
Network Working Group B. Claise
Internet-Draft J. Clarke
Updates: 7950 (if approved) Cisco Systems, Inc.
Intended status: Standards Track B. Lengyel
Expires: January 3, 2019 Ericsson
 K. D’Souza
 AT&T
 July 2, 2018

 New YANG Module Update Procedure
 draft-clacla-netmod-yang-model-update-06

Abstract

 This document specifies a new YANG module update procedure in case of
 backward-incompatible changes, as an alternative proposal to the YANG
 1.1 specifications. This document updates RFC 7950.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Claise, et al. Expires January 3, 2019 [Page 1]

Internet-Draft YANG Catalog July 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. The Solution . 2
 2.1. Semantic Versioning 3
 2.1.1. Semantic Versioning, As Set by the YANG Module
 Designer . 3
 2.1.2. The Derived Semantic Version 5
 2.1.3. Implementation Experience 5
 2.2. Import by Semantic Version 6
 2.3. Updates to YANG 1.1 Module Update Rules 9
 2.4. Updates to ietf-yang-library 9
 2.5. Deprecated and Obsolete Reasons 10
 3. Semantic Version Extension YANG Module 11
 4. Contributors . 15
 5. Security Considerations 15
 6. IANA Considerations . 15
 6.1. YANG Module Registrations 15
 7. References . 16
 7.1. Normative References 16
 7.2. Informative References 16
 Appendix A. Appendix . 16
 A.1. Open Issues: Requirements to be Addressed 17
 A.2. Open Issues . 17
 Authors’ Addresses . 18

1. Introduction

 This document puts forth a solution to the problems described in
 [I-D.verdt-netmod-yang-versioning-reqs] by proposing changes to
 [RFC7950] to address the various requirements that
 [I-D.verdt-netmod-yang-versioning-reqs] specifies. At this time, the
 solution herein addresses requirements 1.1, 1.2, 1.3, 2.1, 4.1, 4.2,
 4.3, 5.1, and 5.2. Current gaps are documented in Appendix A.1
 below.

2. The Solution

 The solution is composed of five parts:

 1. A semantic versioning YANG extension, along with an optional
 additional check that validates the semantic versioning from a
 syntactic point of view, which can either assist in determining
 the correct semantic versioning value, or which can help in

Claise, et al. Expires January 3, 2019 [Page 2]

Internet-Draft YANG Catalog July 2018

 determining the values for YANG modules that do not support this
 extension.

 2. An import by semantic version statement

 3. Updates to the YANG 1.1 module update rules

 4. Updates to ietf-yang-library

 5. An introduction of deprecated and obsolote reason clauses

2.1. Semantic Versioning

2.1.1. Semantic Versioning, As Set by the YANG Module Designer

 The semantic versioning solution proposed here has already been
 proposed in [I-D.openconfig-netmod-model-catalog] (included here with
 the authors’ permission) which itself is based on [openconfigsemver].
 The goal is to indicate the YANG module backward (in)compatibility,
 following semver.org semantic versioning [semver]:

 "The SEMVER version number for the module is introduced. This is
 expressed as a semantic version number of the form: x.y.z

 o x is the MAJOR version. It is incremented when the new version of
 the specification is incompatible with previous versions.

 o y is the MINOR version. It is incremented when new functionality
 is added in a manner that is backward-compatible with previous
 versions.

 o z is the PATCH version. It is incremented when bug fixes are made
 in a backward-compatible manner."

 The semantic version value is set by the YANG module developer at the
 design and implementation times. Along these lines, we propose the
 following YANG 1.1 extension for a more generic semantic version.
 The formal definition is found at the end of this document. This
 semantic version extension and the text below address requirements
 1.1, 1.2, 2.1, 5.1 and 5.2 of
 [I-D.verdt-netmod-yang-versioning-reqs].

 extension module-version {
 argument semver;
 }

 The extension would typically be used this way:

Claise, et al. Expires January 3, 2019 [Page 3]

Internet-Draft YANG Catalog July 2018

 module yang-module-name {

 namespace "name-space";
 prefix "prefix-name";

 import ietf-semver { prefix "semver"; }

 description
 "to be completed";

 revision 2017-10-30 {
 description
 "Change the module structure";
 semver:module-version "2.0.0";
 }

 revision 2017-07-30 {
 description
 "Added new feature XXX";
 semver:module-version "1.2.0";
 }

 revision 2017-04-03 {
 description
 "Update copyright notice.";
 semver:module-version "1.0.1";
 }

 revision 2017-04-03 {
 description
 "First release version.";
 semver:module-version "1.0.0";
 }

 revision 2017-01-26 {
 description
 "Initial module for inet types";
 semver:module-version "0.1.0";
 }

 //YANG module definition starts here

 See also "Semantic Versioning and Structure for IETF Specifications"
 [I-D.claise-semver] for a mechanism to combine the semantic
 versioning, the GitHub tools, and a potential change to the IETF
 process.

Claise, et al. Expires January 3, 2019 [Page 4]

Internet-Draft YANG Catalog July 2018

2.1.2. The Derived Semantic Version

 If an explicitly defined semantic version is not available in the
 YANG module, it is possible to algoritmically calculate a derived
 semantic version. This can be used for modules not containing a
 definitive semantic-version as defined in this document or as a
 starting value when specifying the definitive semantic-version. Be
 aware that this algorithm may sometimes incorrectly classify changes
 between the categories non-compatible, compatible or error-
 correction.

2.1.3. Implementation Experience

 [yangcatalog] uses the pyang utility to calculate the derived-
 semantic-version for all of the modules contained within the catalog.
 [yangcatalog] contains many revisions of the same module in order to
 provide its derived-semantic-version for module consumers to know
 what has changed between revisions of the same module.

 Two distinct leafs in the YANG module
 [I-D.clacla-netmod-model-catalog] contain this semver notation:

 o the semantic-version leaf contains the value embedded within a
 YANG module (if it is available).

 o the derived-semantic-version leaf is established by examining the
 the YANG module themselves. As such derived-semantic-version only
 takes syntax into account as opposed to the meaning of various
 elements when it computes the semantic version.

 o The algorithm used to produce the derived-semantic-version is as
 follows:

 1. Order all modules of the same name by revision from oldest to
 newest. Include module revisions that are not available, but
 which are defined in the revision statements in one of the
 available module versions.

 2. If module A, revision N+1 has failed compilation, bump its
 derived semantic MAJOR version. For unavailable module
 versions assume non-backward compatible changes were done.,
 thus bump its derived semantic MAJOR version.

 3. Else, run "pyang --check-update-from" on module A, revision N
 and revision N+1 to see if backward-incompatible changes
 exist.

Claise, et al. Expires January 3, 2019 [Page 5]

Internet-Draft YANG Catalog July 2018

 4. If backward-incompatible changes exist, bump module A,
 revision N+1’s derived MAJOR semantic version.

 5. If no backward-incompatible changes exist, compare the pyang
 trees of module A, revision N and revision N+1.

 6. If there are structural differences (e.g., new nodes), bump
 module A, revision N+1’s derived MINOR semantic version.

 7. If no structural differences exist, bump module A, revision
 N+1’s derived PATCH semantic version.

 The pyang utility checks many of the points listed in section 11 of
 [RFC7950] for known module incompatibilities. While this approach is
 a good way to programmatically obtain a semantic version number, it
 does not address all cases whereby a major version number might need
 to be increased. For example, a node may have the same name and same
 type, but its meaning may change from one revision of a module to
 another. This represents a semantic change that breaks backward
 compatibility, but the above algorithm would not find it. Therefore,
 additional, sometimes manual, rigor must be done to ensure a proper
 version is chosen for a given module revision.

2.2. Import by Semantic Version

 If a module is imported by another one, it is usually not specified
 which revision of the imported module should be used. However, not
 all revisions may be acceptable. Today YANG 1.1 allows one to
 specify the revision date of the imported module, but that is too
 specific, as even a small spelling correction of the imported module
 results in a change to its revision date, thus making the module
 revision ineligible for import.

 Using semantic versioning to indicate the acceptable imported module
 versions is much more flexible. For example:

 o Only a module of a specific MAJOR version is acceptable. All
 MINOR and PATCH versions can also be imported.

 o A module at a specific MAJOR version or higher is acceptable.

 o A module at a specific MAJOR.MINOR version is acceptable. All
 PATCH versions can also be imported.

 o A module within a certain range of versions are acceptable. For
 example, in this case, a module between version 1.0.0 (inclusive)
 and 3.0.0 (exclusive) are acceptable.

Claise, et al. Expires January 3, 2019 [Page 6]

Internet-Draft YANG Catalog July 2018

 The ietf-semver module provides another extension, import-versions
 that is a child of import and specifies the rules for an acceptable
 set of versions of the given module. This extension addresses
 requirement 1.3 of [I-D.verdt-netmod-yang-versioning-reqs]. The
 structure of this extension is specified as follows:

 TODO: How to specify this? One thought is below, not fully
 formalized as this should be discussed further. Note: while this
 uses a comma to separate discrete versions, we could instead allow
 for this to be specified multiple times.

[\[(]X[.Y[.Z]][-[X[.Y[.X]]][\])]][,...]

Where the first character MAY be a ’[’ or ’(’ to indicate at least inclusive and
 at least
 exclusive (respectively). If this is omitted, a full semantic version must be
specified
 and the import will only support this one version.

The following version, if specified with a ’[’ or ’(’ indicates the lower bound.
 This can
 be a full semantic version or a MAJOR only or MAJOR.MINOR only.

The ’-’, if specified, is a literal hyphen indicating a range will be specified.
 If the second portion
 of the import-versions clause is omitted, then there is no upper bound on what
will be considered
 an acceptable imported version.

After the ’-’ the upper bound semantic version (or part thereof) follows.

After the upper bound version, one of ’]’ or ’)’ MUST follow to indicate whether
 this limit is inclusive
 or exclusive of the upper bound respectively.

Finally, a literal comma (’,’) MAY be specified with additional ranges. Each ra
nge is taken as a logical
 OR.

 For example:

Claise, et al. Expires January 3, 2019 [Page 7]

Internet-Draft YANG Catalog July 2018

import example-module {
 semver:import-versions "[1.0.0-3.0.0)";
 // All versions between 1.0.0 (inclusive) and 3.0.0 (exclusive) are acceptable
.
}

import example-module {
 semver:import-versions "[2-5]";
 // All versions between 2.0.0 (inclusive) and 5.y.z (inclusive) where y and z
are
 // any value for MINOR and PATCH versions.
}

import example-module {
 semver:import-versions "[1.5-2.0.0),[2.5";
 // All versions between 1.5.0 (inclusive) and 2.0.0 (exclusive) as well as all
 versions
 // greater than 2.5 (inclusive). In this manner, if 2.0 was branched from 1.4
, and a
 // new feature was added into 1.5, all versions of 1.x.x starting at 1.5 are a
llowed,
 // but the feature was not merged into 2.y.z until 2.5.0.
}

import example-module {
 semver:import-versions "[1";
 // All versions greater than MAJOR version 1 are acceptable. This includes an
y
 // MINOR or PATCH versions.
}

import example-module {
 semver:import-versions "1.0.0";
 // Only version 1.0.0 is acceptable (this mimics what exists with import by re
vision).
}

import example-module {
 semver:import-versions "[1.1-2)"";
 // All versions greater than 1.1 (inclusive, and including all PATCH versions
off of 1.1)
 // up to MAJOR version 2 (exclusive) are acceptable.
}

import example-module {
 semver:import-versions "[1.1-2),[3";
 // All versions greater than 1.1 (inclusive, and including all PATCH versions
off of 1.1)
 // up to MAJOR version 2 (exclusive), as well as all versions greater than MAJ
OR version 3
 // (inclusive) are acceptable.
}

import example-module {
 semver:import-versions "[1.1-2),[3.0.0";
 // This is equivalent to the example above, simply indicating that a partial s
emantic version
 // assumes all missing components are 0.
}

Claise, et al. Expires January 3, 2019 [Page 8]

Internet-Draft YANG Catalog July 2018

 The import statement SHOULD include a semver:import-versions
 statement and MUST NOT include a revision statement. An import
 statement MUST NOT contain both a semver:import-versions and a
 revision substatement. The use of the revision substatement for
 import should be discouraged.

2.3. Updates to YANG 1.1 Module Update Rules

 RFC 7950 section 11, must be updated to allow for non-backward
 changes provided they follow the semantic versioning guidelines and
 increase the MAJOR version number when a backward incompatible change
 is made. This change is in the spirit of requirement 5.1 from
 [I-D.verdt-netmod-yang-versioning-reqs]. The following is proposed
 text for this change.

 "As experience is gained with a module, it may be desirable to revise
 that module. Changes to published modules are allowed, even if they
 have some potential to cause interoperability problems, if the
 module-version YANG extension is used in the revision statement to
 clearly indicate the nature of the change."

2.4. Updates to ietf-yang-library

 The ietf-semver YANG module also specifies additional ietf-yang-
 library [RFC7895] [I-D.ietf-netconf-rfc7895bis] leafs to be added at
 the module and submodule levels. The first is module-version, which
 augments /yanglib:yang-library/yanglib:module-set/yanglib:module.
 This specifies the current semantic version of the associated module
 and revision in a given module-set. The related submodule-version
 leaf is added at /yanglib:yang-library/yanglib:module-
 set/yanglib:module/yanglib:submodule to indicate the semantic version
 of a submodule.

 In order to satisfy the requirements 4.1 and 4.3 of
 [I-D.verdt-netmod-yang-versioning-reqs] that deprecated and obsolete
 node presence and operation are easily and clearly known to clients,
 ietf-semver also augments the ietf-yang-library with two additional
 boolean leafs at /yanglib:yang-library/yanglib:module-set/
 yanglib:module. A client can make one request of the ietf-yang-
 library and know whether or a not a module that has deprecated or
 obsolete has those nodes implemented by the server, as opposed to
 making multiple requests for each node in question.

 deprecated-nodes-present : A boolean that indicates whether or not
 this server implements deprecated nodes. The value of this leaf
 SHOULD be true; and if so, the server MUST implement nodes within
 this module as they are documented. If specific deprecated nodes

Claise, et al. Expires January 3, 2019 [Page 9]

Internet-Draft YANG Catalog July 2018

 are not implemented as documented, then they MUST be listed as
 deviations. This leaf defaults to true.

 obsolete-nodes-present : A boolean that indicates whether or not
 this server implements obsolete nodes. The value of this leaf
 SHOULD be false; and if so, the server MUST NOT implement nodes
 within this module. If this leaf is true, then all nodes in this
 module MUST be implemented as documented in the module. Any
 variation of this MUST be listed as deviations. This leaf
 defaults to false.

 If a module does not have any deprecated or obsolete nodes, the
 server SHOULD set the corresponding leaf above to true. This is
 helpful to clients, such that if the MAJOR version number has not
 changed, and these booleans are true, then a client does not have to
 check the status of any node for the module.

 Module compatibility can be affected if values other than the default
 are used for the leafs described here. For example, if a server does
 not implemennt deprecated nodes, then a given module revision may be
 incompatible with a previous revision where the nodes were not
 deprecated. When calculating backward compatibility, the default
 values of these leafs MUST be considered. From a client’s point of
 view, if two module revisions have the same MAJOR version but the
 run-time value of deprecated-nodes-present (as read from the ietf-
 yang-library) is false, then compatibility MUST NOT be assumed based
 on the module-version alone.

2.5. Deprecated and Obsolete Reasons

 The ietf-semver module specifies an extension, status-description,
 that is designed to be used as a substatement of the status statement
 when the status is deprecated or obsolete. The argument to this
 extension is freeform text that explains why the node was deprecated
 or made obsolete. It may also point to other schema elements that
 take the place of the deprecated or obsolete node. This text is
 designed for human consumption to aid in the migration away from
 nodes that will one day no longer work. These extensions address
 requirement 4.2 of [I-D.verdt-netmod-yang-versioning-reqs]. An
 example is shown below.

Claise, et al. Expires January 3, 2019 [Page 10]

Internet-Draft YANG Catalog July 2018

 leaf imperial-temperature {
 type int64;
 units "degrees Fahrenheit";
 status deprecated {
 semver:status-description
 "Imperial measurements are being phased out in favor
 of their metric equivalents. Use metric-temperature
 instead.";
 }
 description
 "Temperature in degrees Fahrenheit.";
 }

3. Semantic Version Extension YANG Module

 The extension and related ietf-yang-library changes described in this
 module are defined in the YANG module below.

<CODE BEGINS> file "ietf-semver@2018-04-05.yang"
 module ietf-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-semver";
 prefix semver;

 import ietf-yang-library {
 prefix yanglib;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Benoit Claise
 <mailto:bclaise@cisco.com>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Kevin D’Souza
 <mailto:kd6913@att.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";
 description
 "This module contains a definition for a YANG 1.1 extension to
 express the semantic version of YANG modules.";

Claise, et al. Expires January 3, 2019 [Page 11]

Internet-Draft YANG Catalog July 2018

 revision 2018-04-05 {
 description
 "* Properly import ietf-yang-library.
 * Fix the name of module-semver => module-version.
 * Fix regular expression syntax.
 * Augment yang-library with booleans as to whether or not
 deprecated and obsolete nodes are present.
 * Add an extension to enable import by semantic version.
 * Add an extension status-description to track deprecated
 and obsolete reasons.
 * Fix yang-library augments to use 7895bis.";
 reference
 "draft-clacla-netmod-yang-model-update:
 New YANG Module Update Procedure";
 semver:module-version "0.2.1";
 }
 revision 2017-12-15 {
 description
 "Initial revision.";
 reference
 "draft-clacla-netmod-yang-model-update:
 New YANG Module Update Procedure";
 semver:module-version "0.1.1";
 }

 extension module-version {
 argument semver;
 description
 "The version number for the module revision it is used in.
 This is expressed as a semantic version string in the form:
 x.y.z
 where:
 * x corresponds to the major version,
 * y corresponds to a minor version,
 * z corresponds to a patch version.

 A major version number of 0 indicates that this model is still
 in development, and is potentially subject to change.

 Following a release of major version 1, all modules will
 increment major revision number where backward incompatible
 changes to the model are made.

 The minor version is changed when features are added to the
 model that do not impact current clients use of the model.
 When major version is stepped, the minor version is reset to 0.

 The patch-level version is incremented when non-feature changes

Claise, et al. Expires January 3, 2019 [Page 12]

Internet-Draft YANG Catalog July 2018

 (such as bugfixes or clarifications to human-readable
 descriptions that do not impact model functionality) are made
 that maintain backward compatibility.
 When major or minor version is stepped, the patch-level is
 reset to 0.

 By comparing the module-version between two revisions of a
 given module, one can know if different revisions are backward
 compatible or not, as well as
 whether or not new features have been added to a newer revision.

 If a module contains this extension it indicates that for this
 module the updated status and update rules as this described in
 RFC XXXX are used.

 The statement MUST only be a substatement of the revision statement.
 Zero or one module-version statement is allowed per parent
 statement. NO substatements are allowed.
 ";
 reference "http://semver.org/ : Semantic Versioning 2.0.0";
 }

 extension import-versions {
 argument version-clause;
 description
 "This extension specifies an acceptable set of semantic versions of a gi
ven module
 that may be imported. The version-clause argument is specified in the
following
 format

 [\\[(]X[.Y[.Z]][-[X[.Y[.X]]][\\])]][,...]

 Where the first character MAY be a ’[’ or ’(’ to indicate at least incl
usive and at least
 exclusive (respectively). If this is omitted, a full semantic version
 must be specified
 and the import will only support this one version.

 The following version, if specified with a ’[’ or ’(’ indicates the low
er bound. This can
 be a full semantic version or a MAJOR only or MAJOR.MINOR only.

 The ’-’, if specified, is a literal hyphen indicating a range will be s
pecified. If the second portion
 of the import-versions clause is omitted, then there is no upper bound
 on what will be considered
 an acceptable imported version.

 After the ’-’ the upper bound semantic version (or part thereof) follow
s.
 After the upper bound version, one of ’]’ or ’)’ MUST follow to indicat
e whether this limit is inclusive
 or exclusive of the upper bound respectively.

 Finally, a literal comma (’,’) MAY be specified with additional ranges.
 Each range is taken as a logical
 OR.

Claise, et al. Expires January 3, 2019 [Page 13]

Internet-Draft YANG Catalog July 2018

 The statement MUST only be a substatement of the import statement. Zer
o or one
 import-versions statement is allowed per import statement. NO substate
ments are allowed.";
 reference "I-D.clacla-netmod-yang-model-update : Import By Semantic Versio
n";
 }

 extension status-description {
 argument description;
 description
 "Freeform text that describes why a given node has been deprecated or ma
de obsolete.
 This may point to other schema elements that can be used in lieu of the
 given node.

 This statement MUST only be used as a substatement of the status statem
ent, and MUST
 only be used when the status is deprecated or obsolete. Zero or more s
tatus-description
 statements are allowed per parent statement. NO substatements are allo
wed.";
 reference "I-D.clacla-netmod-yang-model-update : Deprecated and Obsolete R
easons";
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Augmentations for the ietf-yang-library module to support semantic vers
ioning.";
 leaf module-version {
 type string {
 pattern ’[0-9]+\.[0-9]+\.[0-9]+’;
 }
 description
 "The semantic version for this module in MAJOR.MINOR.PATCH format. Th
is version
 must match the semver:module-version value in specific revision of th
e module
 loaded in this module-set.";
 }
 leaf deprecated-nodes-present {
 type boolean;
 default "true";
 description
 "A boolean that indicates whether or not this server implements deprec
ated nodes.
 The value of this leaf SHOULD be true; and if so, the server MUST imp
lement nodes
 within this module as they are documented. If specific deprecated no
des are not
 implemented as document, then they MUST be listed as deviations. If
a module does
 not currently contain any deprecated nodes, then this leaf SHOULD be
set to true.";
 }
 leaf obsolete-nodes-present {
 type boolean;
 default "false";
 description
 "A boolean that indicates whether or not this server implements obsole
te nodes.
 The value of this leaf SHOULD be false; and if so, the server MUST NO

T implement
 nodes within this module. If this leaf is true, then all nodes in thi
s module MUST
 be implemented as documented in the module. Any variation of this MU
ST be listed as
 deviations. If a module does not currently contain any obsolete node
s, then this

Claise, et al. Expires January 3, 2019 [Page 14]

Internet-Draft YANG Catalog July 2018

 leaf SHOULD be set to true.";
 }
 }
 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module/yanglib:sub
module" {
 description
 "Augmentations for the ietf-yang-library module/submodule to support sem
antic versioning.";
 leaf submodule-version {
 type string {
 pattern ’[0-9]+\.[0-9]+\.[0-9]+’;
 }
 description
 "The semantic version for this submodule in MAJOR.MINOR.PATCH format.
 This version
 must match the semver:module-version value in specific revision of th
e submodule
 loaded in this module-set.";
 }
 }
 }
<CODE ENDS>

4. Contributors

 o Anees Shaikh, Google

 o Rob Shakir, Google

5. Security Considerations

 The document does not define any new protocol or data model. There
 are no security impacts.

6. IANA Considerations

6.1. YANG Module Registrations

 The following YANG module is requested to be registred in the "IANA
 Module Names" registry:

 The ietf-semver module:

 o Name: ietf-semver

 o XML Namespace: urn:ietf:params:xml:ns:yang:ietf-semver

 o Prefix: semver

 o Reference: [RFCXXXX]

Claise, et al. Expires January 3, 2019 [Page 15]

Internet-Draft YANG Catalog July 2018

7. References

7.1. Normative References

 [I-D.verdt-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", draft-
 verdt-netmod-yang-versioning-reqs-00 (work in progress),
 July 2018.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

7.2. Informative References

 [I-D.clacla-netmod-model-catalog]
 Clarke, J. and B. Claise, "YANG module for
 yangcatalog.org", draft-clacla-netmod-model-catalog-03
 (work in progress), April 2018.

 [I-D.claise-semver]
 Claise, B., Barnes, R., and J. Clarke, "Semantic
 Versioning and Structure for IETF Specifications", draft-
 claise-semver-02 (work in progress), January 2018.

 [I-D.ietf-netconf-rfc7895bis]
 Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", draft-ietf-netconf-
 rfc7895bis-06 (work in progress), April 2018.

 [I-D.openconfig-netmod-model-catalog]
 Shaikh, A., Shakir, R., and K. D’Souza, "Catalog and
 registry for YANG models", draft-openconfig-netmod-model-
 catalog-02 (work in progress), March 2017.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

 [yangcatalog]
 "YANG Catalog", <https://yangcatalog.org>.

Claise, et al. Expires January 3, 2019 [Page 16]

Internet-Draft YANG Catalog July 2018

Appendix A. Appendix

A.1. Open Issues: Requirements to be Addressed

 There are a few requirements of
 [I-D.verdt-netmod-yang-versioning-reqs] still to be addressed. These
 include the following:

 o A solution is required for client compatibility to address
 requirements 3.1 and 3.2 from
 [I-D.verdt-netmod-yang-versioning-reqs]. This could include
 adding "module sets" support to ietf-yang-library where the client
 can choose one set with which to use.

 o A solution for instance data to satisfy requirement 5.3 of
 [I-D.verdt-netmod-yang-versioning-reqs] is also required.

 o While it is believed one could work within this semver scheme to
 support multiple parallel trains of development within a given
 YANG module, some thought should be given to how this would work
 in support of optional requirement 4.4 of
 [I-D.verdt-netmod-yang-versioning-reqs].

 o While not mandatory, requirement 2.2 of
 [I-D.verdt-netmod-yang-versioning-reqs] looks to provide a way to
 determine, at the node level, whether or not changes have occurred
 between revisions of a given YANG module. This may require
 application of semver at the node level.

A.2. Open Issues

 Additionally, there are a few open issues to be discussed and
 settled. These include the following:

 o Do we need a new version of YANG?
 While eventually this will fold into a new version, the belief is
 this solution can work with extensions alone with an update to the
 [RFC7950] text concerning module updates.

 o Should IETF/IANA officially generate derived semantic versions for
 their own modules? As they are the owner of the modules it should
 be their responsibility, but how to document it? Note that next
 round of funding for the yangcatalog.org could help develop the
 perfect derived-semantic-version toolset

 o We could consider a new naming convention for module files.
 Today, module files are named using a module@revision.yang
 notation. We could consider module%semver.yang or

Claise, et al. Expires January 3, 2019 [Page 17]

Internet-Draft YANG Catalog July 2018

 module#version.yang variants. Re-using the ’@’ for version is not
 ideal, so another separator character should be used. In this
 manner, both version and revision could be used.

Authors’ Addresses

 Benoit Claise
 Cisco Systems, Inc.
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium

 Phone: +32 2 704 5622
 Email: bclaise@cisco.com

 Joe Clarke
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America

 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Balazs Lengyel
 Ericsson
 Magyar Tudosok Korutja
 1117 Budapest
 Hungary

 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Kevin D’Souza
 AT&T
 200 S. Laurel Ave
 Middletown, NJ
 United States of America

 Email: kd6913@att.com

Claise, et al. Expires January 3, 2019 [Page 18]

