
Internet-Draft Q. Dang
Intended status: Standards Track NIST
Expires: 29 April 2018 P. Kampanakis
 Cisco Systems
 29 October 2017

 Use of the SHAKE One-way Hash Functions in the
 Cryptographic Message Syntax (CMS)

 <draft-dang-lamps-cms-shakes-hash-00.txt>

Abstract

 This document describes the conventions for using 2 one-way
 hash functions called SHAKE128 and SHAKE256 in the SHA3 family with
 the Cryptographic Message Syntax (CMS).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 29 April 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Dang & Kampanakis Using SHAKEs with the CMS [Page 1]

Internet-Draft October 2017

1. Introduction

 The Cryptographic Message Syntax (CMS) [CMS] is used to digitally
 sign, digest, authenticate, or encrypt arbitrary message contents.
 This specification describes the use of the SHAKE128 and SHAKE256
 specified in [SHA3] as 2 new hash funcitons with the CMS. In addition,
 this specification describes the use of these 2 one-way hash functions
 with the RSASSA PKCS#1 version 1.5 signature algorithm [PKCS1] and the
 Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] with the CMS
 signed-data content type.

1.1. ASN.1

 CMS values are generated using ASN.1 [ASN1-B], using the Basic
 Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
 [ASN1-E].

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

2. Message Digest Algorithms

 One-way hash functions are also referred to as message digest
 algorithms. This section specifies the conventions employed by CMS
 implementations that support SHAKE128 and SHAKE256 [SHA3].

 Digest algorithm identifiers are located in the SignedData
 digestAlgorithms field, the SignerInfo digestAlgorithm field, the
 DigestedData digestAlgorithm field, and the AuthenticatedData
 digestAlgorithm field.

 Digest values are located in the DigestedData digest field and the
 Message Digest authenticated attribute. In addition, digest values
 are input to signature algorithms.

 Output lengths of SHAKE128 and SHAKE256 are always 256 and 512 bits
 respectively in this specification. The object identifiers
 for these 2 one-way hash functions are as follows:

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-SHAKE128 OBJECT IDENTIFIER ::= { hashAlgs 11 }

Dang & Kampanakis Using SHAKEs with the CMS [Page 2]

Internet-Draft October 2017

 id-SHAKE256 OBJECT IDENTIFIER ::= { hashAlgs 12 }

 When using the id-SHAKE128 or id-SHAKE256 algorithm identifier, the
 parameters field MUST be absent; not NULL but absent. Again, the output
 lengths are fixed as 256 and 512 bits respectively.

3. Signature Algorithms

 This section specifies the conventions employed by CMS
 implementations that support 2 SHAKE one-way hash functions
 with the RSASSA PKCS#1 version 1.5 signature algorithm [PKCS1] and
 the Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] with the
 CMS signed-data content type.

 Signature algorithm identifiers are located in the SignerInfo
 signatureAlgorithm field of SignedData. Also, signature algorithm
 identifiers are located in the SignerInfo signatureAlgorithm field of
 countersignature attributes.

 Signature values are located in the SignerInfo signature field of
 SignedData. Also, signature values are located in the SignerInfo
 signature field of countersignature attributes.

3.1. RSASSA PKCS#1 v1.5 with SHAKEs

 The RSASSA PKCS#1 v1.5 is defined in [PKCS1]. When RSASSA PKCS#1
 v1.5 is used in conjunction with one of the SHAKEs one-way hash
 functions, the object identifiers are:

 sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

 id-rsassa-pkcs1-v1_5-with-SHAKE128 ::= { sigAlgs x }

 id-rsassa-pkcs1-v1_5-with-SHAKE256 ::= { sigAlgs y }

 Note: x and y will be specified by NIST.

 The algorithm identifier for RSASSA PKCS#1 v1.5 subject public keys
 in certificates is specified in [PKIXALG], and it is repeated here
 for convenience:

Dang & Kampanakis Using SHAKEs with the CMS [Page 3]

Internet-Draft October 2017

 rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

 When the rsaEncryption id-rsassa-pkcs1-v1_5-with-SHAKE128 or id-
 rsassa-pkcs1-v1_5-with-SHAKE256 algorithm identifier is used,
 AlgorithmIdentifier parameters field MUST contain NULL.

 When the rsaEncryption algorithm identifier is used, the RSA public
 key, which is composed of a modulus and a public exponent, MUST be
 encoded using the RSAPublicKey type as specified in [PKIXALG]. The
 output of this encoding is carried in the certificate subject public
 key. The definition of RSAPublicKey is repeated here for
 convenience:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

 When signing, the RSASSA PKCS#1 v1.5 signature algorithm generates a
 single value, and that value is used directly as the signature value.

3.2. ECDSA with SHAKEs

 The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
 [DSS]. When ECDSA is used in conjunction with one of the SHAKE one-
 way hash functions, the object identifiers are:

 sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

 id-ecdsa-with-SHAKE128 ::= { sigAlgs x }

 id-ecdsa-with-SHAKE256 ::= { sigAlgs y }

 Note: x and y will be specified by NIST.

 When using the id-ecdsa-with-SHAKE128 or id-ecdsa-with-SHAKE256
 algorithm identifier, the parameters field MUST be absent; not NULL but
 absent.

 The conventions for ECDSA public keys is as specified in [PKIXECC].
 The ECParameters associated with the ECDSA public key in the signers
 certificate SHALL apply to the verification of the signature.

Dang & Kampanakis Using SHAKEs with the CMS [Page 4]

Internet-Draft October 2017

 When signing, the ECDSA algorithm generates two values. These values
 are commonly referred to as r and s. To easily transfer these two
 values as one signature, they MUST be ASN.1 encoded using the ECDSA-
 Sig-Value defined in [PKIXALG] and repeated here for convenience:

 ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

4. Message Authentication Codes with SHAKEs

 This section specifies the conventions employed by CMS
 implementations that support the KMAC specified in [KMAC]
 as authentication code (MAC).

 KMAC algorithm identifiers are located in the AuthenticatedData
 macAlgorithm field.

 MAC values are located in the AuthenticatedData mac field.

 The object identifiers for KMACs with SHAKE128 and SHAKE256 are:

 hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

 id-KmacWithSHAKE128 OBJECT IDENTIFIER ::= { hashAlgs x }

 id-KmacWithSHAKE256 OBJECT IDENTIFIER ::= { hashAlgs y }

 Note: x and y will be specified by NIST.

 The variables N and S in this specification for KMAC are emply strings.
 L, an integer representing the requested output length in bits, is
 256 or 512 for KmacWithSHAKE128 or KmacWithSHAKE256 respectively
 in this specification.

 When the id-KmacWithSHAKE128 or id-KmacWithSHAKE256 algorithm identifier
 is used, the parameters field MUST be absent; not NULL but absent.

5. Security Considerations

 Implementations must protect the signer’s private key. Compromise of
 the signer’s private key permits masquerade.

 When more than two parties share the same message-authentication key,
 data origin authentication is not provided. Any party that knows the
 message-authentication key can compute a valid MAC, therefore the
 content could originate from any one of the parties.

Dang & Kampanakis Using SHAKEs with the CMS [Page 5]

Internet-Draft October 2017

 Implementations must randomly generate message-authentication keys
 and one-time values, such as the k value when generating a ECDSA
 signature. In addition, the generation of public/private key pairs
 relies on random numbers. The use of inadequate pseudo-random
 number generators (PRNGs) to generate such cryptographic values can
 result in little or no security. The generation of quality random
 numbers is difficult. RFC 4086 [RANDOM] offers important guidance in
 this area, and NIST SP 800-90 [SP800-90s] series provide acceptable
 PRNGs.

 Implementers should be aware that cryptographic algorithms may become
 weaker with time. As new cryptanalysis techniques are developed and
 computing performance improves, the work factor to break a particular
 cryptographic algorithm will reduce. Therefore, cryptographic
 algorithm implementations should be modular allowing new algorithms
 to be readily inserted. That is, implementers should be prepared to
 regularly update the set of algorithms in their implementations.

6. Normative References

 [ASN1-B] ITU-T, "Information technology -- Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, 2015.

 [ASN1-E] ITU-T, "Information technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, 2015.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [DSS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Digital Signature Standard,
 version 4", NIST FIPS PUB 186-4, 2013.

 [HMAC] Krawczyk, H., "HMAC: Keyed-Hashing for Message
 Authentication", RFC 2104. February 1997.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [PKCS1] Moriarty, K., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2"
 RFC 8017, November 2016.

Dang & Kampanakis Using SHAKEs with the CMS [Page 6]

Internet-Draft October 2017

 [PKIXALG] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, April 2002.

 [PKIXECC] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [SHA3] National Institute of Standards and Technology, U.S.
 Department of Commerce, "SHA-3 Standard - Permutation-
 Based Hash and Extendable-Output Functions", FIPS PUB 202,
 August 2015.
 [SP800-90s]National Institute of Standards and Technology,
 SP 800-90A,B & C.

7. Informative References

 [RANDOM] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

Appendix A ASN.1 Module

 TBD

Appendix B Acknowledgement

This document is just an update of Russ Housley’s draft:
https://tools.ietf.org/html/draft-housley-lamps-cms-sha3-hash-00
This document replaced SHA3 hash functions by SHAKE128 and SHAKE256
as the LAMPS working group agreed.

Authors’ Addresses

 Quynh Dang & Kampanakis
 NIST
 100 Bureau Drive
 Gaithersburg, MD 20899

 Email: quynh.Dang & Kampanakis@nist.gov

 Panos Kampanakis
 Cisco Systems

 Email: pkampana@cisco.com

Dang & Kampanakis Using SHAKEs with the CMS [Page 7]

