of the four Event classes
 shown in Figure 4). However, this makes it harder to use any
 generic Event model with the I2NSF events. Assumptions are:

 - All four SecurityEvent subclasses are concrete
 - The generic Event class uses the composite pattern, so
 individual Events as well as hierarchies of Events are
 available (the four subclasses in Figure 4 would be
 subclasses of the Atomic Event class); otherwise, a mechanism
 is needed to be able to group Events into a collection
 - The generic Event class has a mechanism to uniquely identify
 the source of the Event
 - The generic Event class has a mechanism to separate header
 information from its payload
 - The generic Event class has a mechanism to attach zero or more
 metadata objects to it

Xia, et al. Expires September 12, 2017 [Page 23]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

*** Note to WG:
*
* The design in Figure 4 represents the simplest conceptual design
* design for describing Security Events. An alternative model would
* be to use a software pattern (e.g., the Decorator pattern); this
* would result in the SecurityEvent class being "wrapped" by one or
* more of the four subclasses shown in Figure 4. The advantage of
* such a pattern is to reduce the number of active objects at runtime,
* as well as offer the ability to combine multiple events of different
* types into one. The disadvantage is that it is a more complex
* software design.
*
*** End of Note to WG

 Brief class descriptions are provided in Appendix B.

4.1.4. Network Security Condition Sub-Model

 Figure 5 shows a more detailed design of the Condition subclasses
 that are contained in the Network Security Information Sub-Model.
 The six Condition classes shown in Figure 5 extend the (external)
 generic Condition class to represent Conditions that are of interest
 to Network Security. It is assumed that the (external) generic
 Condition class is abstract, so that data model optimizations may be
 defined. It is also assumed that the generic Condition class defines
 basic Condition information in the form of attributes, such as a
 unique object ID, a description, as well as a mechanism to attach
 zero or more metadata objects to it. While this could be defined as
 attributes in a SecurityCondition class (which would be a subclass
 of the generic Condition class, and a superclass of the six
 Condition classes shown in Figure 5), this makes it harder to use
 any generic Condition model with the I2NSF conditions.

*** Note to WG:
*
* The design in Figure 5 represents the simplest conceptual design
* for describing Security Conditions. An alternative model would be
* to use a software pattern (e.g., the Decorator pattern); this would
* result in the SecurityCondition class being "wrapped" by one or
* more of the six subclasses shown in Figure 5. The advantage of such
* a pattern is to reduce the number of active objects at runtime, as
* well as offer the ability to combine multiple conditions of
* different types into one. The disadvantage is that it is a more
* complex software design.
* The design team is requesting feedback from he WG regarding this.
*
*** End of Note to WG

Xia, et al. Expires September 12, 2017 [Page 24]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +---------------------+
 +---------------+ 1..n 1..n | |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule+ A -------------+ for ECA Objects |
 | |\ / /| |
 +-------+-------+ +-----------+---------+
 / \
 |
 |
 +--------------+----------+----+
 | | |
 | | |
 +-----+----+ +------+------+ +-----+-----+
 | An Event | | A Condition | | An Action |
 | Class | | Class | | Class |
 +----------+ +------+------+ +-----------+
 / \
 |
 |
 +--------+----------+------+---+---------+--------+--- ...
 | | | | | |
 | | | | | |
 +-----+-----+ | +-------+-------+ | +------+-----+ |
 | Packet | | | PacketPayload | | | Target | |
 | Security | | | Security | | | Security | |
 | Condition | | | Condition | | | Condition | |
 +-----------+ | +---------------+ | +------------+ |
 | | |
 +------+-------+ +----------+------+ +--------+-------+
 | UserSecurity | | SecurityContext | | GenericContext |
 | Condition | | Condition | | Condition |
 +--------------+ +-----------------+ +----------------+

 Figure 5. Network Security Info Sub-Model Condition Class Extensions

 Brief class descriptions are provided in Appendix C.

4.1.5. Network Security Action Sub-Model

 Figure 6 shows a more detailed design of the Action subclasses that
 are contained in the Network Security Information Sub-Model.

 The four Action classes shown in Figure 6 extend the (external)
 generic Action class to represent Actions that perform a Network
 Security Control function.

 The three Action classes shown in Figure 6 extend the (external)
 generic Action class to represent Actions that are of interest to
 Network Security. It is assumed that the (external) generic Action
 class is abstract, so that data model optimizations may be defined.

Xia, et al. Expires September 12, 2017 [Page 25]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +---------------------+
 +---------------+ 1..n 1..n | |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule+ A -------------+ for ECA Objects |
 | |\ / /| |
 +---------------+ +-----------+---------+
 / \
 |
 |
 +--------------+--------+------+
 | | |
 | | |
 +-----+----+ +------+------+ +-----+-----+
 | An Event | | A Condition | | An Action |
 | Class | | Class | | Class |
 +----------+ +-------------+ +-----+-----+
 / \
 |
 |
 +-----------------+---------------+------- ...
 | | |
 | | |
 +---+-----+ +----+---+ +------+-------+
 | Ingress | | Egress | | ApplyProfile |
 | Action | | Action | | Action |
 +---------+ +--------+ +--------------+

 Figure 6. Network Security Info Sub-Model Action Extensions

 It is also assumed that the generic Action class defines basic
 Action information in the form of attributes, such as a unique
 object ID, a description, as well as a mechanism to attach zero or
 more metadata objects to it. While this could be defined as
 attributes in a SecurityAction class (which would be a subclass of
 the generic Action class, and a superclass of the six Action classes
 shown in Figure 6), this makes it harder to use any generic Action
 model with the I2NSF actions.

*** Note to WG
* The design in Figure 6 represents the simplest conceptual design
* for describing Security Actions. An alternative model would be to
* use a software pattern (e.g., the Decorator pattern); this would
* result in the SecurityAction class being "wrapped" by one or more
* of the three subclasses shown in Figure 6. The advantage of such a
* pattern is to reduce the number of active objects at runtime, as
* well as offer the ability to combine multiple actions of different
* types into one. The disadvantage is that it is a more complex
* software design.
* The design team is requesting feedback from the WG regarding this.
*** End of Note to WG

 Brief class descriptions are provided in Appendix D.

Xia, et al. Expires September 12, 2017 [Page 26]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

4.2. Information Model for I2NSF Capabilities

 The I2NSF Capability Model is made up of a number of Capabilities
 that represent various content security and attack mitigation
 functions. Each Capability protects against a specific type of
 threat in the application layer. This is shown in Figure 7.

 +-------------------------+ 0..n 0..n +---------------+
 | |/ \ \| External |
 | External ECA Info Model + A ----------------+ Metadata |
 | |\ / Aggregates /| Info Model |
 +----+--------------------+ Metadata +-----+---------+
 | / \
 | |
 / \ |
 Subclasses +------------------------------------+-----------+
 derived | Capability | |
 for I2NSF | Sub-Model +----------+---------+ |
 Policy Rules | | SecurityCapability | |
 | +----------+---------+ |
 | | |
 | | |
 | +----------------------+---+ |
 | | | |
 | +--------+---------+ +----------+--------+ |
 | | Content Security | | Attack Mitigation | |
 | | Capabilities | | Capabilities | |
 | +------------------+ +-------------------+ |
 +--+

 Figure 7. I2NSF Security Capability High-Level Model

 Figure 7 shows a common I2NSF Security Capability class, called
 SecurityCapability. This enables us to add common attributes,
 relationships, and behavior to this class without affecting the
 design of the external metadata information model. All I2NSF
 Security Capabilities are then subclassed from the
 SecuritCapability class.

 Note: the SecurityCapability class will be defined in the next
 version of this draft, after feedback from the WG is obtained.

4.3. Information Model for Content Security Capabilities

 Content security is composed of a number of distinct security
 Capabilities; each such Capability protects against a specific type
 of threat in the application layer. Content security is a type of
 Generic Network Security Function (GNSF), which summarizes a
 well-defined set of security Capabilities, and was shown in Figure 7.

Xia, et al. Expires September 12, 2017 [Page 27]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 Figure 8 shows exemplary types of the content security GNSF.

 +--+
 | +--------------------+ |
 | Capability | SecurityCapability | |
 | Sub-Model: +---------+----------+ |
 | Content Security / \ |
 | | |
 | | |
 | +-------+----------+----------+---------------+ |
 | | | | | | | | |
 | +-----+----+ | +-------+----+ +-------+------+ |
 | |Anti-Virus| | | Intrusion | | Attack | |
 | |Capability| | | Prevention | | Mitigation | |
 | +----------+ | | Capability | | Capabilities | |
 | | +------------+ +--------------+ |
 | | |
 | +--------+----+------------+-----------+--------+ |
 | | | | | | | | | | |
 | +----+-----+ +-----+----+ +-----+----+ +----+-----+ | |
 | | URL | | Mail | | File | | Data | | |
 | |Filtering | |Filtering | |Filtering | |Filtering | | |
 | |Capability| |Capability| |Capability| |Capability| | |
 | +----------+ +----------+ +----------+ +----------+ | |
 | | |
 | +----------------+------------------+----+ |
 | | | | |
 | +------+------+ +------+------+ +---------+---------+ |
 | |PacketCapture| |FileIsolation| |ApplicationBehavior| |
 | | Capability | | Capability | | Capability | |
 | +-------------+ +-------------+ +-------------------+ |
 +--+

 Figure 8. Network Security Capability Information Model

 The detailed description about a standard interface, and the
 parameters for all the security Capabilities of this category, will
 be defined in a future version of this document.

4.4. Information Model for Attack Mitigation Capabilities

 Attack mitigation is composed of a number of GNSFs; each one
 protects against a specific type of network attack. Attack
 Mitigation security is a type of GNSF, which summarizes a
 well-defined set of security Capabilities, and was shown in
 Figure 7. Figure 9 shows exemplary types of Attack Mitigation GNSFs.

Xia, et al. Expires September 12, 2017 [Page 28]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +---+
 | +--------------------+ |
 | Capability | SecurityCapability | |
 | Sub-Model: +---------+----------+ |
 | Attack Mitigation / \ |
 | | |
 | | |
 | +-------+--------+------------+-------------+ |
 | | | | | | | | |
 | +-----+----+ | +-----+----+ +-------+------+ |
 | | SSLDDoS | | | PortScan | | Content | |
 | |Capability| | |Capability| | Security | |
 | +----------+ | +----------+ | Capabilities | |
 | | +--------------+ |
 | | |
 | +--------+----+------------+-----------+--------+ |
 | | | | | | | | | | |
 | +----+-----+ +-----+----+ +-----+----+ +----+-----+ | |
 | | SYNFlood | | UDPFlood | |ICMPFlood | | WebFlood | | |
 | |Capability| |Capability| |Capability| |Capability| | |
 | +----------+ +----------+ +----------+ +----------+ | |
 | | |
 | +-----------------+--------------+-----------+ |
 | | | | |
 | +-------+-------+ +-------+------+ +-----+-----+ +-----+----+ |
 | |IPFragmentFlood| |DNSAmplication| |PingOfDeath| | IPSweep | |
 | | Capability | | Capability | |Capability | |Capability| |
 | +---------------+ +--------------+ +-----------+ +----------+ |
 +---+

 Figure 9. Attack Mitigation Capability Information Model

 The detailed description about a standard interface, and the
 parameters for all the security Capabilities of this category, will
 be defined in a future version of this document.

Xia, et al. Expires September 12, 2017 [Page 29]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

5. Security Considerations

 The security Capability policy information sent to NSFs should be
 protected by a secure communication channel, to ensure its
 confidentiality and integrity. Note that the NSFs and security
 controller can all be spoofed, which leads to undesirable results
 (e.g., security policy leakage from security controller, or a spoofed
 security controller sending false information to mislead the NSFs).
 Hence, mutual authentication MUST be supported to protected against
 this kind of threat. The current mainstream security technologies
 (i.e., TLS, DTLS, and IPSEC) can be employed to protect against the
 above threats.

 In addition, to defend against DDoS attacks caused by a hostile
 security controller sending too many configuration messages to the
 NSFs, rate limiting or similar mechanisms should be considered.

6. IANA Considerations

 TBD

7. Contributors

 The following people contributed to creating this document, and are
 listed below in alphabetical order:

 Antonio Lioy (Politecnico di Torino)
 Dacheng Zhang (Huawei)
 Edward Lopez (Fortinet)
 Fulvio Valenza (Politecnico di Torino)
 Kepeng Li (Alibaba)
 Luyuan Fang (Microsoft)
 Nicolas Bouthors (QoSmos)

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.
 [RFC3539]
 Aboba, B., and Wood, J., "Authentication, Authorization, and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

Xia, et al. Expires September 12, 2017 [Page 30]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

8.2. Informative References

 [RFC2975]
 Aboba, B., et al., "Introduction to Accounting Management",
 RFC 2975, October 2000.
 [I-D.draft-ietf-i2nsf-problem-and-use-cases]
 Hares, S., et.al., "I2NSF Problem Statement and Use cases",
 draft-ietf-i2nsf-problem-and-use-cases-16, May 2017.
 [I-D.draft-ietf-i2nsf-framework]
 Lopez, E., et.al., "Framework for Interface to Network Security
 Functions", draft-ietf-i2nsf-framework-06, July, 2017.
 [I-D.draft-ietf-i2nsf-terminology]
 Hares, S., et.al., "Interface to Network Security Functions
 (I2NSF) Terminology", draft-ietf-i2nsf-terminology-03,
 March, 2017
 [I-D.draft-ietf-supa-generic-policy-info-model]
 Strassner, J., Halpern, J., van der Meer, S., "Generic Policy
 Information Model for Simplified Use of Policy Abstractions
 (SUPA)", draft-ietf-supa-generic-policy-info-model-03,
 May, 2017.
 [Alshaer]
 Al Shaer, E. and H. Hamed, "Modeling and management of firewall
 policies", 2004.
 [Bas12]
 Basile, C., Cappadonia, A., and A. Lioy, "Network-Level Access
 Control Policy Analysis and Transformation", 2012.
 [Bas15]
 Basile, C. and Lioy, A., "Analysis of application-layer filtering
 policies with application to HTTP", IEEE/ACM Transactions on
 Networking, Vol 23, Issue 1, February 2015.
 [Cormen]
 Cormen, T., "Introduction to Algorithms", 2009.
 [Hohpe]
 Hohpe, G. and Woolf, B., "Enterprise Integration Patterns",
 Addison-Wesley, 2003, ISBN 0-32-120068-3
 [Lunt]
 van Lunteren, J. and T. Engbersen, "Fast and scalable packet
 classification", IEEE Journal on Selected Areas in Communication,
 vol 21, Issue 4, September 2003.
 [Martin]
 Martin, R.C., "Agile Software Development, Principles, Patterns,
 and Practices", Prentice-Hall, 2002, ISBN: 0-13-597444-5
 [OODMP]
 http://www.oodesign.com/mediator-pattern.html
 [OODOP]
 http://www.oodesign.com/observer-pattern.html
 [OODSRP]
 http://www.oodesign.com/single-responsibility-principle.html

Xia, et al. Expires September 12, 2017 [Page 31]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Appendix A. Network Security Capability Policy Rule Definitions

 Six exemplary Network Security Capability Policy Rules are
 introduced in this Appendix to clarify how to create different kinds
 of specific ECA policy rules to manage Network Security Capabilities.

 Note that there is a common pattern that defines how these
 ECAPolicyRules operate; this simplifies their implementation. All of
 these six ECA Policy Rules are concrete classes.

 In addition, none of these six subclasses define attributes. This
 enables them to be viewed as simple object containers, and hence,
 applicable to a wide variety of content. It also means that the
 content of the function (e.g., how an entity is authenticated, what
 specific traffic is inspected, or which particular signature is
 applied) is defined solely by the set of events, conditions, and
 actions that are contained by the particular subclass. This enables
 the policy rule, with its aggregated set of events, conditions, and
 actions, to be treated as a reusable object.

A.1. AuthenticationECAPolicyRule Class Definition

 The purpose of an AuthenticationECAPolicyRule is to define an I2NSF
 ECA Policy Rule that can verify whether an entity has an attribute
 of a specific value. A high-level conceputal figure is shown below.

 +----------------+
 +----------------+ 1..n 1...n | |
 | |/ \ HasAuthenticationMethod \| Authentication |
 | Authentication + A ----------+-----------------+ Method |
 | ECAPolicyRule |\ / ^ /| |
 | | | +----------------+
 +----------------+ |
 |
 +------------+-------------+
 | AuthenticationRuleDetail |
 +------------+-------------+
 / \ 0..n
 |
 | PolicyControlsAuthentication
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 10. Modeling Authentication Mechanisms

Xia, et al. Expires September 12, 2017 [Page 32]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 This class does NOT define the authentication method used. This is
 because this would effectively "enclose" this information within the
 AuthenticationECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Authentication
 class(es) could not; they would have to associate with the
 AuthenticationECAPolicyRule class, and those other classes would not
 likely be interested in the AuthenticationECAPolicyRule. Second, the
 evolution of new authentication methods should be independent of the
 AuthenticationECAPolicyRule; this cannot happen if the
 Authentication class(es) are embedded in the
 AuthenticationECAPolicyRule.

 This document only defines the AuthenticationECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model. For
 completeness, descriptions of how the two aggregations are used are
 described below.

 Figure 10 defines an aggregation between an external class, which
 defines one or more authentication methods, and an
 AuthenticationECAPolicyRule. This decouples the implementation of
 authentication mechanisms from how authentication mechanisms are
 managed and used.

 Since different AuthenticationECAPolicyRules can use different
 authentication mechanisms in different ways, the aggregation is
 realized as an association class. This enables the attributes and
 methods of the association class (i.e., AuthenticationRuleDetail) to
 be used to define how a given AuthenticationMethod is used by a
 particular AuthenticationECAPolicyRule.

 Similarly, the PolicyControlsAuthentication aggregation defines
 Policy Rules to control the configuration of the
 AuthenticationRuleDetail association class. This enables the entire
 authentication process to be managed by ECA PolicyRules.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the AuthenticationECAPolicyRule class (e.g., called
 authenticationMethodCurrent and authenticationMethodSupported), to
 represent the HasAuthenticationMethod aggregation and its
 association class. The former would be a string attribute that
 defines the current authentication method used by this
 AuthenticationECAPolicyRule, while the latter would define a set of
 authentication methods, in the form of an authentication Capability,
 which this AuthenticationECAPolicyRule can advertise.

Xia, et al. Expires September 12, 2017 [Page 33]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

A.2. AuthorizationECAPolicyRuleClass Definition

 The purpose of an AuthorizationECAPolicyRule is to define an I2NSF
 ECA Policy Rule that can determine whether access to a resource
 should be given and, if so, what permissions should be granted to
 the entity that is accessing the resource.

 This class does NOT define the authorization method(s) used. This
 is because this would effectively "enclose" this information within
 the AuthorizationECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Authorization
 class(es) could not; they would have to associate with the
 AuthorizationECAPolicyRule class, and those other classes would not
 likely be interested in the AuthorizationECAPolicyRule. Second, the
 evolution of new authorization methods should be independent of the
 AuthorizationECAPolicyRule; this cannot happen if the Authorization
 class(es) are embedded in the AuthorizationECAPolicyRule. Hence,
 this document recommends the following design:

 +---------------+
 +----------------+ 1..n 1...n | |
 | |/ \ HasAuthorizationMethod \| Authorization |
 | Authorization + A ----------+----------------+ Method |
 | ECAPolicyRule |\ / ^ /| |
 | | | +---------------+
 +----------------+ |
 |
 +------------+------------+
 | AuthorizationRuleDetail |
 +------------+------------+
 / \ 0..n
 |
 | PolicyControlsAuthorization
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 11. Modeling Authorization Mechanisms

 This document only defines the AuthorizationECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model. For
 completeness, descriptions of how the two aggregations are used are
 described below.

Xia, et al. Expires September 12, 2017 [Page 34]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 Figure 11 defines an aggregation between the
 AuthorizationECAPolicyRule and an external class that defines one or
 more authorization methods. This decouples the implementation of
 authorization mechanisms from how authorization mechanisms are
 managed and used.

 Since different AuthorizationECAPolicyRules can use different
 authorization mechanisms in different ways, the aggregation is
 realized as an association class. This enables the attributes and
 methods of the association class (i.e., AuthorizationRuleDetail)
 to be used to define how a given AuthorizationMethod is used by a
 particular AuthorizationECAPolicyRule.

 Similarly, the PolicyControlsAuthorization aggregation defines
 Policy Rules to control the configuration of the
 AuthorizationRuleDetail association class. This enables the entire
 authorization process to be managed by ECA PolicyRules.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define
 two attributes for the AuthorizationECAPolicyRule class, called
 (for example) authorizationMethodCurrent and
 authorizationMethodSupported, to represent the
 HasAuthorizationMethod aggregation and its association class. The
 former is a string attribute that defines the current authorization
 method used by this AuthorizationECAPolicyRule, while the latter
 defines a set of authorization methods, in the form of an
 authorization Capability, which this AuthorizationECAPolicyRule
 can advertise.

A.3. AccountingECAPolicyRuleClass Definition

 The purpose of an AccountingECAPolicyRule is to define an I2NSF
 ECA Policy Rule that can determine which information to collect,
 and how to collect that information, from which set of resources
 for the purpose of trend analysis, auditing, billing, or cost
 allocation [RFC2975] [RFC3539].

 This class does NOT define the accounting method(s) used. This is
 because this would effectively "enclose" this information within
 the AccountingECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Accounting class(es)
 could not; they would have to associate with the
 AccountingECAPolicyRule class, and those other classes would not
 likely be interested in the AccountingECAPolicyRule. Second, the
 evolution of new accounting methods should be independent of the
 AccountingECAPolicyRule; this cannot happen if the Accounting
 class(es) are embedded in the AccountingECAPolicyRule. Hence, this
 document recommends the following design:

Xia, et al. Expires September 12, 2017 [Page 35]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +-------------+
 +----------------+ 1..n 1...n | |
 | |/ \ HasAccountingMethod \| Accounting |
 | Accounting + A ----------+--------------+ Method |
 | ECAPolicyRule |\ / ^ /| |
 | | | +-------------+
 +----------------+ |
 |
 +----------+-----------+
 | AccountingRuleDetail |
 +----------+-----------+
 / \ 0..n
 |
 | PolicyControlsAccounting
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 12. Modeling Accounting Mechanisms

 This document only defines the AccountingECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model.
 For completeness, descriptions of how the two aggregations are used
 are described below.

 Figure 12 defines an aggregation between the AccountingECAPolicyRule
 and an external class that defines one or more accounting methods.
 This decouples the implementation of accounting mechanisms from how
 accounting mechanisms are managed and used.

 Since different AccountingECAPolicyRules can use different
 accounting mechanisms in different ways, the aggregation is realized
 as an association class. This enables the attributes and methods of
 the association class (i.e., AccountingRuleDetail) to be used to
 define how a given AccountingMethod is used by a particular
 AccountingECAPolicyRule.

 Similarly, the PolicyControlsAccounting aggregation defines Policy
 Rules to control the configuration of the AccountingRuleDetail
 association class. This enables the entire accounting process to be
 managed by ECA PolicyRules.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define
 two attributes for the AccountingECAPolicyRule class, called
 (for example) accountingMethodCurrent and accountingMethodSupported,
 to represent the HasAccountingMethod aggregation and its association
 class.

Xia, et al. Expires September 12, 2017 [Page 36]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 The former is a string attribute that defines the current accounting
 method used by this AccountingECAPolicyRule, while the latter
 defines a set of accounting methods, in the form of an accounting
 Capability, which this AccountingECAPolicyRule can advertise.

A.4. TrafficInspectionECAPolicyRuleClass Definition

 The purpose of a TrafficInspectionECAPolicyRule is to define an I2NSF
 ECA Policy Rule that, based on a given context, can determine which
 traffic to examine on which devices, which information to collect
 from those devices, and how to collect that information.

 This class does NOT define the traffic inspection method(s) used.
 This is because this would effectively "enclose" this information
 within the TrafficInspectionECAPolicyRule. This has two drawbacks.
 First, other entities that need to use information from the
 TrafficInspection class(es) could not; they would have to associate
 with the TrafficInspectionECAPolicyRule class, and those other
 classes would not likely be interested in the
 TrafficInspectionECAPolicyRule. Second, the evolution of new traffic
 inspection methods should be independent of the
 TrafficInspectionECAPolicyRule; this cannot happen if the
 TrafficInspection class(es) are embedded in the
 TrafficInspectionECAPolicyRule. Hence, this document recommends the
 following design:

 +------------------+
 +-------------------+1..n 1..n| |
 | |/ \ HasTrafficInspection \| Traffic |
 | TrafficInspection + A ----------+-------------+ InspectionMethod |
 | ECAPolicyRule |\ / ^ / | |
 | | | +------------------+
 +-------------------+ |
 |
 +------------+------------+
 | TrafficInspectionDetail |
 +------------+------------+
 / \ 0..n
 |
 | PolicyControlsTrafficInspection
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 13. Modeling Traffic Inspection Mechanisms

Xia, et al. Expires September 12, 2017 [Page 37]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 This document only defines the TrafficInspectionECAPolicyRule; all
 other classes, and the aggregations, are defined in an external
 model. For completeness, descriptions of how the two aggregations
 are used are described below.

 Figure 13 defines an aggregation between the
 TrafficInspectionECAPolicyRule and an external class that defines
 one or more traffic inspection mechanisms. This decouples the
 implementation of traffic inspection mechanisms from how traffic
 inspection mechanisms are managed and used.

 Since different TrafficInspectionECAPolicyRules can use different
 traffic inspection mechanisms in different ways, the aggregation is
 realized as an association class. This enables the attributes and
 methods of the association class (i.e., TrafficInspectionDetail) to
 be used to define how a given TrafficInspectionMethod is used by a
 particular TrafficInspectionECAPolicyRule.

 Similarly, the PolicyControlsTrafficInspection aggregation defines
 Policy Rules to control the configuration of the
 TrafficInspectionDetail association class. This enables the entire
 traffic inspection process to be managed by ECA PolicyRules.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define
 two attributes for the TrafficInspectionECAPolicyRule class, called
 (for example) trafficInspectionMethodCurrent and
 trafficInspectionMethodSupported, to represent the
 HasTrafficInspectionMethod aggregation and its association class.
 The former is a string attribute that defines the current traffic
 inspection method used by this TrafficInspectionECAPolicyRule,
 while the latter defines a set of traffic inspection methods, in
 the form of a traffic inspection Capability, which this
 TrafficInspectionECAPolicyRule can advertise.

A.5. ApplyProfileECAPolicyRuleClass Definition

 The purpose of an ApplyProfileECAPolicyRule is to define an I2NSF
 ECA Policy Rule that, based on a given context, can apply a
 particular profile to specific traffic. The profile defines the
 security Capabilities for content security control and/or attack
 mitigation control; these will be described in sections 4.4 and
 4.5, respectively.

 This class does NOT define the set of Profiles used. This is
 because this would effectively "enclose" this information within
 the ApplyProfileECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Profile class(es)
 could not; they would have to associate with the

Xia, et al. Expires September 12, 2017 [Page 38]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 ApplyProfileECAPolicyRule class, and those other classes would not
 likely be interested in the ApplyProfileECAPolicyRule. Second, the
 evolution of new Profile classes should be independent of the
 ApplyProfileECAPolicyRule; this cannot happen if the Profile
 class(es) are embedded in the ApplyProfileECAPolicyRule. Hence,
 this document recommends the following design:

 +-------------+
 +-------------------+ 1..n 1..n | |
 | |/ \ ProfileApplied \| |
 | ApplyProfile + A -----------+-------------+ Profile |
 | ECAPolicyRule |\ / ^ /| |
 | | | +-------------+
 +-------------------+ |
 |
 +------------+---------+
 | ProfileAppliedDetail |
 +------------+---------+
 / \ 0..n
 |
 |
 PolicyControlsProfileApplication |
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 14. Modeling Profile ApplicationMechanisms

 This document only defines the ApplyProfileECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model.
 For completeness, descriptions of how the two aggregations are used
 are described below.

 Figure 14 defines an aggregation between the
 ApplyProfileECAPolicyRule and an external Profile class. This
 decouples the implementation of Profiles from how Profiles are used.

 Since different ApplyProfileECAPolicyRules can use different
 Profiles in different ways, the aggregation is realized as an
 association class. This enables the attributes and methods of the
 association class (i.e., ProfileAppliedDetail) to be used to define
 how a given Profile is used by a particular
 ApplyProfileECAPolicyRule.

 Similarly, the PolicyControlsProfileApplication aggregation defines
 policies to control the configuration of the ProfileAppliedDetail
 association class. This enables the application of Profiles to be
 managed and used by ECA PolicyRules.

Xia, et al. Expires September 12, 2017 [Page 39]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the ApplyProfileECAPolicyRuleclass, called (for
 example) profileAppliedCurrent and profileAppliedSupported, to
 represent the ProfileApplied aggregation and its association class.
 The former is a string attribute that defines the current Profile
 used by this ApplyProfileECAPolicyRule, while the latter defines a
 set of Profiles, in the form of a Profile Capability, which this
 ApplyProfileECAPolicyRule can advertise.

A.6. ApplySignatureECAPolicyRuleClass Definition

 The purpose of an ApplySignatureECAPolicyRule is to define an I2NSF
 ECA Policy Rule that, based on a given context, can determine which
 Signature object (e.g., an anti-virus file, or aURL filtering file,
 or a script) to apply to which traffic. The Signature object defines
 the security Capabilities for content security control and/or attack
 mitigation control; these will be described in sections 4.4 and 4.5,
 respectively.

 This class does NOT define the set of Signature objects used. This
 is because this would effectively "enclose" this information within
 the ApplySignatureECAPolicyRule. This has two drawbacks. First,
 other entities that need to use information from the Signature
 object class(es) could not; they would have to associate with the
 ApplySignatureECAPolicyRule class, and those other classes would not
 likely be interested in the ApplySignatureECAPolicyRule. Second, the
 evolution of new Signature object classes should be independent of
 the ApplySignatureECAPolicyRule; this cannot happen if the Signature
 object class(es) are embedded in the ApplySignatureECAPolicyRule.
 Hence, this document recommends the following design:

 This document only defines the ApplySignatureECAPolicyRule; all
 other classes, and the aggregations, are defined in an external
 model. For completeness, descriptions of how the two aggregations
 are used are described below.

 Figure 15 defines an aggregation between the
 ApplySignatureECAPolicyRule and an external Signature object class.
 This decouples the implementation of signature objects from how
 Signature objects are used.

 Since different ApplySignatureECAPolicyRules can use different
 Signature objects in different ways, the aggregation is realized as
 an association class. This enables the attributes and methods of the
 association class (i.e., SignatureAppliedDetail) to be used to
 define how a given Signature object is used by a particular
 ApplySignatureECAPolicyRule.

Xia, et al. Expires September 12, 2017 [Page 40]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 +-------------+
 +---------------+ 1..n 1..n | |
 | |/ \ SignatureApplied \| |
 | ApplySignature+ A ----------+--------------+ Signature |
 | ECAPolicyRule |\ / ^ /| |
 | | | +-------------+
 +---------------+ |
 |
 +------------+-----------+
 | SignatureAppliedDetail |
 +------------+-----------+
 / \ 0..n
 |
 | PolicyControlsSignatureApplication
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 15. Modeling Sginature Application Mechanisms

 Similarly, the PolicyControlsSignatureApplication aggregation
 defines policies to control the configuration of the
 SignatureAppliedDetail association class. This enables the
 application of the Signature object to be managed by policy.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define
 two attributes for the ApplySignatureECAPolicyRule class, called
 (for example) signature signatureAppliedCurrent and
 signatureAppliedSupported, to represent the SignatureApplied
 aggregation and its association class. The former is a string
 attribute that defines the current Signature object used by this
 ApplySignatureECAPolicyRule, while the latter defines a set of
 Signature objects, in the form of a Signature Capability, which
 this ApplySignatureECAPolicyRule can advertise.

Xia, et al. Expires September 12, 2017 [Page 41]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Appendix B. Network Security Event Class Definitions

 This Appendix defines a preliminary set of Network Security Event
 classes, along with their attributes.

B.1. UserSecurityEvent Class Description

 The purpose of this class is to represent Events that are initiated
 by a user, such as logon and logoff Events. Information in this
 Event may be used as part of a test to determine if the Condition
 clause in this ECA Policy Rule should be evaluated or not. Examples
 include user identification data and the type of connection used by
 the user.

 The UserSecurityEvent class defines the following attributes.

B.1.1. The usrSecEventContent Attribute

 This is a mandatory string that contains the content of the
 UserSecurityEvent. The format of the content is specified in the
 usrSecEventFormat class attribute, and the type of Event is defined
 in the usrSecEventType class attribute. An example of the
 usrSecEventContent attribute is the string "hrAdmin", with the
 usrSecEventFormat set to 1 (GUID) and the usrSecEventType attribute
 set to 5 (new logon).

B.1.2. The usrSecEventFormat Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the data type of the usrSecEventContent attribute. The
 content is specified in the usrSecEventContent class attribute, and
 the type of Event is defined in the usrSecEventType class attribute.
 An example of the usrSecEventContent attribute is the string
 "hrAdmin", with the usrSecEventFormat attribute set to 1 (GUID) and
 the usrSecEventType attribute set to 5 (new logon). Values include:

 0: unknown
 1: GUID (Generic Unique IDentifier)
 2: UUID (Universal Unique IDentifier)
 3: URI (Uniform Resource Identifier)
 4: FQDN (Fully Qualified Domain Name)
 5: FQPN (Fully Qualified Path Name)

B.1.3. The usrSecEventType Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the type of Event that involves this user. The content
 and format are specified in the usrSecEventContent and
 usrSecEventFormat class attributes, respectively.

Xia, et al. Expires September 12, 2017 [Page 42]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 An example of the usrSecEventContent attribute is the string
 "hrAdmin", with the usrSecEventFormat attribute set to 1 (GUID), and
 the usrSecEventType attribute set to 5 (new logon). Values include:

 0: unknown
 1: new user created
 2: new user group created
 3: user deleted
 4: user group deleted
 5: user logon
 6: user logoff
 7: user access request
 8: user access granted
 9: user access violation

B.2. DeviceSecurityEvent Class Description

 The purpose of a DeviceSecurityEvent is to represent Events that
 provide information from the Device that are important to I2NSF
 Security. Information in this Event may be used as part of a test
 to determine if the Condition clause in this ECA Policy Rule should
 be evaluated or not. Examples include alarms and various device
 statistics (e.g., a type of threshold that was exceeded), which may
 signal the need for further action.

 The DeviceSecurityEvent class defines the following attributes.

B.2.1. The devSecEventContent Attribute

 This is a mandatory string that contains the content of the
 DeviceSecurityEvent. The format of the content is specified in the
 devSecEventFormat class attribute, and the type of Event is defined
 in the devSecEventType class attribute. An example of the
 devSecEventContent attribute is "alarm", with the devSecEventFormat
 attribute set to 1 (GUID), the devSecEventType attribute set to
 5 (new logon).

B.2.2. The devSecEventFormat Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the data type of the devSecEventContent attribute.
 Values include:

 0: unknown
 1: GUID (Generic Unique IDentifier)
 2: UUID (Universal Unique IDentifier)
 3: URI (Uniform Resource Identifier)
 4: FQDN (Fully Qualified Domain Name)
 5: FQPN (Fully Qualified Path Name)

Xia, et al. Expires September 12, 2017 [Page 43]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

B.2.3. The devSecEventType Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the type of Event that was generated by this device.
 Values include:

 0: unknown
 1: communications alarm
 2: quality of service alarm
 3: processing error alarm
 4: equipment error alarm
 5: environmental error alarm

 Values 1-5 are defined in X.733. Additional types of errors may also
 be defined.

B.2.4. The devSecEventTypeInfo[0..n] Attribute

 This is an optional array of strings, which is used to provide
 additional information describing the specifics of the Event
 generated by this Device. For example, this attribute could contain
 probable cause information in the first array, trend information in
 the second array, proposed repair actions in the third array, and
 additional information in the fourth array.

B.2.5. The devSecEventTypeSeverity Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the perceived severity of the Event generated by this
 Device. Values (which are defined in X.733) include:

 0: unknown
 1: cleared
 2: indeterminate
 3: critical
 4: major
 5: minor
 6: warning

B.3. SystemSecurityEvent Class Description

 The purpose of a SystemSecurityEvent is to represent Events that
 are detected by the management system, instead of Events that are
 generated by a user or a device. Information in this Event may be
 used as part of a test to determine if the Condition clause in
 this ECA Policy Rule should be evaluated or not. Examples include
 an event issued by an analytics system that warns against a
 particular pattern of unknown user accesses, or an Event issued by
 a management system that represents a set of correlated and/or
 filtered Events.

Xia, et al. Expires September 12, 2017 [Page 44]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 The SystemSecurityEvent class defines the following attributes.

B.3.1. The sysSecEventContent Attribute

 This is a mandatory string that contains the content of the
 SystemSecurityEvent. The format of the content is specified in the
 sysSecEventFormat class attribute, and the type of Event is defined
 in the sysSecEventType class attribute. An example of the
 sysSecEventContent attribute is the string "sysadmin3", with the
 sysSecEventFormat attribute set to 1 (GUID), and the sysSecEventType
 attribute set to 2 (audit log cleared).

B.3.2. The sysSecEventFormat Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the data type of the sysSecEventContent attribute.
 Values include:

 0: unknown
 1: GUID (Generic Unique IDentifier)
 2: UUID (Universal Unique IDentifier)
 3: URI (Uniform Resource Identifier)
 4: FQDN (Fully Qualified Domain Name)
 5: FQPN (Fully Qualified Path Name)

B.3.3. The sysSecEventType Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the type of Event that involves this device.
 Values include:

 0: unknown
 1: audit log written to
 2: audit log cleared
 3: policy created
 4: policy edited
 5: policy deleted
 6: policy executed

B.4. TimeSecurityEvent Class Description

 The purpose of a TimeSecurityEvent is to represent Events that are
 temporal in nature (e.g., the start or end of a period of time).
 Time events signify an individual occurrence, or a time period, in
 which a significant event happened. Information in this Event may be
 used as part of a test to determine if the Condition clause in this
 ECA Policy Rule should be evaluated or not. Examples include issuing
 an Event at a specific time to indicate that a particular resource
 should not be accessed, or that different authentication and
 authorization mechanisms should now be used (e.g., because it is now
 past regular business hours).

Xia, et al. Expires September 12, 2017 [Page 45]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 The TimeSecurityEvent class defines the following attributes.

B.4.1. The timeSecEventPeriodBegin Attribute

 This is a mandatory DateTime attribute, and represents the beginning
 of a time period. It has a value that has a date and/or a time
 component (as in the Java or Python libraries).

B.4.2. The timeSecEventPeriodEnd Attribute

 This is a mandatory DateTime attribute, and represents the end of a
 time period. It has a value that has a date and/or a time component
 (as in the Java or Python libraries). If this is a single Event
 occurence, and not a time period when the Event can occur, then the
 timeSecEventPeriodEnd attribute may be ignored.

B.4.3. The timeSecEventTimeZone Attribute

 This is a mandatory string attribute, and defines the time zone that
 this Event occurred in using the format specified in ISO8601.

Xia, et al. Expires September 12, 2017 [Page 46]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Appendix C. Network Security Condition Class Definitions

 This Appendix defines a preliminary set of Network Security Condition
 classes, along with their attributes.

C.1. PacketSecurityCondition

 The purpose of this Class is to represent packet header information
 that can be used as part of a test to determine if the set of Policy
 Actions in this ECA Policy Rule should be executed or not. This class
 is abstract, and serves as the superclass of more detailed conditions
 that act on different types of packet formats. Its subclasses are
 shown in Figure 16, and are defined in the following sections.

 +-------------------------+
 | PacketSecurityCondition |
 +------------+------------+
 / \
 |
 |
 +---------+----------+---+-----+----------+
 | | | | |
 | | | | |
 +--------+-------+ | +--------+-------+ | +--------+-------+
 | PacketSecurity | | | PacketSecurity | | | PacketSecurity |
 | MACCondition | | | IPv4Condition | | | IPv6Condition |
 +----------------+ | +----------------+ | +----------------+
 | |
 +--------+-------+ +--------+-------+
 | TCPCondition | | UDPCondition |
 +----------------+ +----------------+

 Figure 16. Network Security Info Sub-Model PacketSecurityCondition
 Class Extensions

C.1.1. PacketSecurityMACCondition

 The purpose of this Class is to represent packet MAC packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes.

C.1.1.1. The pktSecCondMACDest Attribute

 This is a mandatory string attribute, and defines the MAC
 destination address (6 octets long).

C.1.1.2. The pktSecCondMACSrc Attribute

 This is a mandatory string attribute, and defines the MAC source
 address (6 octets long).

Xia, et al. Expires September 12, 2017 [Page 47]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

C.1.1.3. The pktSecCondMAC8021Q Attribute

 This is an optional string attribute, and defines the 802.1Q tag
 value (2 octets long). This defines VLAN membership and 802.1p
 priority values.

C.1.1.4. The pktSecCondMACEtherType Attribute

 This is a mandatory string attribute, and defines the EtherType
 field (2 octets long). Values up to and including 1500 indicate the
 size of the payload in octets; values of 1536 and above define
 which protocol is encapsulated in the payload of the frame.

C.1.1.5. The pktSecCondMACTCI Attribute

 This is an optional string attribute, and defines the Tag Control
 Information. This consists of a 3 bit user priority field, a drop
 eligible indicator (1 bit), and a VLAN identifier (12 bits).

C.1.2. PacketSecurityIPv4Condition

 The purpose of this Class is to represent packet IPv4 packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes.

C.1.2.1. The pktSecCondIPv4SrcAddr Attribute

 This is a mandatory string attribute, and defines the IPv4 Source
 Address (32 bits).

C.1.2.2. The pktSecCondIPv4DestAddr Attribute

 This is a mandatory string attribute, and defines the IPv4
 Destination Address (32 bits).

C.1.2.3. The pktSecCondIPv4ProtocolUsed Attribute

 This is a mandatory string attribute, and defines the protocol used
 in the data portion of the IP datagram (8 bits).

C.1.2.4. The pktSecCondIPv4DSCP Attribute

 This is a mandatory string attribute, and defines the Differentiated
 Services Code Point field (6 bits).

C.1.2.5. The pktSecCondIPv4ECN Attribute

 This is an optional string attribute, and defines the Explicit
 Congestion Notification field (2 bits).

Xia, et al. Expires September 12, 2017 [Page 48]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

C.1.2.6. The pktSecCondIPv4TotalLength Attribute

 This is a mandatory string attribute, and defines the total length
 of the packet (including header and data) in bytes (16 bits).

C.1.2.7. The pktSecCondIPv4TTL Attribute

 This is a mandatory string attribute, and defines the Time To Live
 in seconds (8 bits).

C.1.3. PacketSecurityIPv6Condition

 The purpose of this Class is to represent packet IPv6 packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes.

C.1.3.1. The pktSecCondIPv6SrcAddr Attribute

 This is a mandatory string attribute, and defines the IPv6 Source
 Address (128 bits).

C.1.3.2. The pktSecCondIPv6DestAddr Attribute

 This is a mandatory string attribute, and defines the IPv6
 Destination Address (128 bits).

C.1.3.3. The pktSecCondIPv6DSCP Attribute

 This is a mandatory string attribute, and defines the Differentiated
 Services Code Point field (6 bits). It consists of the six most
 significant bits of the Traffic Class field in the IPv6 header.

C.1.3.4. The pktSecCondIPv6ECN Attribute

 This is a mandatory string attribute, and defines the Explicit
 Congestion Notification field (2 bits). It consists of the two least
 significant bits of the Traffic Class field in the IPv6 header.

C.1.3.5. The pktSecCondIPv6FlowLabel Attribute

 This is a mandatory string attribute, and defines an IPv6 flow
 label. This, in combination with the Source and Destination Address
 fields, enables efficient IPv6 flow classification by using only the
 IPv6 main header fields (20 bits).

C.1.3.6. The pktSecCondIPv6PayloadLength Attribute

 This is a mandatory string attribute, and defines the total length
 of the packet (including the fixed and any extension headers, and
 data) in bytes (16 bits).

Xia, et al. Expires September 12, 2017 [Page 49]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

C.1.3.7. The pktSecCondIPv6NextHeader Attribute

 This is a mandatory string attribute, and defines the type of the
 next header (e.g., which extension header to use) (8 bits).

C.1.3.8. The pktSecCondIPv6HopLimit Attribute

 This is a mandatory string attribute, and defines the maximum
 number of hops that this packet can traverse (8 bits).

C.1.4. PacketSecurityTCPCondition

 The purpose of this Class is to represent packet TCP packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes.

C.1.4.1. The pktSecCondTPCSrcPort Attribute

 This is a mandatory string attribute, and defines the Source Port
 number (16 bits).

C.1.4.2. The pktSecCondTPCDestPort Attribute

 This is a mandatory string attribute, and defines the Destination
 Port number (16 bits).

C.1.4.3. The pktSecCondTCPSeqNum Attribute

 This is a mandatory string attribute, and defines the sequence
 number (32 bits).

C.1.4.4. The pktSecCondTCPFlags Attribute

 This is a mandatory string attribute, and defines the nine Control
 bit flags (9 bits).

C.1.5. PacketSecurityUDPCondition

 The purpose of this Class is to represent packet UDP packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes.

C.1.5.1.1. The pktSecCondUDPSrcPort Attribute

 This is a mandatory string attribute, and defines the UDP Source
 Port number (16 bits).

Xia, et al. Expires September 12, 2017 [Page 50]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

C.1.5.1.2. The pktSecCondUDPDestPort Attribute

 This is a mandatory string attribute, and defines the UDP
 Destination Port number (16 bits).

C.1.5.1.3. The pktSecCondUDPLength Attribute

 This is a mandatory string attribute, and defines the length in
 bytes of the UDP header and data (16 bits).

C.2. PacketPayloadSecurityCondition

 The purpose of this Class is to represent packet payload data that
 can be used as part of a test to determine if the set of Policy
 Actions in this ECA Policy Rule should be executed or not. Examples
 include a specific set of bytes in the packet payload.

C.3. TargetSecurityCondition

 The purpose of this Class is to represent information about
 different targets of this policy (i.e., entities to which this
 Policy Rule should be applied), which can be used as part of a
 test to determine if the set of Policy Actions in this ECA Policy
 Rule should be executed or not. Examples include whether the
 targeted entities are playing the same role, or whether each
 device is administered by the same set of users, groups, or roles.
 This Class has several important subclasses, including:

 a. ServiceSecurityContextCondition is the superclass for all
 information that can be used in an ECA Policy Rule that
 specifies data about the type of service to be analyzed
 (e.g., the protocol type and port number)
 b. ApplicationSecurityContextCondition is the superclass for all
 information that can be used in a ECA Policy Rule that
 specifies data that identifies a particular application
 (including metadata, such as risk level)
 c. DeviceSecurityContextCondition is the superclass for all
 information that can be used in a ECA Policy Rule that
 specifies data about a device type and/or device OS that is
 being used

C.4. UserSecurityCondition

 The purpose of this Class is to represent data about the user or
 group referenced in this ECA Policy Rule that can be used as part of
 a test to determine if the set of Policy Actions in this ECA Policy
 Rule should be evaluated or not. Examples include the user or group
 id used, the type of connection used, whether a given user or group
 is playing a particular role, or whether a given user or group has
 failed to login a particular number of times.

Xia, et al. Expires September 12, 2017 [Page 51]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

C.5. SecurityContextCondition

 The purpose of this Class is to represent security conditions that
 are part of a specific context, which can be used as part of a test
 to determine if the set of Policy Actions in this ECA Policy Rule
 should be evaluated or not. Examples include testing to determine
 if a particular pattern of security-related data have occurred, or
 if the current session state matches the expected session state.

C.6. GenericContextSecurityCondition

 The purpose of this Class is to represent generic contextual
 information in which this ECA Policy Rule is being executed, which
 can be used as part of a test to determine if the set of Policy
 Actions in this ECA Policy Rule should be evaluated or not.
 Examples include geographic location and temporal information.

Xia, et al. Expires September 12, 2017 [Page 52]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Appendix D. Network Security Action Class Definitions

 This Appendix defines a preliminary set of Network Security Action
 classes, along with their attributes.

D.1. IngressAction

 The purpose of this Class is to represent actions performed on
 packets that enter an NSF. Examples include pass, dropp, or
 mirror traffic.

D.2. EgressAction

 The purpose of this Class is to represent actions performed on
 packets that exit an NSF. Examples include pass, drop, or mirror
 traffic, signal, and encapsulate.

D.3. ApplyProfileAction

 The purpose of this Class is to define the application of a profile
 to packets to perform content security and/or attack mitigation
 control.

Xia, et al. Expires September 12, 2017 [Page 53]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Appendix E. Geometric Model

 The geometric model defined in [Bas12] is summarized here. Note that
 our work has extended the work of [Bas12] to model ECA Policy Rules,
 instead of just condition-action Policy Rules. However, the
 geometric model in this Appendix is simplified in this version of
 this I-D, and is used to define just the CA part of the ECA model.

 All the actions available to the security function are well known
 and organized in an action set A.

 For filtering controls, the enforceable actions are either Allow or
 Deny, thus A={Allow,Deny}. For channel protection controls, they may
 be informally written as "enforce confidentiality", "enforce data
 authentication and integrity", and "enforce confidentiality and data
 authentication and integrity". However, these actions need to be
 instantiated to the technology used. For example, AH-transport mode
 and ESP-transport mode (and combinations thereof) are a more precise
 definition of channel protection actions.

 Conditions are typed predicates concerning a given selector. A
 selector describes the values that a protocol field may take. For
 example, the IP source selector is the set of all possible IP
 addresses, and it may also refer to the part of the packet where the
 values come from (e.g., the IP source selector refers to the IP
 source field in the IP header). Geometrically, a condition is the
 subset of its selector for which it evaluates to true. A condition
 on a given selector matches a packet if the value of the field
 referred to by the selector belongs to the condition. For instance,
 in Figure 17 the conditions are s1 <= S1 (read as s1 subset of or
 equal to S1) and s2 <= S2 (s2 subset of or equal to S2), both s1 and
 s2 match the packet x1, while only s2 matches x2.

 To consider conditions in different selectors, the decision space is
 extended using the Cartesian product because distinct selectors
 refer to different fields, possibly from different protocol headers.
 Hence, given a policy-enabled element that allows the definition of
 conditions on the selectors S1, S2,..., Sm (where m is the number
 of Selectors available at the security control we want to model),
 its selection space is:

 S=S1 X S2 X ... X Sm

 To consider conditions in different selectors, the decision space is
 extended using the Cartesian product because distinct selectors
 refer to different fields, possibly from different protocol headers.

Xia, et al. Expires September 12, 2017 [Page 54]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 S2 ^ Destination port
 |
 | x2
 +......o
 | .
 | .
 --+.............+------------------------------------+
 | | . | |
 s | . | |
 e | . | (rectangle) |
 g | . | condition clause (c) |
 m | . | here the action a is applied |
 e | . | |
 n | . | x1=point=packet |
 t +.............|.............o |
 | | . | . |
 --+.............+------------------------------------+
 |
 |
 +------------+------+-------------+----------------------+------>
 | |---- segment = condition in S1 -----| S1
 + IP source

 Figure 17: Geometric representation of a rule r=(c,a) that
 matches x1, but does not match x2.

 Accordingly, the condition clause c is a subset of S:

 c = s1 X s2 X ... X sm <= S1 X S2 X ... X Sm = S

 S represents the totality of the packets that are individually
 selectable by the security control to model when we use it to
 enforce a policy. Unfortunately, not all its subsets are valid
 condition clauses: only hyper-rectangles, or the union of
 hyper-rectangles (as they are Cartesian product of conditions),
 are valid. This is an intrinsic constraint of the policy
 language, as it specifies rules by defining a condition for each
 selector. Languages that allow specification of conditions as
 relations over more fields are modeled by the geometric model as
 more complex geometric shapes determined by the equations. However,
 the algorithms to compute intersections are much more sophisticated
 than intersection hyper-rectangles. Figure 17 graphically represents
 a condition clause c in a two-dimensional selection space.

 In the geometric model, a rule is expressed as r=(c,a), where c <= S
 (the condition clause is a subset of the selection space), and the
 action a belongs to A. Rule condition clauses match a packet (rules
 match a packet), if all the conditions forming the clauses match the
 packet. In Figure 17, the rule with condition clause c matches the
 packet x1 but not x2.

Xia, et al. Expires September 12, 2017 [Page 55]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

 The rule set R is composed of n rules ri=(ci,ai).

 The decision criteria for the action to apply when a packet matches
 two or more rules is abstracted by means of the resolution strategy

 RS: Pow(R) -> A

 where Pow(R) is the power set of rules in R.

 Formally, given a set of rules, the resolution strategy maps all the
 possible subsets of rules to an action a in A. When no rule matches a
 packet, the security controls may select the default action d in A,
 if they support one.

 Resolution strategies may use, besides intrinsic rule data (i.e.,
 condition clause and action clause), also external data associated to
 each rule, such as priority, identity of the creator, and creation
 time. Formally, every rule ri is associated by means of the
 function e(.):

 e(ri) = (ri,f1(ri),f2(ri),...)

 where E={fj:R -> Xj} (j=1,2,...) is the set that includes all
 functions that map rules to external attributes in Xj. However,
 E, e, and all the Xj are determined by the resolution strategy used.

 A policy is thus a function p: S -> A that connects each point of
 the selection space to an action taken from the action set A
 according to the rules in R. By also assuming RS(0)=d (where 0 is
 the empty-set) and RS(ri)=ai, the policy p can be described as:

 p(x)=RS(match{R(x)}).

 Therefore, in the geometric model, a policy is completely defined by
 the 4-tuple (R,RS,E,d): the rule set R, the resolution function RS,
 the set E of mappings to the external attributes, and the default
 action d.

 Note that, the geometric model also supports ECA paradigms by simply
 modeling events like an additional selector.

Xia, et al. Expires September 12, 2017 [Page 56]

Internet-Draft Information Model of I2NSF Capabilities Jul 2017

Authors’ Addresses
Liang Xia (Frank)
Huawei
101 Software Avenue, Yuhuatai District
Nanjing, Jiangsu 210012
China
Email: Frank.xialiang@huawei.com

John Strassner
Huawei
Email: John.sc.Strassner@huawei.com

Cataldo Basile
Politecnico di Torino
Corso Duca degli Abruzzi, 34
Torino, 10129
Italy
Email: cataldo.basile@polito.it

Diego R. Lopez
Telefonica I+D
Zurbaran, 12
Madrid, 28010
Spain
Phone: +34 913 129 041
Email: diego.r.lopez@telefonica.com

Xia, et al. Expires September 12, 2017 [Page 57]

