
NETCONF G. Zheng
Internet-Draft T. Zhou
Intended status: Standards Track A. Clemm
Expires: September 12, 2019 Huawei
 March 11, 2019

 UDP based Publication Channel for Streaming Telemetry
 draft-ietf-netconf-udp-pub-channel-05

Abstract

 This document describes a UDP-based publication channel for streaming
 telemetry use to collect data from devices. A new shim header is
 proposed to facilitate the distributed data collection mechanism
 which directly pushes data from line cards to the collector. Because
 of the lightweight UDP encapsulation, higher frequency and better
 transit performance can be achieved.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Zheng, et al. Expires September 12, 2019 [Page 1]

Internet-Draft udp-pub-channel March 2019

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminologies . 4
 3. Transport Mechanisms . 4
 3.1. Dynamic Subscription 4
 3.2. Configured Subscription 5
 4. UDP Transport for Publication Channel 6
 4.1. Design Overview . 6
 4.2. Data Format of the UPC Message Header 7
 4.3. Options . 9
 4.3.1. Reliability Option 9
 4.3.2. Fragmentation Option 10
 4.4. Data Encoding . 11
 5. Using DTLS to Secure UPC 11
 5.1. Transport . 11
 5.2. Port Assignment . 12
 5.3. DTLS Session Initiation 12
 5.4. Sending Data . 13
 5.5. Closure . 13
 6. Congestion Control . 14
 7. A YANG Data Model for Management of UPC 14
 8. YANG Module . 14
 9. IANA Considerations . 16
 10. Security Considerations 17
 11. Acknowledgements . 17
 12. References . 17
 12.1. Normative References 17
 12.2. Informative References 19
 12.3. URIs . 19
 Appendix A. Change Log . 20
 Authors’ Addresses . 20

1. Introduction

 Streaming telemetry refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network

Zheng, et al. Expires September 12, 2019 [Page 2]

Internet-Draft udp-pub-channel March 2019

 analytics. Devices generate telemetry data and push that data to a
 collector for further analysis. By streaming the data, much better
 performance, finer-grained sampling, monitoring accuracy, and
 bandwidth utilization can be achieved than with polling-based
 alternatives.

 Sub-Notif [I-D.ietf-netconf-subscribed-notifications] defines a
 mechanism that allows a collector to subscribe to updates of YANG-
 defined data that is maintained in a YANG [RFC7950] datastore. The
 mechanism separates the management and control of subscriptions from
 the transport that is used to actually stream and deliver the data.
 Two transports, NETCONF transport
 [I-D.ietf-netconf-netconf-event-notifications] and HTTP transport
 [I-D.ietf-netconf-restconf-notif], have been defined so far for the
 notification messages.

 While powerful in its features and general in its architecture, in
 its current form the mechanism needs to be extended to stream
 telemetry data at high velocity from devices that feature a
 distributed architecture. The transports that have been defined so
 far, NETCONF and HTTP, are ultimately based on TCP and lack the
 efficiency needed to stream data continuously at high velocity. A
 lighter-weight, more efficient transport, e.g. a transport based on
 UDP is needed.

 o Firstly, data collector will suffer a lot of TCP connections from,
 for example, many line cards equipped on different devices.

 o Secondly, as no connection state needs to be maintained, UDP
 encapsulation can be easily implemented by hardware which will
 further improve the performance.

 o Thirdly, because of the lightweight UDP encapsulation, higher
 frequency and better transit performance can be achieved, which is
 important for streaming telemetry.

 This document specifies a higher-performance transport option for
 Sub-Notif that leverages UDP. Specifically, it facilitates the
 distributed data collection mechanism described in
 [I-D.zhou-netconf-multi-stream-originators]. In the case of data
 originating from multiple line cards, the centralized design requires
 data to be internally forwarded from those line cards to the push
 server, presumably on a main board, which then combines the
 individual data items into a single consolidated stream. The
 centralized data collection mechanism can result in a performance
 bottleneck, especially when large amounts of data are involved. What
 is needed instead is the support for a distributed mechanism that
 allows to directly push multiple individual substreams, e.g. one from

Zheng, et al. Expires September 12, 2019 [Page 3]

Internet-Draft udp-pub-channel March 2019

 each line card, without needing to first pass them through an
 additional processing stage for internal consolidation, but still
 allowing those substreams to be managed and controlled via a single
 subscription. The proposed UDP based Publication Channel (UPC)
 natively supports the distributed data collection mechanism.

 The transport described in this document can be used for transmitting
 notification messages over both IPv4 and IPv6 [RFC8200].

 While this document will focus on the data publication channel, the
 subscription can be used in conjunction with the mechanism proposed
 in [I-D.ietf-netconf-subscribed-notifications] with extensions
 [I-D.zhou-netconf-multi-stream-originators].

2. Terminologies

 Streaming Telemetry: refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics.

 Component Subscription: A subscription that defines the data from
 each individual telemetry source which is managed and controlled by a
 single Subscription Server.

 Component Subscription Server: An agent that streams telemetry data
 per the terms of a component subscription.

3. Transport Mechanisms

 For a complete pub-sub mechanism, this section will describe how the
 UPC is used to interact with the Subscription Channel relying on
 NETCONF or RESTCONF.

3.1. Dynamic Subscription

 Dynamic subscriptions for Sub-Notif are configured and managed via
 signaling messages transported over NETCONF [RFC6241] or RESTCONF
 [RFC8040]. The Sub-Notif defined RPCs which are sent and responded
 via the Subscription Channel (a), between the Subscriber and the
 Subscription Server of the Publisher. In this case, only one
 Receiver is associated with the Subscriber. In the Publisher, there
 may be multiple data originators. Notification messages are pushed
 on separate channels (b), from different data originators to the
 Receiver.

Zheng, et al. Expires September 12, 2019 [Page 4]

Internet-Draft udp-pub-channel March 2019

 +--------------+ +--------------+
Collector		Publisher
(a) (b)		(a) (b)
 +--+------+----+ +--+-------+---+
 | | | |
 | | RPC:establish-subscription | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:notifications | |
 | <---+
 | | | |
 | | RPC:modify-subscription | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:notifications | |
 | <---+
 | | | |
 | | RPC:delete-subscription | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | | |
 | | | |
 + + + +

 Fig. 2 Call Flow For Dynamic Subscription

 In the case of dynamic subscription, the Receiver and the Subscriber
 SHOULD be colocated. So UPC can use the source IP address of the
 Subscription Channel as it’s destination IP address. The Receiver
 MUST support listening messages at the IANA-assigned PORT-X or PORT-
 Y, but MAY be configured to listen at a different port.

 For dynamic subscription, the Publication Channels MUST share fate
 with the subscription session. In other words, when the delete-
 subscription is received or the subscription session is broken, all
 the associated Publication Channels MUST be closed.

3.2. Configured Subscription

 For a Configured Subscription, there is no guarantee that the
 Subscriber is currently in place with the associated Receiver(s). As
 defined in Sub-Notif, the subscription configuration contains the
 location information of all the receivers, including the IP address

Zheng, et al. Expires September 12, 2019 [Page 5]

Internet-Draft udp-pub-channel March 2019

 and the port number. So that the data originator can actively send
 generated messages to the corresponding Receivers via the UPC.

 The first message MUST be a separate subscription-started
 notification to indicate the Receiver that the pushing is started.
 Then, the notifications can be sent immediately without any wait.

 All the subscription state notifications, as defined in
 [I-D.ietf-netconf-subscribed-notifications], MUST be encapsulated to
 be separated notification messages.

 +--------------+ +--------------+
Collector		Publisher
(a) (b)		(a) (b)
 +--+------+----+ +--+-------+---+
 | | | |
 | | Capability Exchange | |
 <--> |
 | | | |
 | | Edit config(create) | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:subscription started | |
 | <---+
 | | UPC:notifications | |
 | <---+
 | | | |
 | | Edit config(delete) | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:subscription terminated | |
 | <---+
 | | | |
 | | | |
 + + + +

 Fig. 3 Call Flow For Configured Subscription

4. UDP Transport for Publication Channel

4.1. Design Overview

 As specified in Sub-Notif, the telemetry data is encapsulated in the
 NETCONF/RESTCONF notification message, which is then encapsulated and

Zheng, et al. Expires September 12, 2019 [Page 6]

Internet-Draft udp-pub-channel March 2019

 carried in the transport protocols, e.g. TLS, HTTP2. The following
 figure shows the overview of the typical UPC message structure.

 o The Message Header contains information that can facilitate the
 message transmission before de-serializing the notification
 message.

 o Notification Message is the encoded content that the publication
 channel transports. The common encoding method includes GPB [1],
 CBOR [RFC7049], JSON, and XML.
 [I-D.ietf-netconf-notification-messages] describes the structure
 of the Notification Message for both single notification and
 multiple bundled notifications.

 +-------+ +--------------+ +--------------+
 | UDP | | Message | | Notification |
 | | | Header | | Message |
 +-------+ +--------------+ +--------------+

 Fig. 4 UDP Publication Message Overview

4.2. Data Format of the UPC Message Header

 The UPC Message Header contains information that can facilitate the
 message transmission before de-serializing the notification message.
 The data format is shown as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------+---------------+-------+-------------------------------+
 | Vers. | Flag | ET | Length |
 +-------+---------------+-------+-------------------------------+
 | Message-Generator-ID |
 +---+
 | Message ID |
 +---+
 ˜ Options ˜
 +---+

 Fig. 3 UPC Message Header Format

 The Message Header contains the following field:

 o Vers.: represents the PDU (Protocol Data Unit) encoding version.
 The initial version value is 0.

Zheng, et al. Expires September 12, 2019 [Page 7]

Internet-Draft udp-pub-channel March 2019

 o Flag: is a bitmap indicating what features this packet has and the
 corresponding options attached. Each bit associates to one
 feature and one option data. When the bit is set to 1, the
 associated feature is enabled and the option data is attached.
 The sequence of the presence of the options follows the bit order
 of the bitmap. In this document, the flag is specified as
 follows:

 * bit 0, the reliability flag;

 * bit 1, the fragmentation flag;

 * other bits are reserved.

 o ET: is a 4 bits identifier to indicate the encoding type used for
 the Notification Message. 16 types of encoding can be expressed:

 * 0: GPB;

 * 1: CBOR;

 * 2: JSON;

 * 3: XML;

 * others are reserved.

 o Length: is the total length of the message, measured in octets,
 including message header.

 o Message-Generator-ID: is a 32-bit identifier of the process which
 created the notification message. This allows disambiguation of
 an information source, such as the identification of different
 line cards sending the notification messages. The source IP
 address of the UDP datagrams SHOULD NOT be interpreted as the
 identifier for the host that originated the UPC message. The
 entity sending the UPC message could be merely a relay.

 o The Message ID is generated continuously by the message generator.
 Different subscribers share the same notification ID sequence.

 o Options: is a variable-length field. The details of the Options
 will be described in the respective sections below.

Zheng, et al. Expires September 12, 2019 [Page 8]

Internet-Draft udp-pub-channel March 2019

4.3. Options

 The order of packing the data fields in the Options field follows the
 bit order of the Flag field.

4.3.1. Reliability Option

 The UDP based publication transport described in this document
 provides two streaming modes, the reliable mode an the unreliable
 mode, for different SLA (Service Level Agreement) and telemetry
 requirements.

 In the unreliable streaming mode, the line card pushes the
 encapsulated data to the data collector without any sequence
 information. So the subscriber does not know whether the data is
 correctly received or not. Hence no retransmission happens.

 The reliable streaming mode provides sequence information in the UDP
 packet, based on which the subscriber can deduce the packet loss and
 disorder. Then the subscriber can decide whether to request the
 retransmission of the lost packets.

 In most case, the unreliable streaming mode is preferred. Because
 the reliable streaming mode will cost more network bandwidth and
 precious device resource. Different from the unreliable streaming
 mode, the line card cannot remove the sent reliable notifications
 immediately, but to keep them in the memory for a while. Reliable
 notifications may be pushed multiple times, which will increase the
 traffic. When choosing the reliable streaming mode or the unreliable
 streaming mode, the operate need to consider the reliable requirement
 together with the resource usage.

 When the reliability flag bit is set to 1 in the Flag field, the
 following option data will be attached

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Previous Message ID |
 +---+

 Fig. 4 Reliability Option Format

 Current Message ID and Previous Message ID will be added in the
 packets.

 For example, there are two subscriber A and B,

Zheng, et al. Expires September 12, 2019 [Page 9]

Internet-Draft udp-pub-channel March 2019

 o Message IDs for the generator are : [1, 2, 3, 4, 5, 6, 7, 8, 9],
 in which Subscriber A subscribes [1, 2, 3, 6, 7] and Subscriber B
 subscribes [1, 2, 4, 5, 7, 8, 9].

 o Subscriber A will receive [Previous Message ID, Current Message
 ID] like: [0, 1] [1, 2] [2, 3] [3, 6] [6, 7].

 o Subscriber B will receive [Previous Message ID, Current Message
 ID] like: [0, 1] [1, 2] [2, 4] [4, 5] [5, 7] [7, 8] [8, 9].

4.3.2. Fragmentation Option

 UDP palyload has a theoretical length limitation to 65535. Other
 encapsulation headers will make the actual payload even shorter.
 Binary encodings like GPB and CBOR can make the message compact. So
 that the message can be encapsulated within one UDP packet, hence
 fragmentation will not easily happen. However, text encodings like
 JSON and XML can easily make the message exceed the UDP length
 limitation.

 The Fragmentation Option can help not Application layer can split the
 YANG tree into several leaves. Or table into several rows. But the
 leaf or the row cannot be split any further. Now we consider a very
 long path. Since the GPB and CBOR are so compact, it’s easy to fit
 into a UDP packet. But for JSON or XML, it is possible that even one
 leaf will exceed the UDP boundary.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+-+
 | Fragment Number |L|
 +---+-+

 Fig. 5 Fragmentation Option Format

 The Fragmentation Option is available in the message header when the
 fragmentation flag is set to 1. The option contains:

 Fragment Number: indicates the sequence number of the current
 fragment.

 L: is a flag to indicate whether the current fragment is the last
 one. When 0 is set, current fragment is not the last one, hence more
 fragments are expected. When 1 is set, current fragment is the last
 one.

Zheng, et al. Expires September 12, 2019 [Page 10]

Internet-Draft udp-pub-channel March 2019

4.4. Data Encoding

 Subscribed data can be encoded in GPB, CBOR, XML or JSON format. It
 is conceivable that additional encodings may be supported as options
 in the future. This can be accomplished by augmenting the
 subscription data model with additional identity statements used to
 refer to requested encodings.

 Implementation may support different encoding method per
 subscription. When bundled notifications is supported between the
 publisher and the receiver, only subscribed notifications with the
 same encoding can be bundled as one message.

5. Using DTLS to Secure UPC

 The Datagram Transport Layer Security (DTLS) protocol [RFC6347] is
 designed to meet the requirements of applications that need secure
 datagram transport.

 DTLS can be used as a secure transport to counter all the primary
 threats to UDP based Publication Channel:

 o Confidentiality to counter disclosure of the message contents.

 o Integrity checking to counter modifications to a message on a hop-
 by-hop basis.

 o Server or mutual authentication to counter masquerade.

 In addition, DTLS also provides:

 o A cookie exchange mechanism during handshake to counter Denial of
 Service attacks.

 o A sequence number in the header to counter replay attacks.

5.1. Transport

 As shown in Figure 6, the DTLS is layered next to the UDP transport
 is to provide reusable security and authentication functions over
 UDP. No DTLS extension is required to enable UPC messages over DTLS.

Zheng, et al. Expires September 12, 2019 [Page 11]

Internet-Draft udp-pub-channel March 2019

 +-----------------------------+
 | UPC Message |
 +-----------------------------+
 | DTLS |
 +-----------------------------+
 | UDP |
 +-----------------------------+
 | IP |
 +-----------------------------+

 Fig. 6: Protocol Stack for DTLS secured UPC

 The application implementer will map a unique combination of the
 remote address, remote port number, local address, and local port
 number to a session.

 Each UPC message is delivered by the DTLS record protocol, which
 assigns a sequence number to each DTLS record. Although the DTLS
 implementer may adopt a queue mechanism to resolve reordering, it may
 not assure that all the messages are delivered in order when mapping
 on the UDP transport.

 Since UDP is an unreliable transport, with DTLS, an originator or
 relay may not realize that a collector has gone down or lost its DTLS
 connection state, so messages may be lost.

 The DTLS record has its own sequence number, the encryption and
 decryption will done by DTLS layer, UPC Message layer will not
 concern this.

5.2. Port Assignment

 The Publisher is always a DTLS client, and the Receiver is always a
 DTLS server. The Receivers MUST support accepting UPC Messages on
 the UDP port PORT-Y, but MAY be configurable to listen on a different
 port. The Publisher MUST support sending UPC messages to the UDP
 port PORT-Y, but MAY be configurable to send messages to a different
 port. The Publisher MAY use any source UDP port for transmitting
 messages.

5.3. DTLS Session Initiation

 The Publisher initiates a DTLS connection by sending a DTLS Client
 Hello to the Receiver. Implementations MUST support the denial of
 service countermeasures defined by DTLS. When these countermeasures
 are used, the Receiver responds with a DTLS Hello Verify Request
 containing a cookie. The Publisher responds with a DTLS Client Hello
 containing the received cookie, which initiates the DTLS handshake.

Zheng, et al. Expires September 12, 2019 [Page 12]

Internet-Draft udp-pub-channel March 2019

 The Publisher MUST NOT send any UPC messages before the DTLS
 handshake has successfully completed.

 Implementations MUST support DTLS 1.0 [RFC4347] and MUST support the
 mandatory to implement cipher suite, which is
 TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246] as specified in DTLS 1.0. If
 additional cipher suites are supported, then implementations MUST NOT
 negotiate a cipher suite that employs NULL integrity or
 authentication algorithms.

 Where privacy is REQUIRED, then implementations must either negotiate
 a cipher suite that employs a non-NULL encryption algorithm or else
 achieve privacy by other means, such as a physically secured network.

5.4. Sending Data

 All UPC messages MUST be sent as DTLS "application_data". It is
 possible that multiple UPC messages be contained in one DTLS record,
 or that a publication message be transferred in multiple DTLS
 records. The application data is defined with the following ABNF
 [RFC5234] expression:

 APPLICATION-DATA = 1*UPC-FRAME

 UPC-FRAME = MSG-LEN SP UPC-MSG

 MSG-LEN = NONZERO-DIGIT *DIGIT

 SP = %d32

 NONZERO-DIGIT = %d49-57

 DIGIT = %d48 / NONZERO-DIGIT

 UPC-MSG is defined in section 5.2.

5.5. Closure

 A Publisher MUST close the associated DTLS connection if the
 connection is not expected to deliver any UPC Messages later. It
 MUST send a DTLS close_notify alert before closing the connection. A
 Publisher (DTLS client) MAY choose to not wait for the Receiver’s
 close_notify alert and simply close the DTLS connection. Once the
 Receiver gets a close_notify from the Publisher, it MUST reply with a
 close_notify.

 When no data is received from a DTLS connection for a long time
 (where the application decides what "long" means), Receiver MAY close

Zheng, et al. Expires September 12, 2019 [Page 13]

Internet-Draft udp-pub-channel March 2019

 the connection. The Receiver (DTLS server) MUST attempt to initiate
 an exchange of close_notify alerts with the Publisher before closing
 the connection. Receivers that are unprepared to receive any more
 data MAY close the connection after sending the close_notify alert.

 Although closure alerts are a component of TLS and so of DTLS, they,
 like all alerts, are not retransmitted by DTLS and so may be lost
 over an unreliable network.

6. Congestion Control

 Congestion control mechanisms that respond to congestion by reducing
 traffic rates and establish a degree of fairness between flows that
 share the same path are vital to the stable operation of the Internet
 [RFC2914]. While efficient, UDP has no build-in congestion control
 mechanism. Because streaming telemetry can generate unlimited
 amounts of data, transferring this data over UDP is generally
 problematic. It is not recommended to use the UDP based publication
 channel over congestion-sensitive network paths. The only
 environments where the UDP based publication channel MAY be used are
 managed networks. The deployments require the network path has been
 explicitly provisioned for the UDP based publication channel through
 traffic engineering mechanisms, such as rate limiting or capacity
 reservations.

7. A YANG Data Model for Management of UPC

 The YANG model defined in Section 9 has two leafs augmented into one
 place of Sub-Notif [I-D.ietf-netconf-subscribed-notifications], plus
 one identities.

 module: ietf-upc-subscribed-notifications
 augment /sn:subscriptions/sn:subscription/sn:receivers/sn:receiver:
 +--rw address? inet:ip-address
 +--rw port? inet:port-number

8. YANG Module

<CODE BEGINS> file "ietf-upc-subscribed-notifications@2018-10-19.yang"
module ietf-upc-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-upc-subscribed-notifications";
 prefix upcsn;
 import ietf-subscribed-notifications {
 prefix sn;
 }
 import ietf-inet-types {

Zheng, et al. Expires September 12, 2019 [Page 14]

Internet-Draft udp-pub-channel March 2019

 prefix inet;
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Guangying Zheng
 <mailto:zhengguangying@huawei.com>

 Editor: Tianran Zhou
 <mailto:zhoutianran@huawei.com>

 Editor: Alexander Clemm
 <mailto:alexander.clemm@huawei.com>";

 description
 "Defines UDP Publish Channel as a supported transport for subscribed
 event notifications.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision 2018-10-19 {
 description
 "Initial version";
 reference
 "RFC XXXX: UDP based Publication Channel for Streaming Telemetry";
 }

 identity upc {
 base sn:transport;
 description
 "UPC is used as transport for notification messages and state
 change notifications.";
 }

Zheng, et al. Expires September 12, 2019 [Page 15]

Internet-Draft udp-pub-channel March 2019

 grouping target-receiver {
 description
 "Provides a reusable description of a UPC target receiver.";
 leaf address {
 type inet:ip-address;
 description
 "Ip address of target upc receiver, which can be IPv4 address or
 IPV6 address.";
 }
 leaf port {
 type inet:port-number;
 description
 "Port number of target UPC receiver, if not specify, system
 should use default port number.";
 }
 }

 augment "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 description
 "This augmentation allows UPC specific parameters to be
 exposed for a subscription.";
 uses target-receiver;
 }
}
<CODE ENDS>

9. IANA Considerations

 This RFC requests that IANA assigns three UDP port numbers in the
 "Registered Port Numbers" range with the service names "upc" and
 "upc-dtls". These ports will be the default ports for the UDP based
 Publication Channel for NETCONF and RESTCONF. Below is the
 registration template following the rules in [RFC6335].

 Service Name: upc

 Transport Protocol(s): UDP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: UDP based Publication Channel

 Reference: RFC XXXX

 Port Number: PORT-X

Zheng, et al. Expires September 12, 2019 [Page 16]

Internet-Draft udp-pub-channel March 2019

 Service Name: upc-dtls

 Transport Protocol(s): UDP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: UDP based Publication Channel (DTLS)

 Reference: RFC XXXX

 Port Number: PORT-Y

 IANA is requested to assign a new URI from the IETF XML Registry
 [RFC3688]. The following URI is suggested:

 URI: urn:ietf:params:xml:ns:yang:ietf-upc-subscribed-notifications
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document also requests a new YANG module name in the YANG Module
 Names registry [RFC7950] with the following suggestion:

name: ietf-upc-subscribed-notifications
namespace: urn:ietf:params:xml:ns:yang:ietf-upc-subscribed-notifications
prefix: upcsn
reference: RFC XXXX

10. Security Considerations

 TBD

11. Acknowledgements

 The authors of this documents would like to thank Eric Voit, Tim
 Jenkins, and Huiyang Yang for the initial comments.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Zheng, et al. Expires September 12, 2019 [Page 17]

Internet-Draft udp-pub-channel March 2019

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, DOI 10.17487/RFC2914, September 2000,
 <https://www.rfc-editor.org/info/rfc2914>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <https://www.rfc-editor.org/info/rfc4347>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

Zheng, et al. Expires September 12, 2019 [Page 18]

Internet-Draft udp-pub-channel March 2019

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

12.2. Informative References

 [I-D.ietf-netconf-netconf-event-notifications]
 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Dynamic subscription to YANG Events and
 Datastores over NETCONF", draft-ietf-netconf-netconf-
 event-notifications-17 (work in progress), February 2019.

 [I-D.ietf-netconf-notification-messages]
 Voit, E., Birkholz, H., Bierman, A., Clemm, A., and T.
 Jenkins, "Notification Message Headers and Bundles",
 draft-ietf-netconf-notification-messages-05 (work in
 progress), February 2019.

 [I-D.ietf-netconf-restconf-notif]
 Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and
 A. Bierman, "Dynamic subscription to YANG Events and
 Datastores over RESTCONF", draft-ietf-netconf-restconf-
 notif-13 (work in progress), February 2019.

 [I-D.ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Subscription to YANG Event Notifications",
 draft-ietf-netconf-subscribed-notifications-23 (work in
 progress), February 2019.

 [I-D.zhou-netconf-multi-stream-originators]
 Zhou, T., Zheng, G., Voit, E., Clemm, A., and A. Bierman,
 "Subscription to Multiple Stream Originators", draft-zhou-
 netconf-multi-stream-originators-03 (work in progress),
 October 2018.

12.3. URIs

 [1] https://developers.google.com/protocol-buffers/

Zheng, et al. Expires September 12, 2019 [Page 19]

Internet-Draft udp-pub-channel March 2019

Appendix A. Change Log

 (To be removed by RFC editor prior to publication)

 A.1. draft-ietf-zheng-udp-pub-channel-00 to v00

 o Modified the message header format.

 o Added a section on the Authentication Option.

 o Cleaned up the text and removed unnecessary TBDs.

 A.2. v01

 o Removed the detailed description on distributed data collection
 mechanism from this document. Mainly focused on the description
 of a UDP based publication channel for telemetry use.

 o Modified the message header format.

 A.2. v02

 o Add the section on the transport mechanism.

 o Modified the fixed message header format.

 o Add the fragmentation option for the message header.

 A.2. v03

 o Clarify term through the document.

 o Add a section on DTLS support.

 A.2. v04

 o Add a section on UPC subscription model.

 A.2. v05

 o Remove the redundant solution overview section and refer to the
 multi stream originator draft.

Authors’ Addresses

Zheng, et al. Expires September 12, 2019 [Page 20]

Internet-Draft udp-pub-channel March 2019

 Guangying Zheng
 Huawei
 101 Yu-Hua-Tai Software Road
 Nanjing, Jiangsu
 China

 Email: zhengguangying@huawei.com

 Tianran Zhou
 Huawei
 156 Beiqing Rd., Haidian District
 Beijing
 China

 Email: zhoutianran@huawei.com

 Alexander Clemm
 Huawei
 2330 Central Expressway
 Santa Clara, California
 USA

 Email: alexander.clemm@huawei.com

Zheng, et al. Expires September 12, 2019 [Page 21]

