
ICNRG M. Mosko
Internet-Draft PARC, Inc.
Intended status: Experimental I. Solis
Expires: July 28, 2019 LinkedIn
 C. Wood
 University of California Irvine
 January 24, 2019

 CCNx Messages in TLV Format
 draft-irtf-icnrg-ccnxmessages-09

Abstract

 This document specifies the encoding of CCNx messages in a TLV packet
 format, including the TLV types used by each message element and the
 encoding of each value. The semantics of CCNx messages follow the
 encoding-independent CCNx Semantics specification.

 This document is a product of the Information Centric Networking
 research group (ICNRG).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 28, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Mosko, et al. Expires July 28, 2019 [Page 1]

Internet-Draft CCNx TLV January 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 2. Definitions . 4
 3. Type-Length-Value (TLV) Packets 5
 3.1. Overall packet format 6
 3.2. Fixed Headers . 7
 3.2.1. Interest Fixed Header 8
 3.2.1.1. Interest HopLimit 9
 3.2.2. Content Object Fixed Header 9
 3.2.3. InterestReturn Fixed Header 9
 3.2.3.1. InterestReturn HopLimit 10
 3.2.3.2. InterestReturn Flags 10
 3.2.3.3. Return Code 10
 3.3. Global Formats . 10
 3.3.1. Pad . 11
 3.3.2. Organization Specific TLVs 11
 3.3.3. Hash Format . 11
 3.3.4. Link . 13
 3.4. Hop-by-hop TLV headers 13
 3.4.1. Interest Lifetime 14
 3.4.2. Recommended Cache Time 14
 3.4.3. Message Hash . 15
 3.5. Top-Level Types . 16
 3.6. CCNx Message . 16
 3.6.1. Name . 17
 3.6.1.1. Name Segments 18
 3.6.1.2. Interest Payload ID 19
 3.6.2. Message TLVs . 20
 3.6.2.1. Interest Message TLVs 20
 3.6.2.2. Content Object Message TLVs 21
 3.6.3. Payload . 23
 3.6.4. Validation . 23
 3.6.4.1. Validation Algorithm 23
 3.6.4.2. Validation Payload 29
 4. IANA Considerations . 29
 4.1. Packet Type Registry 30
 4.2. Interest Return Code Registry 30
 4.3. Hop-by-Hop Type Registry 31
 4.4. Top-Level Type Registry 32
 4.5. Name Segment Type Registry 33

Mosko, et al. Expires July 28, 2019 [Page 2]

Internet-Draft CCNx TLV January 2019

 4.6. Message Type Registry 34
 4.7. Payload Type Registry 35
 4.8. Validation Algorithm Type Registry 36
 4.9. Validation Dependent Data Type Registry 37
 4.10. Hash Function Type Registry 39
 5. Security Considerations 40
 6. References . 43
 6.1. Normative References 43
 6.2. Informative References 43
 Authors’ Addresses . 45

1. Introduction

 This document specifies a Type-Length-Value (TLV) packet format and
 the TLV type and value encodings for CCNx messages. A full
 description of the CCNx network protocol, providing an encoding-free
 description of CCNx messages and message elements, may be found in
 [CCNSemantics]. CCNx is a network protocol that uses a hierarchical
 name to forward requests and to match responses to requests. It does
 not use endpoint addresses, such as Internet Protocol. Restrictions
 in a request can limit the response by the public key of the
 response’s signer or the cryptographic hash of the response. Every
 CCNx forwarder along the path does the name matching and restriction
 checking. The CCNx protocol fits within the broader framework of
 Information Centric Networking (ICN) protocols [RFC7927].

 This document describes a TLV scheme using a fixed 2-byte T and a
 fixed 2-byte L field. The rational for this choice is described in
 Section 5. Briefly, this choice avoids multiple encodings of the
 same value (aliases) and reduces the work of a validator to ensure
 compliance. Unlike some uses of TLV in networking, the each network
 hop must evaluate the encoding, so even small validation latencies at
 each hop could add up to a large overall forwarding delay. For very
 small packets or low throughput links, where the extra bytes may
 become a concern, one may use a TLV compression protocol, for example
 [compress] and [CCNxz].

 This document specifies:

 o The TLV packet format.

 o The overall packet format for CCNx messages.

 o The TLV types used by CCNx messages.

 o The encoding of values for each type.

 o Top level types that exist at the outermost containment.

Mosko, et al. Expires July 28, 2019 [Page 3]

Internet-Draft CCNx TLV January 2019

 o Interest TLVs that exist within Interest containment.

 o Content Object TLVs that exist within Content Object containment.

 This document is supplemented by this document:

 o Message semantics: see [CCNSemantics] for the protocol operation
 regarding Interest and Content Object, including the Interest
 Return protocol.

 o URI notation: see [CCNxURI] for the CCNx URI notation.

 The type values in Section 4 represent the values in common usage
 today. These values may change pending IANA assignments. All type
 values are relative to their parent containers. For example, each
 level of a nested TLV structure might define a "type = 1" with a
 completely different meaning. In the following, we use the symbolic
 names defined in that section.

 Packets are represented as 32-bit wide words using ASCII art. Due to
 the nested levels of TLV encoding and the presence of optional fields
 and variable sizes, there is no concise way to represent all
 possibilities. We use the convention that ASCII art fields enclosed
 by vertical bars "|" represent exact bit widths. Fields with a
 forward slash "/" are variable bit widths, which we typically pad out
 to word alignment for picture readability.

 The document represents the consensus of the ICN RG. It is the first
 ICN protocol from the RG, created from the early CCNx protocol [nnc]
 with significant revision and input from the ICN community and RG
 members. The draft has received critical reading by several members
 of the ICN community and the RG. The authors and RG chairs approve
 of the contents. The document is sponsored under the IRTF and is not
 issued by the IETF and is not an IETF standard. This is an
 experimental protocol and may not be suitable for any specific
 application and the specification may change in the future.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definitions

 o Name: A hierarchically structured variable length identifier. It
 is an ordered list of path segments, which are variable length
 octet strings. In human-readable form, it is represented in URI

Mosko, et al. Expires July 28, 2019 [Page 4]

Internet-Draft CCNx TLV January 2019

 format as ccnx:/path/part. There is no host or query string. See
 [CCNxURI] for complete details.

 o Interest: A message requesting a Content Object with a matching
 Name and other optional selectors to choose from multiple objects
 with the same Name. Any Content Object with a Name and attributes
 that matches the Name and optional selectors of the Interest is
 said to satisfy the Interest.

 o Content Object: A data object sent in response to an Interest
 request. It has an optional Name and a content payload that are
 bound together via cryptographic means.

3. Type-Length-Value (TLV) Packets

 We use 16-bit Type and 16-bit Length fields to encode TLV based
 packets. This provides 64K different possible types and value field
 lengths of up to 64KiB. With 64K possible types at each level of TLV
 encoding, there should be sufficient space for basic protocol types,
 while also allowing ample room for experimentation, application use,
 vendor extensions, and growth. This encoding does not allow for
 jumbo packets beyond 64 KiB total length. If used on a media that
 allows for jumbo frames, we suggest defining a media adapation
 envelope that allows for multiple smaller frames.

 There are several global TLV definitions that we reserve at all
 hierarchical contexts. The TLV types in the range 0x1000 - 0x1FFF
 are reserved for experimental use. The TLV type T_ORG is also
 reserved for vendor extensions (see Section 3.3.2). The TLV type
 T_PAD is used to optionally pad a field out to some desired
 alignment.

 +--------+-------------------------+--------------------------------+
 | Abbrev | Name | Description |
 +--------+-------------------------+--------------------------------+
T_ORG	Vendor Specific	Information specific to a
	Information (Section	vendor implementation (see
	3.3.2)	below).
T_PAD	Padding (Section 3.3.1)	Adds padding to a field (see
		below).
n/a	Experimental	Experimental use.
 +--------+-------------------------+--------------------------------+

 Table 1: Reserved TLV Types

Mosko, et al. Expires July 28, 2019 [Page 5]

Internet-Draft CCNx TLV January 2019

 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Type | Length |
 +---------------+---------------+---------------+---------------+

 The Length field contains the length of the Value field in octets.
 It does not include the length of the Type and Length fields. The
 length MAY be zero.

 TLV structures are nestable, allowing the Value field of one TLV
 structure to contain additional TLV structures. The enclosing TLV
 structure is called the container of the enclosed TLV.

 Type values are context-dependent. Within a TLV container, one may
 re-use previous type values for new context-dependent purposes.

3.1. Overall packet format

 Each packet includes the 8 byte fixed header, described below,
 followed by a set of TLV fields. These fields are optional hop-by-
 hop headers and the Packet Payload.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PacketType | PacketLength |
 +---------------+---------------+---------------+---------------+
 | PacketType specific fields | HeaderLength |
 +---------------+---------------+---------------+---------------+
 / Optional Hop-by-hop header TLVs /
 +---------------+---------------+---------------+---------------+
 / PacketPayload TLVs /
 +---------------+---------------+---------------+---------------+

 The packet payload is a TLV encoding of the CCNx message, followed by
 optional Validation TLVs.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | CCNx Message TLV /
 +---------------+---------------+---------------+---------------+
 / Optional CCNx ValidationAlgorithm TLV /
 +---------------+---------------+---------------+---------------+
 / Optional CCNx ValidationPayload TLV (ValidationAlg required) /
 +---------------+---------------+---------------+---------------+

Mosko, et al. Expires July 28, 2019 [Page 6]

Internet-Draft CCNx TLV January 2019

 This document describes the Version "1" TLV encoding.

 After discarding the fixed and hop-by-hop headers the remaining
 PacketPayload should be a valid protocol message. Therefore, the
 PacketPayload always begins with 4 bytes of type-length that
 specifies the protocol message (whether it is an Interest, Content
 Object, or other message type) and its total length. The embedding
 of a self-sufficient protocol data unit inside the fixed and hop-by-
 hop headers allows a network stack to discard the headers and operate
 only on the embedded message. It also de-couples the PacketType
 field -- which specifies how to forward the packet -- from the
 PacketPayload.

 The range of bytes protected by the Validation includes the CCNx
 Message and the ValidationAlgorithm.

 The ContentObjectHash begins with the CCNx Message and ends at the
 tail of the packet.

3.2. Fixed Headers

 CCNx messages begin with an 8 byte fixed header (non-TLV format).
 The HeaderLength field represents the combined length of the Fixed
 and Hop-by-hop headers. The PacketLength field represents the entire
 Packet length from the first byte of Version to the last byte of the
 packet.

 A specific PacketType may assign meaning to the "PacketType specific
 fields," which are otherwise reserved. For the three defined
 PacketTypes (Interest, ContentObject, and InterestReturn), we define
 those values in this document.

 The PacketPayload of a CCNx packet is the protocol message itself.
 The Content Object Hash is computed over the PacketPayload only,
 excluding the fixed and hop-by-hop headers as those might change from
 hop to hop. Signed information or Similarity Hashes should not
 include any of the fixed or hop-by-hop headers. The PacketPayload
 should be self-sufficient in the event that the fixed and hop-by-hop
 headers are removed.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PacketType | PacketLength |
 +---------------+---------------+---------------+---------------+
 | PacketType specific fields | HeaderLength |
 +---------------+---------------+---------------+---------------+

Mosko, et al. Expires July 28, 2019 [Page 7]

Internet-Draft CCNx TLV January 2019

 o Version: defines the version of the packet.

 o HeaderLength: The length of the fixed header (8 bytes) and hop-by-
 hop headers. The minimum value MUST be "8".

 o PacketType: describes forwarder actions to take on the packet.

 o PacketLength: Total octets of packet including all headers (fixed
 header plus hop-by-hop headers) and protocol message.

 o PacketType Specific Fields: specific PacketTypes define the use of
 these bits.

 The PacketType field indicates how the forwarder should process the
 packet. A Request Packet (Interest) has PacketType PT_INTEREST, a
 Response (Content Object) has PacketType PT_CONTENT, and an
 InterestReturn has PacketType PT_RETURN.

 HeaderLength is the number of octets from the start of the packet
 (Version) to the end of the hop-by-hop headers. PacketLength is the
 number of octets from the start of the packet to the end of the
 packet. Both lengths have a minimum value of 8 (the fixed header
 itself).

 The PacketType specific fields are reserved bits whose use depends on
 the PacketType. They are used for network-level signaling.

3.2.1. Interest Fixed Header

 If the PacketType is PT_INTEREST, it indicates that the PacketPayload
 should be processed as an Interest message. For this type of packet,
 the Fixed Header includes a field for a HopLimit as well as Reserved
 and Flags fields. The Reserved field MUST be set to 0 in an Interest
 - this field will be set to a return code in the case of an Interest
 Return. There are currently no Flags defined, so this field MUST be
 set to 0.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PT_INTEREST | PacketLength |
 +---------------+---------------+---------------+---------------+
 | HopLimit | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

Mosko, et al. Expires July 28, 2019 [Page 8]

Internet-Draft CCNx TLV January 2019

3.2.1.1. Interest HopLimit

 For an Interest message, the HopLimit is a counter that is
 decremented with each hop. It limits the distance an Interest may
 travel on the network. The node originating the Interest MAY put in
 any value - up to the maximum of 255. Each node that receives an
 Interest with a HopLimit decrements the value upon reception. If the
 value is 0 after the decrement, the Interest MUST NOT be forwarded
 off the node.

 It is an error to receive an Interest with a 0 hop-limit from a
 remote node.

3.2.2. Content Object Fixed Header

 If the PacketType is PT_CONTENT, it indicates that the PacketPayload
 should be processed as a Content Object message. A Content Object
 defines a Flags field, however there are currently no flags defined,
 so the Flags field must be set to 0.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PT_CONTENT | PacketLength |
 +---------------+---------------+---------------+---------------+
 | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

3.2.3. InterestReturn Fixed Header

 If the PacketType is PT_RETURN, it indicates that the PacketPayload
 should be processed as a returned Interest message. The only
 difference between this InterestReturn message and the original
 Interest is that the PacketType is changed to PT_RETURN and a
 ReturnCode is is put into the ReturnCode field. All other fields are
 unchanged from the Interest packet. The purpose of this encoding is
 to prevent packet length changes so no additional bytes are needed to
 return an Interest to the previous hop. See [CCNSemantics] for a
 protocol description of this packet type.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PT_RETURN | PacketLength |
 +---------------+---------------+---------------+---------------+
 | HopLimit | ReturnCode | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

Mosko, et al. Expires July 28, 2019 [Page 9]

Internet-Draft CCNx TLV January 2019

3.2.3.1. InterestReturn HopLimit

 This is the original Interest’s HopLimit, as received. It is the
 value before being decremented at the current node (i.e. the received
 value).

3.2.3.2. InterestReturn Flags

 These are the original Flags as set in the Interest.

3.2.3.3. Return Code

 The numeric value assigned to the return types is defined below.
 This value is set by the node creating the Interest Return.

 A return code of "0" MUST NOT be used, as it indicates that the
 returning system did not modify the Return Code field.

 +-------------------------------------+-----------------------------+
 | Type | Return Type |
 +-------------------------------------+-----------------------------+
T_RETURN_NO_ROUTE	No Route
T_RETURN_LIMIT_EXCEEDED	Hop Limit Exceeded
T_RETURN_NO_RESOURCES	No Resources
T_RETURN_PATH_ERROR	Path Error
T_RETURN_PROHIBITED	Prohibited
T_RETURN_CONGESTED	Congested
T_RETURN_MTU_TOO_LARGE	MTU too large
T_RETURN_UNSUPPORTED_HASH_RESTRICTI	Unsupported ContentObjectHa
ON	shRestriction
T_RETURN_MALFORMED_INTEREST	Malformed Interest
 +-------------------------------------+-----------------------------+

 Table 2: Return Codes

3.3. Global Formats

 This section defines global formats that may be nested within other
 TLVs.

Mosko, et al. Expires July 28, 2019 [Page 10]

Internet-Draft CCNx TLV January 2019

3.3.1. Pad

 The pad type may be used by protocols that prefer word-aligned data.
 The size of the word may be defined by the protocol. Padding 4-byte
 words, for example, would use a 1-byte, 2-byte, and 3-byte Length.
 Padding 8-byte words would use a (0, 1, 2, 3, 5, 6, 7)-byte Length.

 One MUST NOT pad inside a Name. Apart from that, a pad MAY be
 inserted after any other TLV in the CCNx Message or in the Validation
 Dependent Data In the remainder of this document, we will not show
 optional pad TLVs.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAD | Length |
 +---------------+---------------+---------------+---------------+
 / variable length pad MUST be zeros /
 +---------------+---------------+---------------+---------------+

3.3.2. Organization Specific TLVs

 Organization specific TLVs (also known as Vendor TLVs) MUST use the
 T_ORG type. The Length field is the length of the organization
 specific information plus 3. The Value begins with the 3 byte
 organization number derived from the last three digits of the IANA
 Private Enterprise Numbers [EpriseNumbers], followed by the
 organization specific information.

 A T_ORG MAY be used as a path segment in a Name, in which case it is
 a regular path segment and is part of the regular name matching.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_ORG | Length (3+value length) |
 +---------------+---------------+---------------+---------------+
 | PEN[0] | PEN[1] | PEN[2] | /
 +---------------+---------------+---------------+ +
 / Vendor Specific Value /
 +---------------+---------------+---------------+---------------+

3.3.3. Hash Format

 Hash values are used in several fields throughout a packet. This TLV
 encoding is commonly embedded inside those fields to specify the
 specific hash function used and it’s value. Note that the reserved

Mosko, et al. Expires July 28, 2019 [Page 11]

Internet-Draft CCNx TLV January 2019

 TLV types are also reserved here for user-defined experimental
 functions.

 The LENGTH field of the hash value MUST be less than or equal to the
 hash function length. If the LENGTH is less than the full length, it
 is taken as the left LENGTH bytes of the hash function output. Only
 specified truncations are allowed, not arbitrary truncations.

 This nested format is used because it allows binary comparison of
 hash values for certain fields without a router needing to understand
 a new hash function. For example, the KeyIdRestriction is bit-wise
 compared between an Interest’s KeyIdRestriction field and a
 ContentObject’s KeyId field. This format means the outer field
 values do not change with differing hash functions so a router can
 still identify those fields and do a binary comparison of the hash
 TLV without need to understand the specific hash used. An
 alternative approach, such as using T_KEYID_SHA512-256, would require
 each router keep an up-to-date parser and supporting user-defined
 hash functions here would explode the parsing state-space.

 A CCNx entity MUST support the hash type T_SHA-256. An entity MAY
 support the remaining hash types.

 +-----------+------------------------+
 | Abbrev | Lengths (octets) |
 +-----------+------------------------+
 | T_SHA-256 | 32 |
 | | |
 | T_SHA-512 | 64, 32 |
 | | |
 | n/a | Experimental TLV types |
 +-----------+------------------------+

 Table 3: CCNx Hash Functions

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_FOO | 36 |
 +---------------+---------------+---------------+---------------+
 | T_SHA512 | 32 |
 +---------------+---------------+---------------+---------------+
 / 32-byte hash value /
 +---------------+---------------+---------------+---------------+

 Example nesting inside type T_FOO

Mosko, et al. Expires July 28, 2019 [Page 12]

Internet-Draft CCNx TLV January 2019

3.3.4. Link

 A Link is the tuple: {Name, [KeyIdRestr], [ContentObjectHashRestr]}.
 It is a general encoding that is used in both the payload of a
 Content Object with PayloadType = "Link" and in the KeyLink field in
 a KeyLocator. A Link is essentially the body of an Interest.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 / Mandatory CCNx Name /
 +---------------+---------------+-------------------------------+
 / Optional KeyIdRestriction /
 +---+
 / Optional ContentObjectHashRestriction /
 +---+

3.4. Hop-by-hop TLV headers

 Hop-by-hop TLV headers are unordered and meaning MUST NOT be attached
 to their ordering. Three hop-by-hop headers are described in this
 document:

 +-------------+-------------------+---------------------------------+
 | Abbrev | Name | Description |
 +-------------+-------------------+---------------------------------+
T_INTLIFE	Interest Lifetime	The time an Interest should
	(Section 3.4.1)	stay pending at an intermediate
		node.
T_CACHETIME	Recommended Cache	The Recommended Cache Time for
	Time (Section	Content Objects.
	3.4.2)	
T_MSGHASH	Message Hash	The hash of the CCNx Message to
	(Section 3.4.3)	end of packet using Section
		3.3.3 format.
 +-------------+-------------------+---------------------------------+

 Table 4: Hop-by-hop Header Types

 Additional hop-by-hop headers are defined in higher level
 specifications such as the fragmentation specification.

Mosko, et al. Expires July 28, 2019 [Page 13]

Internet-Draft CCNx TLV January 2019

3.4.1. Interest Lifetime

 The Interest Lifetime is the time that an Interest should stay
 pending at an intermediate node. It is expressed in milliseconds as
 an unsigned, network byte order integer.

 A value of 0 (encoded as 1 byte %x00) indicates the Interest does not
 elicit a Content Object response. It should still be forwarded, but
 no reply is expected and a forwarder could skip creating a PIT entry.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_INTLIFE | Length |
 +---------------+---------------+---------------+---------------+
 / /
 / Lifetime (length octets) /
 / /
 +---------------+---------------+---------------+---------------+

3.4.2. Recommended Cache Time

 The Recommended Cache Time (RCT) is a measure of the useful lifetime
 of a Content Object as assigned by a content producer or upstream
 node. It serves as a guideline to the Content Store cache in
 determining how long to keep the Content Object. It is a
 recommendation only and may be ignored by the cache. This is in
 contrast to the ExpiryTime (described in Section 3.6.2.2.2) which
 takes precedence over the RCT and must be obeyed.

 Because the Recommended Cache Time is an optional hop-by-hop header
 and not a part of the signed message, a content producer may re-issue
 a previously signed Content Object with an updated RCT without
 needing to re-sign the message. There is little ill effect from an
 attacker changing the RCT as the RCT serves as a guideline only.

 The Recommended Cache Time (a millisecond timestamp) is a network
 byte ordered unsigned integer of the number of milliseconds since the
 epoch in UTC of when the payload expires. It is a 64-bit field.

Mosko, et al. Expires July 28, 2019 [Page 14]

Internet-Draft CCNx TLV January 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_CACHETIME | 8 |
 +---------------+---------------+---------------+---------------+
 / /
 / Recommended Cache Time /
 / /
 +---------------+---------------+---------------+---------------+

3.4.3. Message Hash

 Within a trusted domain, an operator may calculate the message hash
 at a border device and insert that value into the hop-by-hop headers
 of a message. An egress device should remove the value. This
 permits intermediate devices within that trusted domain to match
 against a ContentObjectHashRestriction without calculating it at
 every hop.

 The message hash is a cryptographic hash from the start of the CCNx
 Message to the end of the packet. It is used to match against the
 ContentObjectHashRestriction (Section 3.6.2.1.2). The Message Hash
 may be of longer length than an Interest’s restriction, in which case
 the device should use the left bytes of the Message Hash to check
 against the Interest’s value.

 The Message Hash may only carry one hash type and there may only be
 one Message Hash header.

 The Message Hash header is unprotected, so this header is only of
 practical use within a trusted domain, such as an operator’s
 autonomous system.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_MSGHASH | (length + 4) |
 +---------------+---------------+---------------+---------------+
 | (hash type) | length |
 +---------------+---------------+---------------+---------------+
 / hash value /
 +---------------+---------------+---------------+---------------+

 Message Hash Header

Mosko, et al. Expires July 28, 2019 [Page 15]

Internet-Draft CCNx TLV January 2019

3.5. Top-Level Types

 The top-level TLV types listed below exist at the outermost level of
 a CCNx protocol message.

 +----------------------+-------------------+------------------------+
 | Abbrev | Name | Description |
 +----------------------+-------------------+------------------------+
T_INTEREST	Interest (Section	An Interest
	3.6)	MessageType.
T_OBJECT	Content Object	A Content Object
	(Section 3.6)	MessageType
T_VALIDATION_ALG	Validation	The method of message
	Algorithm	verification such as
	(Section 3.6.4.1)	Message Integrity
		Check (MIC), a Message
		Authentication Code
		(MAC), or a
		cryptographic
		signature.
T_VALIDATION_PAYLOAD	Validation	The validation output,
	Payload (Section	such as the CRC32C
	3.6.4.2)	code or the RSA
		signature.
 +----------------------+-------------------+------------------------+

 Table 5: CCNx Top Level Types

3.6. CCNx Message

 This is the format for the CCNx protocol message itself. The CCNx
 message is the portion of the packet between the hop-by-hop headers
 and the Validation TLVs. The figure below is an expansion of the
 "CCNx Message TLV" depicted in the beginning of Section 3. The CCNx
 message begins with MessageType and runs through the optional
 Payload. The same general format is used for both Interest and
 Content Object messages which are differentiated by the MessageType
 field. The first enclosed TLV of a CCNx Message is always the Name
 TLV. This is followed by an optional Message TLVs and an optional
 Payload TLV.

Mosko, et al. Expires July 28, 2019 [Page 16]

Internet-Draft CCNx TLV January 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV (Type = T_NAME) |
 +---------------+---------------+---------------+---------------+
 / Optional Message TLVs (Various Types) /
 +---------------+---------------+---------------+---------------+
 / Optional Payload TLV (Type = T_PAYLOAD) /
 +---------------+---------------+---------------+---------------+

 +-----------+-----------------+-------------------------------------+
 | Abbrev | Name | Description |
 +-----------+-----------------+-------------------------------------+
T_NAME	Name (Section	The CCNx Name requested in an
	3.6.1)	Interest or published in a Content
		Object.
T_PAYLOAD	Payload	The message payload.
	(Section 3.6.3)	
 +-----------+-----------------+-------------------------------------+

 Table 6: CCNx Message Types

3.6.1. Name

 A Name is a TLV encoded sequence of segments. The table below lists
 the type values appropriate for these Name segments. A Name MUST NOT
 include PAD TLVs.

 As described in CCNx Semantics [CCNSemantics], using the CCNx URI
 [CCNxURI] notation, a T_NAME with 0 length corresponds to ccnx:/ (the
 default route) and is distinct from a name with one zero length
 segment, such as ccnx:/NAME=. In the TLV encoding, ccnx:/
 corresponds to T_NAME with 0 length, while ccnx:/NAME= corresponds to
 T_NAME with 4 length and T_NAMESEGMENT with 0 length.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_NAME | Length |
 +---------------+---------------+---------------+---------------+
 / Name segment TLVs /
 +---------------+---------------+---------------+---------------+

Mosko, et al. Expires July 28, 2019 [Page 17]

Internet-Draft CCNx TLV January 2019

 +---------------+-------------------+-------------------------------+
 | Symbolic Name | Name | Description |
 +---------------+-------------------+-------------------------------+
T_NAMESEGMENT	Name segment	A generic name Segment.
	(Section 3.6.1.1)	
T_IPID	Interest Payload	An identifier that represents
	ID (Section	the Interest Payload field.
	3.6.1.2)	As an example, the Payload ID
		might be a hash of the
		Interest Payload. This
		provides a way to
		differentiate between
		Interests based on their
		payloads without having to
		parse all the bytes of the
		payload itself; instead using
		only this Payload ID Name
		segment.
T_APP:00 -	Application	Application-specific payload
T_APP:4096	Components	in a name segment. An
	(Section 3.6.1.1)	application may apply its own
		semantics to the 4096
		reserved types.
 +---------------+-------------------+-------------------------------+

 Table 7: CCNx Name Types

3.6.1.1. Name Segments

 4096 special application payload name segments are allocated. These
 have application semantics applied to them. A good convention is to
 put the application’s identity in the name prior to using these name
 segments.

 For example, a name like "ccnx:/foo/bar/hi" would be encoded as:

Mosko, et al. Expires July 28, 2019 [Page 18]

Internet-Draft CCNx TLV January 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | (T_NAME) | %x14 (20) |
 +---------------+---------------+---------------+---------------+
 | (T_NAME_SEGMENT) | %x03 (3) |
 +---------------+---------------+---------------+---------------+
 | f o o |(T_NAME_SEGMENT)
 +---------------+---------------+---------------+---------------+
 | | %x03 (3) | b |
 +---------------+---------------+---------------+---------------+
 | a r | (T_NAME_SEGMENT) |
 +---------------+---------------+---------------+---------------+
 | %x02 (2) | h | i |
 +---------------+---------------+---------------+---------------+

3.6.1.2. Interest Payload ID

 The InterestPayloadID is a name segment created by the origin of an
 Interest to represent the Interest Payload. This allows the proper
 multiplexing of Interests based on their name if they have different
 payloads. A common representation is to use a hash of the Interest
 Payload as the InterestPayloadID.

 As part of the TLV ’value’, the InterestPayloadID contains a one
 identifier of method used to create the InterestPayloadID followed by
 a variable length octet string. An implementation is not required to
 implement any of the methods to receive an Interest; the
 InterestPayloadID may be treated only as an opaque octet string for
 purposes of multiplexing Interests with different payloads. Only a
 device creating an InterestPayloadID name segment or a device
 verifying such a segment need to implement the algorithms.

 It uses the Section 3.3.3 encoding of hash values.

 In normal operations, we recommend displaying the InterestPayloadID
 as an opaque octet string in a CCNx URI, as this is the common
 denominator for implementation parsing.

 The InterestPayloadID, even if it is a hash, should not convey any
 security context. If a system requires confirmation that a specific
 entity created the InterestPayload, it should use a cryptographic
 signature on the Interest via the ValidationAlgorithm and
 ValidationPayload or use its own methods inside the Interest Payload.

Mosko, et al. Expires July 28, 2019 [Page 19]

Internet-Draft CCNx TLV January 2019

3.6.2. Message TLVs

 Each message type (Interest or Content Object) is associated with a
 set of optional Message TLVs. Additional specification documents may
 extend the types associated with each.

3.6.2.1. Interest Message TLVs

 There are two Message TLVs currently associated with an Interest
 message: the KeyIdRestriction selector and the ContentObjectHashRestr
 selector are used to narrow the universe of acceptable Content
 Objects that would satisfy the Interest.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV |
 +---------------+---------------+---------------+---------------+
 / Optional KeyIdRestriction TLV /
 +---+
 / Optional ContentObjectHashRestriction TLV /
 +---+

 +----------------+------------------------------+-------------------+
 | Abbrev | Name | Description |
 +----------------+------------------------------+-------------------+
T_KEYIDRESTR	KeyIdRestriction (Section	A Section 3.3.3
	3.6.2.1.1)	representation of
		the KeyId
T_OBJHASHRESTR	ContentObjectHashRestriction	A Section 3.3.3
	(Section 3.6.2.1.2)	representation of
		the hash of the
		specific Content
		Object that would
		satisfy the
		Interest.
 +----------------+------------------------------+-------------------+

 Table 8: CCNx Interest Message TLV Types

3.6.2.1.1. KeyIdRestriction

 An Interest MAY include a KeyIdRestriction selector. This ensures
 that only Content Objects with matching KeyIds will satisfy the
 Interest. See Section 3.6.4.1.4.1 for the format of a KeyId.

Mosko, et al. Expires July 28, 2019 [Page 20]

Internet-Draft CCNx TLV January 2019

3.6.2.1.2. ContentObjectHashRestriction

 An Interest MAY contain a ContentObjectHashRestriction selector.
 This is the hash of the Content Object - the self-certifying name
 restriction that must be verified in the network, if an Interest
 carried this restriction. It is calculated from the beginning of the
 CCNx Message to the end of the packet. The LENGTH MUST be from one
 of the allowed values for that hash (see Section 3.3.3).

 The ContentObjectHashRestriction SHOULD be of type T_SHA-256 and of
 length 32 bytes.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_OBJHASHRESTR | LENGTH+4 |
 +---------------+---------------+---------------+---------------+
 | <hash type> | LENGTH |
 +---------------+---------------+---------------+---------------+
 / LENGTH octets of hash /
 +---------------+---------------+---------------+---------------+

3.6.2.2. Content Object Message TLVs

 The following message TLVs are currently defined for Content Objects:
 PayloadType (optional) and ExpiryTime (optional).

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV |
 +---------------+---------------+---------------+---------------+
 / Optional PayloadType TLV /
 +---+
 / Optional ExpiryTime TLV /
 +---+

Mosko, et al. Expires July 28, 2019 [Page 21]

Internet-Draft CCNx TLV January 2019

 +-------------+---------------------+-------------------------------+
 | Abbrev | Name | Description |
 +-------------+---------------------+-------------------------------+
T_PAYLDTYPE	PayloadType	Indicates the type of Payload
	(Section 3.6.2.2.1)	contents.
T_EXPIRY	ExpiryTime (Section	The time at which the Payload
	3.6.2.2.2)	expires, as expressed in the
		number of milliseconds since
		the epoch in UTC. If
		missing, Content Object may
		be used as long as desired.
 +-------------+---------------------+-------------------------------+

 Table 9: CCNx Content Object Message TLV Types

3.6.2.2.1. PayloadType

 The PayloadType is a network byte order integer representing the
 general type of the Payload TLV.

 o T_PAYLOADTYPE_DATA: Data (possibly encrypted)

 o T_PAYLOADTYPE_KEY: Key

 o T_PAYLOADTYPE_LINK: Link

 The Data type indicate that the Payload of the ContentObject is
 opaque application bytes. The Key type indicates that the Payload is
 a DER encoded public key. The Link type indicates that the Payload
 is one or more Link (Section 3.3.4). If this field is missing, a
 "Data" type is assumed.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAYLDTYPE | Length |
 +---------------+---------------+---------------+---------------+
 | PayloadType /
 +---------------+

3.6.2.2.2. ExpiryTime

 The ExpiryTime is the time at which the Payload expires, as expressed
 by a timestamp containing the number of milliseconds since the epoch
 in UTC. It is a network byte order unsigned integer in a 64-bit
 field. A cache or end system should not respond with a Content
 Object past its ExpiryTime. Routers forwarding a Content Object do

Mosko, et al. Expires July 28, 2019 [Page 22]

Internet-Draft CCNx TLV January 2019

 not need to check the ExpiryTime. If the ExpiryTime field is
 missing, the Content Object has no expressed expiration and a cache
 or end system may use the Content Object for as long as desired.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_EXPIRY | 8 |
 +---------------+---------------+---------------+---------------+
 / ExpiryTime /
 / /
 +---------------+---------------+---------------+---------------+

3.6.3. Payload

 The Payload TLV contains the content of the packet. It MAY be of
 zero length. If a packet does not have any payload, this field MAY
 be omitted, rather than carrying a zero length.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAYLOAD | Length |
 +---------------+---------------+---------------+---------------+
 / Payload Contents /
 +---------------+---------------+---------------+---------------+

3.6.4. Validation

 Both Interests and Content Objects have the option to include
 information about how to validate the CCNx message. This information
 is contained in two TLVs: the ValidationAlgorithm TLV and the
 ValidationPayload TLV. The ValidationAlgorithm TLV specifies the
 mechanism to be used to verify the CCNx message. Examples include
 verification with a Message Integrity Check (MIC), a Message
 Authentication Code (MAC), or a cryptographic signature. The
 ValidationPayload TLV contains the validation output, such as the
 CRC32C code or the RSA signature.

 An Interest would most likely only use a MIC type of validation - a
 crc, checksum, or digest.

3.6.4.1. Validation Algorithm

 The ValidationAlgorithm is a set of nested TLVs containing all of the
 information needed to verify the message. The outermost container
 has type = T_VALIDATION_ALG. The first nested TLV defines the
 specific type of validation to be performed on the message. The type

Mosko, et al. Expires July 28, 2019 [Page 23]

Internet-Draft CCNx TLV January 2019

 is identified with the "ValidationType" as shown in the figure below
 and elaborated in the table below. Nested within that container are
 the TLVs for any ValidationType dependent data, for example a Key Id,
 Key Locator etc.

 Complete examples of several types may be found in Section 3.6.4.1.5

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | ValidationAlgLength |
 +---------------+---------------+---------------+---------------+
 | ValidationType | Length |
 +---------------+---------------+---------------+---------------+
 / ValidationType dependent data /
 +---------------+---------------+---------------+---------------+

 +---------------+---------------------+-----------------------------+
 | Abbrev | Name | Description |
 +---------------+---------------------+-----------------------------+
T_CRC32C	CRC32C (Section	Castagnoli CRC32 (iSCSI,
	3.6.4.1.1)	ext4, etc.), with normal
		form polynomial 0x1EDC6F41.
T_HMAC-SHA256	HMAC-SHA256	HMAC (RFC 2104) using
	(Section 3.6.4.1.2)	SHA256 hash.
T_RSA-SHA256	RSA-SHA256 (Section	RSA public key signature
	3.6.4.1.3)	using SHA256 digest.
EC-SECP-256K1	SECP-256K1 (Section	Elliptic Curve signature
	3.6.4.1.3)	with SECP-256K1 parameters
		(see [ECC]).
EC-SECP-384R1	SECP-384R1 (Section	Elliptic Curve signature
	3.6.4.1.3)	with SECP-384R1 parameters
		(see [ECC]).
 +---------------+---------------------+-----------------------------+

 Table 10: CCNx Validation Types

3.6.4.1.1. Message Integrity Checks

 MICs do not require additional data in order to perform the
 verification. An example is CRC32C that has a "0" length value.

Mosko, et al. Expires July 28, 2019 [Page 24]

Internet-Draft CCNx TLV January 2019

3.6.4.1.2. Message Authentication Checks

 MACs are useful for communication between two trusting parties who
 have already shared private keys. Examples include an RSA signature
 of a SHA256 digest or others. They rely on a KeyId. Some MACs might
 use more than a KeyId, but those would be defined in the future.

3.6.4.1.3. Signature

 Signature type Validators specify a digest mechanism and a signing
 algorithm to verify the message. Examples include RSA signature og a
 SHA256 digest, an Elliptic Curve signature with SECP-256K1
 parameters, etc. These Validators require a KeyId and a mechanism
 for locating the publishers public key (a KeyLocator) - optionally a
 PublicKey or Certificate or KeyLink.

3.6.4.1.4. Validation Dependent Data

 Different Validation Algorithms require access to different pieces of
 data contained in the ValidationAlgorithm TLV. As described above,
 Key Ids, Key Locators, Public Keys, Certificates, Links and Key Names
 all play a role in different Validation Algorithms. Any number of
 Validation Dependent Data containers can be present in a Validation
 Algorithm TLV.

 Following is a table of CCNx ValidationType dependent data types:

Mosko, et al. Expires July 28, 2019 [Page 25]

Internet-Draft CCNx TLV January 2019

 +-------------+-----------------------+-----------------------------+
 | Abbrev | Name | Description |
 +-------------+-----------------------+-----------------------------+
T_KEYID	SignerKeyId (Section	An identifier of the shared
	3.6.4.1.4.1)	secret or public key
		associated with a MAC or
		Signature.
T_PUBLICKEY	Public Key (Section	DER encoded public key.
	3.6.4.1.4.2)	
T_CERT	Certificate (Section	DER encoded X509
	3.6.4.1.4.3)	certificate.
T_KEYLINK	KeyLink (Section	A CCNx Link object.
	3.6.4.1.4.4)	
T_SIGTIME	SignatureTime	A millsecond timestamp
	(Section 3.6.4.1.4.5)	indicating the time when
		the signature was created.
 +-------------+-----------------------+-----------------------------+

 Table 11: CCNx Validation Dependent Data Types

3.6.4.1.4.1. KeyId

 The KeyId is the publisher key identifier. It is similar to a
 Subject Key Identifier from X509 [RFC 5280, Section 4.2.1.2]. It
 should be derived from the key used to sign, such as from the SHA-256
 hash of the key. It applies to both public/private key systems and
 to symmetric key systems.

 The KeyId is represented using the Section 3.3.3. If a protocol uses
 a non-hash identifier, it should use one of the reserved values.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_KEYID | LENGTH+4 |
 +---------------+---------------+---------------+---------------+
 | <hash type> | LENGTH |
 +---------------+---------------+---------------+---------------+
 / LENGTH octets of hash /
 +---------------+---------------+---------------+---------------+

Mosko, et al. Expires July 28, 2019 [Page 26]

Internet-Draft CCNx TLV January 2019

3.6.4.1.4.2. Public Key

 A Public Key is a DER encoded Subject Public Key Info block, as in an
 X509 certificate.

 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---------------+---------------+---------------+---------------+
 | T_PUBLICKEY | Length |
 +---------------+---------------+---------------+---------------+
 / Public Key (DER encoded SPKI) /
 +---------------+---------------+---------------+---------------+

3.6.4.1.4.3. Certificate

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_CERT | Length |
 +---------------+---------------+---------------+---------------+
 / Certificate (DER encoded X509) /
 +---------------+---------------+---------------+---------------+

3.6.4.1.4.4. KeyLink

 A KeyLink type KeyLocator is a Link.

 The KeyLink ContentObjectHashRestr, if included, is the digest of the
 Content Object identified by KeyLink, not the digest of the public
 key. Likewise, the KeyIdRestr of the KeyLink is the KeyId of the
 ContentObject, not necessarily of the wrapped key.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | T_KEYKINK | Length |
 +---------------+---------------+-------------------------------+
 / Link /
 +---+

3.6.4.1.4.5. SignatureTime

 The SignatureTime is a millisecond timestamp indicating the time at
 which a signature was created. The signer sets this field to the
 current time when creating a signature. A verifier may use this time
 to determine whether or not the signature was created during the
 validity period of a key, or if it occurred in a reasonable sequence
 with other associated signatures. The SignatureTime is unrelated to

Mosko, et al. Expires July 28, 2019 [Page 27]

Internet-Draft CCNx TLV January 2019

 any time associated with the actual CCNx Message, which could have
 been created long before the signature. The default behavior is to
 always include a SignatureTime when creating an authenticated message
 (e.g. HMAC or RSA).

 SignatureTime is a network byte ordered unsigned integer of the
 number of milliseconds since the epoch in UTC of when the signature
 was created. It is a fixed 64-bit field.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | T_SIGTIME | 8 |
 +---------------+---------------+-------------------------------+
 / SignatureTime /
 +---+

3.6.4.1.5. Validation Examples

 As an example of a MIC type validation, the encoding for CRC32C
 validation would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 4 |
 +---------------+---------------+---------------+---------------+
 | T_CRC32C | 0 |
 +---------------+---------------+---------------+---------------+

 As an example of a MAC type validation, the encoding for an HMAC
 using a SHA256 hash would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 40 |
 +---------------+---------------+---------------+---------------+
 | T_HMAC-SHA256 | 36 |
 +---------------+---------------+---------------+---------------+
 | T_KEYID | 32 |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+

 As an example of a Signature type validation, the encoding for an RSA
 public key signing using a SHA256 digest and Public Key would be:

Mosko, et al. Expires July 28, 2019 [Page 28]

Internet-Draft CCNx TLV January 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 44 + Variable Length |
 +---------------+---------------+---------------+---------------+
 | T_RSA-SHA256 | 40 + Variable Length |
 +---------------+---------------+---------------+---------------+
 | T_KEYID | 32 |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+
 | T_PUBLICKEY | Variable Length (˜ 160) |
 +---------------+---------------+---------------+---------------+
 / Public Key (DER encoded SPKI) /
 +---------------+---------------+---------------+---------------+

3.6.4.2. Validation Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_PAYLOAD | ValidationPayloadLength |
 +---------------+---------------+---------------+---------------+
 / Type-dependent data /
 +---------------+---------------+---------------+---------------+

 The ValidationPayload contains the validation output, such as the
 CRC32C code or the RSA signature.

4. IANA Considerations

 This section details each kind of protocol value that can be
 registered. Each type registry can be updated by incrementally
 expanding the type space, i.e., by allocating and reserving new
 types. As per [RFC5226] this section details the creation of the
 "CCNx Registry" and several sub-registries.

 +----------+---------------+
 | Property | Value |
 +----------+---------------+
 | Name | CCNx Registry |
 | | |
 | Abbrev | CCNx |
 +----------+---------------+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 29]

Internet-Draft CCNx TLV January 2019

4.1. Packet Type Registry

 The following packet types should be allocated. A PacketType MUST be
 1 byte. New packet types are allocated via "RFC Required" action.

 +----------------+----------------------+
 | Property | Value |
 +----------------+----------------------+
 | Name | Packet Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | RFC Required |
 | | |
 | Syntax | 1 octet |
 +----------------+----------------------+

 Registry Creation

 +------+-------------+----------------------------------+
 | Type | Name | Reference |
 +------+-------------+----------------------------------+
 | %x00 | PT_INTEREST | Fixed Header Types (Section 3.2) |
 | | | |
 | %x01 | PT_CONTENT | Fixed Header Types (Section 3.2) |
 | | | |
 | %x02 | PT_RETURN | Fixed Header Types (Section 3.2) |
 +------+-------------+----------------------------------+

 Packet Type Namespace

4.2. Interest Return Code Registry

 The following InterestReturn code types should be allocated.

 +----------------+------------------------+
 | Property | Value |
 +----------------+------------------------+
 | Name | Interest Return Code |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | Specification Required |
 | | |
 | Syntax | 1 octet |
 +----------------+------------------------+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 30]

Internet-Draft CCNx TLV January 2019

 +------+---------------------------------------+--------------------+
 | Type | Name | Reference |
 +------+---------------------------------------+--------------------+
%x00	Reserved	
%x01	T_RETURN_NO_ROUTE	Fixed Header Types
		(Section 3.2.3.3)
%x02	T_RETURN_LIMIT_EXCEEDED	Fixed Header Types
		(Section 3.2.3.3)
%x03	T_RETURN_NO_RESOURCES	Fixed Header Types
		(Section 3.2.3.3)
%x04	T_RETURN_PATH_ERROR	Fixed Header Types
		(Section 3.2.3.3)
%x05	T_RETURN_PROHIBITED	Fixed Header Types
		(Section 3.2.3.3)
%x06	T_RETURN_CONGESTED	Fixed Header Types
		(Section 3.2.3.3)
%x07	T_RETURN_MTU_TOO_LARGE	Fixed Header Types
		(Section 3.2.3.3)
%x08	T_RETURN_UNSUPPORTED_HASH_RESTRICTION	Fixed Header Types
		(Section 3.2.3.3)
%x09	T_RETURN_MALFORMED_INTEREST	Fixed Header Types
		(Section 3.2.3.3)
 +------+---------------------------------------+--------------------+

 Interest Return Type Namespace

4.3. Hop-by-Hop Type Registry

 The following hop-by-hop types should be allocated.

Mosko, et al. Expires July 28, 2019 [Page 31]

Internet-Draft CCNx TLV January 2019

 +----------------+--------------------------+
 | Property | Value |
 +----------------+--------------------------+
 | Name | Hop-by-Hop Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | RFC Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+--------------------------+

 Registry Creation

 +---------------+-------------+-------------------------------------+
 | Type | Name | Reference |
 +---------------+-------------+-------------------------------------+
%x0000	Reserved	
%x0001	T_INTLIFE	Hop-by-hop TLV headers (Section
		3.4)
%x0002	T_CACHETIME	Hop-by-hop TLV headers (Section
		3.4)
%x0003	T_MSGHASH	Hop-by-hop TLV headers (Section
		3.4)
%x0004 -	Reserved	
%x0007		
%x0FFE	T_PAD	Pad (Section 3.3.1)
%x0FFF	T_ORG	Organization-Specific TLVs (Section
		3.3.2)
%x1000-%x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+-------------+-------------------------------------+

 Hop-by-Hop Type Namespace

4.4. Top-Level Type Registry

 The following top-level types should be allocated.

Mosko, et al. Expires July 28, 2019 [Page 32]

Internet-Draft CCNx TLV January 2019

 +----------------+-------------------------+
 | Property | Value |
 +----------------+-------------------------+
 | Name | Top-Level Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | RFC Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+-------------------------+

 Registry Creation

 +--------+----------------------+-------------------------------+
 | Type | Name | Reference |
 +--------+----------------------+-------------------------------+
 | %x0000 | Reserved | |
 | | | |
 | %x0001 | T_INTEREST | Top-Level Types (Section 3.5) |
 | | | |
 | %x0002 | T_OBJECT | Top-Level Types (Section 3.5) |
 | | | |
 | %x0003 | T_VALIDATION_ALG | Top-Level Types (Section 3.5) |
 | | | |
 | %x0004 | T_VALIDATION_PAYLOAD | Top-Level Types (Section 3.5) |
 +--------+----------------------+-------------------------------+

 Top-Level Type Namespace

4.5. Name Segment Type Registry

 The following name segment types should be allocated.

 +----------------+----------------------------+
 | Property | Value |
 +----------------+----------------------------+
 | Name | Name Segment Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | Specification Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+----------------------------+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 33]

Internet-Draft CCNx TLV January 2019

 +--------------+------------------+---------------------------------+
 | Type | Name | Reference |
 +--------------+------------------+---------------------------------+
%x0000	Reserved	
%x0001	T_NAMESEGMENT	Name (Section 3.6.1)
%x0002	T_IPID	Name (Section 3.6.1)
%x0010 -	Reserved	Used in other drafts
%x0013		
%x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
%x1000 -	T_APP:00 -	Application Components (Section
%x1FFF	T_APP:4096	3.6.1)
 +--------------+------------------+---------------------------------+

 Name Segment Type Namespace

4.6. Message Type Registry

 The following CCNx message segment types should be allocated.

 +----------------+-----------------------+
 | Property | Value |
 +----------------+-----------------------+
 | Name | Message Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | RFC Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+-----------------------+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 34]

Internet-Draft CCNx TLV January 2019

 +---------------+----------------+----------------------------------+
 | Type | Name | Reference |
 +---------------+----------------+----------------------------------+
%x0000	T_NAME	Message Types (Section 3.6)
%x0001	T_PAYLOAD	Message Types (Section 3.6)
%x0002	T_KEYIDRESTR	Message Types (Section 3.6)
%x0003	T_OBJHASHRESTR	Message Types (Section 3.6)
%x0005	T_PAYLDTYPE	Content Object Message Types
		(Section 3.6.2.2)
%x0006	T_EXPIRY	Content Object Message Types
		(Section 3.6.2.2)
%x0007 -	Reserved	Used in other RFC drafts
%x000C		
%x0FFE	T_PAD	Pad (Section 3.3.1)
%x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
%x1000-%x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+----------------+----------------------------------+

 CCNx Message Type Namespace

4.7. Payload Type Registry

 The following payload types should be allocated.

 +----------------+----------------------------------+
 | Property | Value |
 +----------------+----------------------------------+
 | Name | PayloadType Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | Specification Required |
 | | |
 | Syntax | Variable length unsigned integer |
 +----------------+----------------------------------+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 35]

Internet-Draft CCNx TLV January 2019

 +------+--------------------+-----------------------------------+
 | Type | Name | Reference |
 +------+--------------------+-----------------------------------+
 | %x00 | T_PAYLOADTYPE_DATA | Payload Types (Section 3.6.2.2.1) |
 | | | |
 | %x01 | T_PAYLOADTYPE_KEY | Payload Types (Section 3.6.2.2.1) |
 | | | |
 | %x02 | T_PAYLOADTYPE_LINK | Payload Types (Section 3.6.2.2.1) |
 +------+--------------------+-----------------------------------+

 Payload Type Namespace

4.8. Validation Algorithm Type Registry

 The following validation algorithm types should be allocated. Note:
 registration requires public specification of the algorithm.

 +----------------+------------------------------------+
 | Property | Value |
 +----------------+------------------------------------+
 | Name | Validation Algorithm Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | Specification Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+------------------------------------+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 36]

Internet-Draft CCNx TLV January 2019

 +---------------+---------------+-----------------------------------+
 | Type | Name | Reference |
 +---------------+---------------+-----------------------------------+
%x0000	Reserved	
%x0001	Unassigned	
%x0002	T_CRC32C	Validation Algorithm (Section
		3.6.4.1)
%x0003	Unassigned	
%x0004	T_HMAC-SHA256	Validation Algorithm (Section
		3.6.4.1)
%x0005	T_RSA-SHA256	Validation Algorithm (Section
		3.6.4.1)
%x0006	EC-SECP-256K1	Validation Algorithm (Section
		3.6.4.1)
%x0007	EC-SECP-384R1	Validation Algorithm (Section
		3.6.4.1)
%x0FFE	T_PAD	Pad (Section 3.3.1)
%x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
%x1000-%x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+---------------+-----------------------------------+

 Validation Algorithm Type Namespace

4.9. Validation Dependent Data Type Registry

 The following validation dependent data types should be allocated.

Mosko, et al. Expires July 28, 2019 [Page 37]

Internet-Draft CCNx TLV January 2019

 +----------------+---+
 | Property | Value |
 +----------------+---+
 | Name | Validation Dependent Data Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | RFC Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+---+

 Registry Creation

Mosko, et al. Expires July 28, 2019 [Page 38]

Internet-Draft CCNx TLV January 2019

 +---------------+----------------+----------------------------------+
 | Type | Name | Reference |
 +---------------+----------------+----------------------------------+
%x0000	Reserved	
%x0001 -	Unassigned	
%x0008		
%x0009	T_KEYID	Validation Dependent Data
		(Section 3.6.4.1.4)
%x000A	T_PUBLICKEYLOC	Validation Dependent Data
		(Section 3.6.4.1.4)
%x000B	T_PUBLICKEY	Validation Dependent Data
		(Section 3.6.4.1.4)
%x000C	T_CERT	Validation Dependent Data
		(Section 3.6.4.1.4)
%x000D	T_LINK	Validation Dependent Data
		(Section 3.6.4.1.4)
%x000E	T_KEYLINK	Validation Dependent Data
		(Section 3.6.4.1.4)
%x000F	T_SIGTIME	Validation Dependent Data
		(Section 3.6.4.1.4)
%x0FFF	T_ORG	Organization-Specific TLVs
		(Section 3.3.2)
%x1000-%x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+----------------+----------------------------------+

 Validation Dependent Data Type Namespace

4.10. Hash Function Type Registry

 The following CCNx hash function types should be allocated. Note:
 registration requires public specification of the algorithm.

Mosko, et al. Expires July 28, 2019 [Page 39]

Internet-Draft CCNx TLV January 2019

 +----------------+-----------------------------+
 | Property | Value |
 +----------------+-----------------------------+
 | Name | Hash Function Type Registry |
 | | |
 | Parent | CCNx Registry |
 | | |
 | Review process | Specification Required |
 | | |
 | Syntax | 2 octet TLV type |
 +----------------+-----------------------------+

 Registry Creation

 +---------------+-----------+---------------------------------------+
 | Type | Name | Reference |
 +---------------+-----------+---------------------------------------+
%x0000	Reserved	
%x0001	T_SHA-256	Hash Format (Section 3.3.3)
%x0002	T_SHA-512	Hash Format (Section 3.3.3)
%x0FFF	T_ORG	Organization-Specific TLVs (Section
		3.3.2)
%x1000-%x1FFF	Reserved	Experimental Use (Section 3)
 +---------------+-----------+---------------------------------------+

 CCNx Hash Function Type Namespace

5. Security Considerations

 The CCNx protocol is a layer 3 network protocol, which may also
 operate as an overlay using other transports, such as UDP or other
 tunnels. It includes intrinsic support for message authentication
 via a signature (e.g. RSA or elliptic curve) or message
 authentication code (e.g. HMAC). In lieu of an authenticator, it
 may instead use a message integrity check (e.g. SHA or CRC). CCNx
 does not specify an encryption envelope, that function is left to a
 high-layer protocol (e.g. [esic]).

 The CCNx message format includes the ability to attach MICs (e.g.
 SHA-256 or CRC), MACs (e.g. HMAC), and Signatures (e.g. RSA or
 ECDSA) to all packet types. This does not mean that it is a good
 idea to use an arbitrary ValidationAlgorithm, nor to include
 computationally expensive algorithms in Interest packets, as that
 could lead to computational DoS attacks. Applications should use an

Mosko, et al. Expires July 28, 2019 [Page 40]

Internet-Draft CCNx TLV January 2019

 explicit protocol to guide their use of packet signatures. As a
 general guideline, an application might use a MIC on an Interest to
 detect unintentionally corrupted packets. If one wishes to secure an
 Interest, one should consider using an encrypted wrapper and a
 protocol that prevents replay attacks, especially if the Interest is
 being used as an actuator. Simply using an authentication code or
 signature does not make an Interests secure. There are several
 examples in the literature on how to secure ICN-style messaging
 [mobile] [ace].

 As a layer 3 protocol, this document does not describe how one
 arrives at keys or how one trusts keys. The CCNx content object may
 include a public key embedded in the object or may use the
 PublicKeyLocator field to point to a public key (or public key
 certificate) that authenticates the message. One key exchange
 specification is CCNxKE [ccnxke] [mobile], which is similar to the
 TLS 1.3 key exchange except it is over the CCNx layer 3 messages.
 Trust is beyond the scope of a layer-3 protocol protocol and left to
 applications or application frameworks.

 The combination of an ephemeral key exchange (e.g. CCNxKE [ccnxke])
 and an encapsulating encryption (e.g. [esic]) provides the equivalent
 of a TLS tunnel. Intermediate nodes may forward the Interests and
 Content Objects, but have no visibility inside. It also completely
 hides the internal names in those used by the encryption layer. This
 type of tunneling encryption is useful for content that has little or
 no cache-ability as it can only be used by someone with the ephemeral
 key. Short term caching may help with lossy links or mobility, but
 long term caching is usually not of interest.

 Broadcast encryption or proxy re-encryption may be useful for content
 with multiple uses over time or many consumers. There is currently
 no recommendation for this form of encryption.

 The specific encoding of messages will have security implications.
 This document uses a type-length-value (TLV) encoding. We chose to
 compromise between extensibility and unambiguous encodings of types
 and lengths. Some TLVs use variable length T and variable length L
 fields to accomodate a wide gamut of values while trying to be byte-
 efficient. Our TLV encoding uses a fixed length 2-byte T and 2-byte
 L. Using a fixed-length T and L field solves two problems. The
 first is aliases. If one is able to encode the same value, such as
 0x2 and 0x02, in different byte lengths then one must decide if they
 mean the same thing, if they are different, or if one is illegal. If
 they are different, then one must always compare on the buffers not
 the integer equivalents. If one is illegal, then one must validate
 the TLV encoding -- every field of every packet at every hop. If
 they are the same, then one has the second problem: how to specify

Mosko, et al. Expires July 28, 2019 [Page 41]

Internet-Draft CCNx TLV January 2019

 packet filters. For example, if a name has 6 name components, then
 there are 7 T’s and 7 L’s, each of which might have up to 4
 representations of the same value. That would be 14 fields with 4
 encodings each, or 1001 combinations. It also means that one cannot
 compare, for example, a name via a memory function as one needs to
 consider that any embedded T or L might have a different format.

 The Interest Return message has no authenticator from the previous
 hop. Therefore, the payload of the Interest Return should only be
 used locally to match an Interest. A node should never forward that
 Interest payload as an Interest. It should also verify that it sent
 the Interest in the Interest Return to that node and not allow anyone
 to negate Interest messages.

 Caching nodes must take caution when processing content objects. It
 is essential that the Content Store obey the rules outlined in
 [CCNSemantics] to avoid certain types of attacks. Unlike NDN, CCNx
 1.0 has no mechanism to work around an undesired result from the
 network (there are no "excludes"), so if a cache becomes poisoned
 with bad content it might cause problems retrieving content. There
 are three types of access to content from a content store:
 unrestricted, signature restricted, and hash restricted. If an
 Interest has no restrictions, then the requester is not particular
 about what they get back, so any matching cached object is OK. In
 the hash restricted case, the requester is very specific about what
 they want and the content store (and every forward hop) can easily
 verify that the content matches the request. In the signature
 verified case (often used for initial manifest discovery), the
 requester only knows the KeyId that signed the content. It is this
 case that requires the closest attention in the content store to
 avoid amplifying bad data. The content store must only respond with
 a content object if it can verify the signature -- this means either
 the content object carries the public key inside it or the Interest
 carries the public key in addition to the KeyId. If that is not the
 case, then the content store should treat the Interest as a cache
 miss and let an endpoint respond.

 A user-level cache could perform full signature verification by
 fetching a public key according to the PublicKeyLocator. That is
 not, however, a burden we wish to impose on the forwarder. A user-
 level cache could also rely on out-of-band attestation, such as the
 cache operator only inserting content that it knows has the correct
 signature.

 The CCNx grammar allows for hash algorithm agility via the HashType.
 It specifies a short list of acceptable hash algorithms that should
 be implemented at each forwarder. Some hash values only apply to end
 systems, so updating the hash algorithm does not affect forwarders --

Mosko, et al. Expires July 28, 2019 [Page 42]

Internet-Draft CCNx TLV January 2019

 they would simply match the buffer that includes the type-length-hash
 buffer. Some fields, such as the ConObjHash, must be verified at
 each hop, so a forwarder (or related system) must know the hash
 algorithm and it could cause backward compatibility problems if the
 hash type is updated.

 A CCNx name uses binary matching whereas a URI uses a case
 insensitive hostname. Some systems may also use case insensitive
 matching of the URI path to a resource. An implication of this is
 that human-entered CCNx names will likely have case or non-ASCII
 symbol mismatches unless one uses a consistent URI normalization to
 the CCNx name. It also means that an entity that registers a CCNx
 routable prefix, say ccnx:/example.com, would need separate
 registrations for simple variations like ccnx:/Example.com. Unless
 this is addressed in URI normalization and routing protocol
 conventions, there could be phishing attacks.

 For a more general introduction to ICN-related security concerns and
 approaches, see [RFC7927] and [RFC7945]

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

6.2. Informative References

 [ace] Shang, W., Yu, Y., Liang, T., Zhang, B., and L. Zhang,
 "NDN-ACE: Access control for constrained environments over
 named data networking", NDN Technical Report NDN-0036,
 2015, <http://new.named-data.net/wp-
 content/uploads/2015/12/ndn-0036-1-ndn-ace.pdf>.

 [CCNSemantics]
 Mosko, M., Solis, I., and C. Wood, "CCNx Semantics
 (Internet draft)", 2018, <https://www.ietf.org/id/draft-
 irtf-icnrg-ccnxsemantics-09.txt>.

 [ccnxke] Mosko, M., Uzun, E., and C. Wood, "CCNx Key Exchange
 Protocol Version 1.0", 2017,
 <https://www.ietf.org/archive/id/draft-wood-icnrg-
 ccnxkeyexchange-02.txt>.

Mosko, et al. Expires July 28, 2019 [Page 43]

Internet-Draft CCNx TLV January 2019

 [CCNxURI] Mosko, M. and C. Wood, "The CCNx URI Scheme (Internet
 draft)", 2017,
 <http://tools.ietf.org/html/draft-mosko-icnrg-ccnxuri-02>.

 [CCNxz] Mosko, M., "CCNxz TLV Header Compression Experimental
 Code", 2016-2018, <https://github.com/PARC/CCNxz>.

 [compress]
 Mosko, M., "Header Compression for TLV-based Packets",
 2016, <https://datatracker.ietf.org/meeting/interim-2016-
 icnrg-02/materials/slides-interim-2016-icnrg-2-7>.

 [ECC] Certicom Research, "SEC 2: Recommended Elliptic Curve
 Domain Parameters", 2010,
 <http://www.secg.org/sec2-v2.pdf>.

 [EpriseNumbers]
 IANA, "IANA Private Enterprise Numbers", 2015,
 <http://www.iana.org/assignments/enterprise-numbers/
 enterprise-numbers>.

 [esic] Mosko, M. and C. Wood, "Encrypted Sessions In CCNx
 (ESIC)", 2017, <https://www.ietf.org/id/draft-wood-icnrg-
 esic-01.txt>.

 [mobile] Mosko, M., Uzun, E., and C. Wood, "Mobile Sessions in
 Content-Centric Networks", IFIP Networking, 2017,
 <http://dl.ifip.org/db/conf/networking/
 networking2017/1570334964.pdf>.

 [nnc] Jacobson, V., Smetters, D., Thornton, J., Plass, M.,
 Briggs, N., and R. Braynard, "Networking Named Content",
 2009, <http://dx.doi.org/10.1145/1658939.1658941>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008, <https://www.rfc-
 editor.org/info/rfc5226>.

 [RFC7927] Kutscher, D., Eum, S., Pentikousis, K., Psaras, I.,
 Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
 "Information-Centric Networking (ICN) Research
 Challenges", 2016, <https://trac.tools.ietf.org/html/
 rfc7927>.

Mosko, et al. Expires July 28, 2019 [Page 44]

Internet-Draft CCNx TLV January 2019

 [RFC7945] Pentikousis, K., Ohlman, B., Davies, E., Spirou, S., and
 G. Boggia, "Information-Centric Networking: Evaluation and
 Security Considerations", 2016,
 <https://trac.tools.ietf.org/html/rfc7945>.

Authors’ Addresses

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

 Ignacio Solis
 LinkedIn
 Mountain View, California 94043
 USA

 Email: nsolis@linkedin.com

 Christopher A. Wood
 University of California Irvine
 Irvine, California 92697
 USA

 Phone: +01 315-806-5939
 Email: woodc1@uci.edu

Mosko, et al. Expires July 28, 2019 [Page 45]

