Net wor k Wor ki ng Group M Bj orkl und

I nternet-Draft Tail -f Systens
Updates: 7950 (if approved) J. Schoenwael der
I ntended status: Standards Track Jacobs University
Expires: May 3, 2018 P. Shafer
K. Watsen

Juni per Networks

R WIlton

Ci sco Systens
Cct ober 30, 2017

Net wor k Managenent Datastore Architecture
draft-ietf-netnod-revi sed-dat astores-06

Abst r act

Dat astores are a fundanental concept binding the data nodels witten
in the YANG data nodel i ng | anguage to network nanagenent protocols
such as NETCONF and RESTCONF. This docunent defines an architectural
framework for datastores based on the experience gained with the
initial sinpler nodel, addressing requirenents that were not well
supported in the initial nodel.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute

wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on May 3, 2018.

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal
Provisions Relating to | ETF Docunents

Bj orkl und, et al. Expires May 3, 2018 [Page 1]

Internet-Draft Cct ober 2017

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunments
carefully, as they describe your rights and restrictions with respect

to this
i ncl ude

docunent. Code Conponents extracted fromthis docunment nust
Sinplified BSD Li cense text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 3
2. (Objectives 3
3. Ternminol ogy . 4
4. Background C e e e e 7
4.1. Oiginal Mdel of Datastores 8
5. Architectural Mdel of Datastores . . 9
5.1. Conventional Configuration Datastores . 10
5.1.1. The Startup Configuration Datastore (<startup>) .o 11
5.1.2. The Candi date Configuration Datastore (<candi date>) 11
5.1.3. The Running Configuration Datastore (<running>) 11
5.1.4. The Intended Configuration Datastore (<intended>) 12
5.2. Dynam c Configuration Datastores . .o 13
5.3. The Qperational State Datastore (<operat|onal>) 13
5.3.1. Remmant Configuration . Ce e 14
5.3.2. Mssing Resources 14
5.3.3. Systemcontrolled Resources . . e 15
5.3.4. Oigin Metadata Annotation 15

6. Inplications on YANG e 16
6.1. XPath Context 16
7. YANG Modul es . 17
8. | ANA Considerations . . . 23
8.1. Updates to the I ETF XNL Reglstry . . 23
8.2. Updates to the YANG Modul e Nanes Regl stry . 23
9. Security Considerations . . . 24
10. Acknow edgnents . 24
11. References . . 25
11.1. Normative References . 25
11.2. Informative References . . . 25
Appendi x A. Cuidelines for Deflnlng Datastores . 26
A. 1. Define which YANG nodul es can be used in the datastore .27
A. 2. Define which subset of YANG nodel ed data applles A
A.3. Define how data is actualized 27
A. 4. Define which protocols can be used . 2
A.5. Define YANG identities for the datastore . .27
Appendi x B. Ephemeral Dynanic Cbnflguratlon Datastore Exanple . 28
Appendix C. Exanple Data e e e e .. 29
C.1l. SystemExanple 29
C2 BGP Exanple 32
Bj orkl und, et al. Expires May 3, 2018 [Page 2]

Internet-Draft Cct ober 2017

C.2.1. Datastores 34

C2.2. AddingaPeer 34

C2.3. RenovingaPeer 3

C.3. Interface Exanple . 36
C.3.1. Pre-provisioned Interfaces 36

C. 3.2. Systemprovided Interface 37
Authors’ Addresses 38

1. Introduction

Thi s docunment provides an architectural framework for datastores as
they are used by network managenment protocols such as NETCONF

[RFC6241], RESTCONF [RFC8040] and the YANG [RFC7950] data nodeling

| anguage. Datastores are a fundanental concept bindi ng network
managenent data nodel s to network managenent protocols. Agreenent on
a conmon architectural nodel of datastores ensures that data nodels
can be witten in a network managenent protocol agnostic way. This
architectural franework identifies a set of conceptual datastores but
it does not nmandate that all network managenment protocols expose al
these conceptual datastores. This architecture is agnostic with
regard to the encodi ng used by network managenent protocols.

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capital s, as shown here

2. (Objectives

Net wor k managenent data objects can often take two different val ues,
the val ue configured by the user or an application (configuration)
and the value that the device is actually using (operational state).
These two values may be different for a nunber of reasons, e.g.
systeminternal interactions with hardware, interaction with
protocol s or other devices, or sinply the time it takes to propagate
a configuration change to the software and hardware conponents of a
system Furthernore, configuration and operational state data
objects may have different lifetines

The original nodel of datastores required these data objects to be
nmodel ed twice in the YANG schema, as "config true" objects and as
"config fal se" objects. The convention adopted by the interfaces
data nodel ([RFC7223]) and the I P data nodel ([RFC7277]) was using
two separate branches rooted at the root of the data tree, one branch
for configuration data objects and one branch for operational state
data obj ects.

Bj orkl und, et al. Expires May 3, 2018 [Page 3]

Internet-Draft Cct ober 2017

The duplication of definitions and the ad-hoc separation of
operational state data fromconfiguration data |eads to a nunmber of
probl enms. Having configuration and operational state data in
separate branches in the data nodel is operationally conplicated and
i mpacts the readability of nodule definitions. Furthernore, the

rel ati onship between the branches is not machi ne readable and filter
expressi ons operating on configuration and on rel ated operationa
state are different.

Wth the revised architectural nodel of datastores defined in this
docunent, the data objects are defined only once in the YANG schena
but i ndependent instantiations can appear in two different

dat astores, one for configured values and one for operational state
values. This provides a nore el egant and sinpler solution to the
probl em

The revised architectural nodel of datastores supports additiona
datastores for systens that support nore advanced processi ng chains
converting configuration to operational state. For exanple, sone
systens support configuration that is not currently used (so called
i nactive configuration) or they support configuration tenplates that
are used to expand configuration data via a common tenpl ate.

3. Term nol ogy

Thi s docunment defines the follow ng term nol ogy. Sone of the terns

are revised definitions of terns originally defined in [RFC6241] and
[RFC7950] (see also section Section 4). The revised definitions are
semantically equivalent with the definitions found in [RFC6241] and

[RFC7950]. It is expected that the revised definitions provided in

this section will replace the definitions in [RFC6241] and [RFC7950]
when these docunents are revised

0 datastore: A conceptual place to store and access information. A
datastore nmight be inplenented, for exanple, using files, a
dat abase, flash nmenory | ocations, or conbinations thereof. A
datastore maps to an instantiated YANG data tree.

0o schema node: A node in the schema tree. The formal definition is
in RFC 7950.

0 datastore schena: The conbi ned set of schema nodes for all npdul es
supported by a particul ar datastore, taking into consideration any
devi ati ons and enabl ed features for that datastore.

o configuration: Data that is required to get a device fromits
initial default state into a desired operational state. This data

Bj orkl und, et al. Expires May 3, 2018 [Page 4]

Internet-Draft Cct ober 2017

is nodel ed in YANG using "config true" nodes. Configuration can
originate fromdifferent sources.

o configuration datastore: A datastore hol ding configuration

0 running configuration datastore: A configuration datastore hol ding
the current configuration of the device. It may include
configuration that requires further transformations before it can
be applied. This datastore is referred to as "<running>".

o candidate configuration datastore: A configuration datastore that
can be mani pul ated wi thout inpacting the device’s running
configuration datastore and that can be conmitted to the running
configuration datastore. This datastore is referred to as
"<candi dat e>".

0 startup configuration datastore: A configuration datastore hol ding
the configuration | oaded by the device into the running
configuration datastore when it boots. This datastore is referred
to as "<startup>".

o intended configuration: Configuration that is intended to be used
by the device. It represents the configuration after al
configuration transformations to <running> have been perforned and
is the configuration that the systemattenpts to apply.

o intended configuration datastore: A configuration datastore
hol di ng the conplete intended configuration of the device. This
datastore is referred to as "<intended>".

o configuration transformation: The addition, nodification or
renoval of configuration between the <runni ng> and <intended>
dat astores. Exanples of configuration transformations include the
renoval of inactive configuration and the configuration produced
t hrough the expansion of tenpl ates.

o conventional configuration datastore: One of the foll owi ng set of
configuration datastores: <running>, <startup>, <candi date>, and
<i ntended>. These datastores share a commobn datastore schema, and
protocol operations allow copyi ng data between t hese datastores.
The term "conventional" is chosen as a generic unbrella termfor
t hese dat ast ores.

o conventional configuration: Configuration that is stored in any of
the conventional configuration datastores.

o dynam c configuration datastore: A configuration datastore hol ding
configuration obtained dynam cally during the operation of a

Bj orkl und, et al. Expires May 3, 2018 [Page 5]

Internet-Draft Cct ober 2017

device through interaction with other systens, rather than through
one of the conventional configuration datastores.

o dynam c configuration: Configuration obtained via a dynanic
configuration datastore.

o learned configuration: Configuration that has been | earned via
protocol interactions with other systens and that is neither
conventional nor dynam c configuration

o systemconfiguration: Configuration that is supplied by the device
itself.

o default configuration: Configuration that is not explicitly
provi ded but for which a value defined in the data nodel is used.

o applied configuration: Configuration that is actively in use by a
device. Applied configuration originates from conventi onal
dynanic, |earned, system and default configuration

0 systemstate: The additional data on a systemthat is not
configuration, such as read-only status information and coll ected
statistics. Systemstate is transient and nodified by
interactions with internal conponents or other systens. System
state is nodeled in YANG using "config fal se" nodes.

0 operational state: The conbination of applied configuration and
system state.

0 operational state datastore: A datastore holding the conplete
operational state of the device. This datastore is referred to as
"<operational >".

0 origin: A netadata annotation indicating the origin of a data
item

o0 remant configuration: Configuration that remains part of the
applied configuration for a period of time after it has been
renoved fromthe intended configuration or dynam c configuration
The tine period may be mininmal, or may last until all resources
used by the new y-del eted configuration (e.g., network
connections, menory allocations, file handles) have been
deal | ocat ed.

The follow ng additional ternms are not datastore specific but
commonly used and thus defined here as well:

Bj orkl und, et al. Expires May 3, 2018 [Page 6]

Internet-Draft Cct ober 2017

4.

o client: An entity that can access YANG defined data on a server
over sone networ k management protocol

0 server: An entity that provides access to YANG defined data to a
client, over sonme network managenent protocol

o notification: A server-initiated nmessage indicating that a certain
event has been recogni zed by the server.

0 renote procedure call: An operation that can be invoked by a
client on a server.

Backgr ound
NETCONF [RFC6241] provides the followi ng definitions:

0 datastore: A conceptual place to store and access information. A
datastore nmight be inplenented, for exanple, using files, a
dat abase, flash nmenory | ocations, or conbinations thereof.

o configuration datastore: The datastore holding the conplete set of
configuration that is required to get a device fromits initia
default state into a desired operational state.

YANG 1.1 [RFC7950] provides the followi ng refinenments when NETCONF is
used with YANG (which is the usual case but note that NETCONF was
defined before YANG existed):

o datastore: Wien nodeled with YANG a datastore is realized as an
instantiated data tree.

o configuration datastore: Wen nodeled with YANG a configuration
datastore is realized as an instantiated data tree with
configuration.

[RFC6244] defined operational state data as foll ows:

0 COperational state data is a set of data that has been obtained by
the systemat runtinme and influences the systenis behavior simlar
to configuration data. In contrast to configuration data,
operational state is transient and nodified by interactions with
i nternal conponents or other systens via specialized protocols.

Section 4.3.3 of [RFC6244] discusses operational state and anong
other things nentions the option to consider operational state as
being stored in another datastore. Section 4.4 of this docunent then
concludes that at the tine of the witing, nodeling state as distinct
| eafs and distinct branches is the recommended approach.

Bj orkl und, et al. Expires May 3, 2018 [Page 7]

Internet-Draft Cct ober 2017

I mpl ement ati on experience and requests from operators
[I-D.ietf-netnod-opstate-reqs], [I|-D.openconfig-netnod-opstate]

i ndicate that the datastore nodel initially designed for NETCONF and
refined by YANG needs to be extended. In particular, the notion of

i ntended configuration and applied configuration has devel oped.

.1. Oiginal Mdel of Datastores

The followi ng drawi ng shows the original nodel of datastores as it is
currently used by NETCONF [RFC6241]:

oo + oo +
| <candi date> | | <startup> |
| (ct, rw) [<---+ +---> (ct, rw) |
o m e e e oo - + | | S +
I I I I
| Fomm e eaaan + |
B >| <running> | <-------- +
| (ct, rw) |
B +
I
%
operational state <--- control plane
(cf, ro)

ct = config true; cf = config fal se
rw=read-wite; ro = read-only
boxes denote datastores

Note that this diagramsinplifies the nodel: read-only (ro) and read-
wite (rw) is to be understood at a conceptual level. |n NETCONF,
for exanple, support for <candi date> and <startup> is optional and
<runni ng> does not have to be witable. Furthernore, <startup> can
only be nodified by copying <running> to <startup> in the
standardi zed NETCONF datastore editing nodel. The RESTCONF protoco
does not expose these differences and instead provides only a
witable unified datastore, which hides whether edits are done

t hr ough <candi date> or by directly nodifying <running> or via sone

ot her inplenentation specific nmechanism RESTCONF al so hi des how
configuration is nade persistent. Note that inplenentations nay al so
have additional datastores that can propagate changes to <running>
NETCONF explicitly mentions so called naned dat astores.

Sonme observations:
0 COperational state has not been defined as a datastore although

there were proposals in the past to introduce an operational state
dat ast or e.

Bj orkl und, et al. Expires May 3, 2018 [Page 8]

Internet-Draft Cct ober 2017

5.

The NETCONF <get> operation returns the contents of <running>
together with the operational state. It is therefore necessary
that "config false" data is in a different branch than the "config
true" data if the operational state can have a different lifetine
conpared to configuration or if configuration is not inmediately
or successfully appli ed.

Several inplenmentations have proprietary nmechani sns that allow
clients to store inactive data in <running> Inactive data is
conceptual ly renoved before validation

Sone i npl enent ati ons have proprietary nechanisns that allow
clients to define configuration tenplates in <running> These
tenpl ates are expanded automatically by the system and the
resulting configuration is applied internally.

Sone operators have reported that it is essential for themto be
able to retrieve the configuration that has actually been
successfully applied, which may be a subset or a superset of the
<runni ng> configuration

Architectural Mdel of Datastores

Bel ow i s a new conceptual nodel of datastores extending the origina
nodel in order to reflect the experience gained with the origina
nmodel .

Bj orkl und, et al. Expires May 3, 2018 [Page 9]

Internet-Draft Cct ober 2017

Fomm e oo + S +
| <candi date> | | <startup> |
| (ct, rw) [<---+ +---> (ct, rw) |
e e e - + [[[S +
I I I I
| Fomm e eaaaa + |
R >| <running> | <-------- +
| (ct, rw) |
Fom e e e e - - +

I

| /1 configuration transformations,
| /1l e.g., renoval of "inactive"

| /'l nodes, expansion of tenpl ates
v

| <intended> | // subject to validation
| (ct, ro) |

/1 changes applied, subject to

/1 local factors, e.g., mssing
/'l resources, delays

I
I
I
I
I
configuration | R system configuration
I
I
Y,

dynani c R | earned configuration
datastores ----- + Fooe- - default configuration
I I
% %
Fom e e e oo +

| <operational> | <-- systemstate
| (ct + cf, ro) |

ct = config true; cf = config fal se
rw=read-wite; ro = read-only
boxes denote naned dat astores

5.1. Conventional Configuration Datastores
The conventional configuration datastores are a set of configuration
datastores that share exactly the same datastore schema, allow ng
data to be copied between them The termis neant as a generic
unbrell a description of these datastores. The set of datastores
i ncl ude:
0 <runni ng>

0 <candi dat e>

Bj orkl und, et al. Expires May 3, 2018 [Page 10]

Internet-Draft Cct ober 2017

0 <startup>
0 <intended>

O her conventional configuration datastores may be defined in future
document s.

The flow of data between these datastores is depicted in Section 5.

The specific protocols may define explicit operations to copy between
these datastores, e.g., NETCONF defines the <copy-config> operation

5.1.1. The Startup Configuration Datastore (<startup>)

The startup configuration datastore (<startup>) is a configuration
datastore hol ding the configuration | oaded by the device when it
boots. «<startup> is only present on devices that separate the
startup configuration fromthe running configuration datastore

The startup configuration datastore may not be supported by al
protocol s or inplenentations.

On devices that support non-volatile storage, the contents of
<startup> will typically persist across reboots via that storage. At
boot tine, the device |oads the saved startup configuration into
<runni ng>. To save a new startup configuration, data is copied to
<startup>, either via inplicit or explicit protocol operations.

5.1.2. The Candi date Configuration Datastore (<candi date>)

The candi date configuration datastore (<candidate>) is a
configuration datastore that can be mani pul ated wi t hout inpacting the
device’s current configuration and that can be committed to

<r unni ng>.

The candi date configuration datastore may not be supported by al
protocol s or inplenentations.

<candi dat e> does not typically persist across reboots, even in the
presence of non-volatile storage. |f <candidate> is stored using
non-vol atile storage, it is reset at boot tinme to the contents of
<runni ng>.

5.1.3. The Running Configuration Datastore (<running>)
The running configuration datastore (<running>) is a configuration

datastore that holds the conplete current configuration on the
device. It MAY include configuration that requires further

Bj orkl und, et al. Expires May 3, 2018 [Page 11]

Internet-Draft Cct ober 2017

transformation before it can be applied, e.g., inactive
configuration, or tenpl ate-nechanismoriented configuration that
needs further expansion. However, <running> MJST al ways be a valid
configuration data tree, as defined in Section 8.1 of [RFC7950].

<runni ng> MJST be supported if the device can be configured via
conventional configuration datastores.

If a device does not have a distinct <startup> and non-vol atil e
storage is available, the device will typically use that non-volatile
storage to allow <running> to persist across reboots.

5.1.4. The Intended Configuration Datastore (<intended>)

The i ntended configuration datastore (<intended>) is a read-only
configuration datastore. It represents the configuration after al
configuration transformations to <running> are perforned (e.g.
tenpl at e expansi on, renoval of inactive configuration), and is the
configuration that the systemattenpts to apply.

<intended> is tightly coupled to <running> Wenever data is witten
to <running> then <intended> MJST al so be i medi atel y updated by
performng all necessary configuration transfornmations to the
contents of <running> and then <intended> is validated.

<i nt ended> MAY al so be updated independently of <running> if the
effect of a configuration transformation changes, but <intended> MJST
al ways be a valid configuration data tree, as defined in Section 8.1
of [RFC7950].

For sinmple inplenentations, <running> and <i ntended> are identical

The contents of <intended> are also related to the "config true"
subset of <operational> and hence a client can determ ne to what
extent the intended configuration is currently in use by checking
whet her the contents of <intended> al so appear in <operational >.

<i nt ended> does not persist across reboots; its relationship with
<runni ng> makes that unnecessary.

Currently there are no standard nechani sns defined that affect
<intended> so that it would have different content than <running>
but this architecture allows for such nechanisns to be defined

One exanpl e of such a nechanismis support for marking nodes as

inactive in <running> |nactive nodes are not copied to <intended>
A second exanple is support for tenplates, which can perform

Bj orkl und, et al. Expires May 3, 2018 [Page 12]

Internet-Draft Cct ober 2017

transformati ons on the configuration from<running> to the
configuration witten to <i ntended>

5.2. Dynam c Configuration Datastores

The nodel recogni zes the need for dynam c configuration datastores
that are, by definition, not part of the persistent configuration of
a device. In some contexts, these have been terned ephenera
datastores since the information is epheneral, i.e., |ost upon
reboot. The dynamic configuration datastores interact with the rest
of the system through <operational >.

5.3. The Operational State Datastore (<operational>)

The operational state datastore (<operational>) is a read-only
datastore that consists of all "config true" and "config fal se" nodes
defined in the datastore’s schenma. |n the original NETCONF nodel the
operational state only had "config fal se" nodes. The reason for

i ncorporating "config true" nodes here is to be able to expose al
operational settings without having to replicate definitions in the
dat a nodel s.

<operational > contains systemstate and all configuration actually
used by the system This includes all applied configuration from

<i ntended>, |earned configuration, systemprovided configuration, and
default val ues defined by any supported data nodels. 1In addition
<operational > al so contains applied configuration fromdynam c
configuration datastores.

The datastore schema for <operational > MUST be a superset of the

combi ned datastore schema used in all configuration datastores except
that YANG nodes supported in a configuration datastore MAY be onitted
from <operational > if a server is not able to accurately report them

Requests to retrieve nodes from <operational > always return the val ue
in use if the node exists, regardl ess of any default val ue specified
in the YANG nodule. If no value is returned for a given node, then
this inplies that the node is not used by the device.

The interpretation of what constitutes as being "in use" by the
systemis dependent on both the schenma definition and the device

i mpl ementation. Generally, functionality that is enabled and
operational on the systemwoul d be considered as being "in use"
Conversely, functionality that is neither enabl ed nor operational on
the systemis considered as not being "in use", and hence SHOULD be
omtted from <operational >.

Bj orkl und, et al. Expires May 3, 2018 [Page 13]

Internet-Draft Cct ober 2017

<operational > SHOULD conformto any constraints specified in the data
nmodel , but given the principal aimof returning "in use" values, it
is possible that constraints MAY be viol ated under sone
circunstances, e.g., an abnormal value is "in use", the structure of
alist is being nodified, or due to remmant configuration (see
Section 5.3.1). Note, that deviations SHOULD be used when it is
known in advance that a device does not fully conformto the
<oper ati onal > schema.

Only semantic constraints MAY be viol ated, these are the YANG "when"
"must", "nmandatory", "unique", "mn-elenents", and "nex-el enents"
statements; and the uni queness of key val ues.

Syntactic constraints MJUST NOT be viol ated, including hierarchica
organi zation, identifiers, and type-based constraints. If a node in
<operational > does not neet the syntactic constraints then it MJST
NOT be returned, and sone other mechani sm should be used to flag the
error.

<oper ati onal > does not persist across reboots.
5.3.1. Remmant Configuration

Changes to configuration nmay take tine to percolate through to
<operational > During this period, <operational> may contain nodes
for both the previous and current configuration, as closely as
possi bl e tracking the current operation of the device. Such remant
configuration fromthe previous configuration persists until the
system has rel eased resources used by the new y-del eted configuration
(e.g., network connections, menory allocations, file handles).

Remmant configuration is a common exanpl e of where the senantic
constraints defined in the data nodel cannot be relied upon for
<operational >, since the system may have remant configuration whose
constraints were valid with the previous configuration and that are
not valid with the current configuration. Since constraints on
"config fal se" nodes may refer to "config true" nodes, remant
configuration may force the violation of those constraints.

5.3.2. M ssing Resources
Configuration in <intended> can refer to resources that are not
avai l abl e or otherw se not physically present. In these situations,
these parts of <intended> are not applied. The data appears in
<i nt ended> but does not appear in <operational >.

A typical exanple is an interface configuration that refers to an
interface that is not currently present. 1In such a situation, the

Bj orkl und, et al. Expires May 3, 2018 [Page 14]

Internet-Draft Cct ober 2017

interface configuration remains in <intended> but the interface
configuration will not appear in <operational >.

Note that configuration validity cannot depend on the current state
of such resources, since that would inply that renpoving a resource
m ght render the configuration invalid. This is unacceptable,
especially given that rebooting such a device would cause it to
restart with an invalid configuration. Instead we allow
configuration for mssing resources to exist in <running> and
<intended>, but it will not appear in <operational >.

5.3.3. Systemcontrol |l ed Resources

Somet i mes resources are controlled by the device and the
correspondi ng systemcontrol |l ed data appears in (and di sappears from
<operational > dynamcally. If a systemcontrolled resource has

mat chi ng configuration in <intended> when it appears, the systemw ||
try to apply the configuration, which causes the configuration to
appear in <operational> eventually (if application of the
configuration was successful).

5.3.4. Oigin Metadata Annotation

As configuration flows into <operational>, it is conceptually nmarked
with a netadata annotation ([RFC7952]) that indicates its origin.

The origin applies to all configuration nodes except non-presence
containers. The "origin" nmetadata annotation is defined in

Section 7. The values are YANG identities. The following identities
are defined:

0 origin: abstract base identity fromwhich the other origin
identities are derived.

0 intended: represents configuration provided by <intended>

0 dynamic: represents configuration provided by a dynanic
configuration datastore.

0 system represents configuration provided by the systemitself.
Exanpl es of system configuration include applied configuration for
an al ways existing | oopback interface, or interface configuration
that is auto-created due to the hardware currently present in the
devi ce.

o learned: represents configuration that has been | earned via

protocol interactions with other systens, including protocols such
as link-layer negotiations, routing protocols, DHCP, etc.

Bj orkl und, et al. Expires May 3, 2018 [Page 15]

Internet-Draft Cct ober 2017

o default: represents configuration using a default val ue specified
in the data nodel, using either values in the "default" statenent
or any values described in the "description"” statenment. The
default origin is only used when the configuration has not been
provi ded by any ot her source.

0 unknown: represents configuration for which the system cannot
identify the origin.

These identities can be further refined, e.g., there could be
separate identities for particular types or instances of dynamic
configuration datastores derived from "dynami c".

For all configuration data nodes in <operational> the device SHOULD
report the origin that nost accurately reflects the source of the
configuration that is in use by the system

In cases where it could be anmbi guous as to which origin should be
used, i.e. where the sane data node val ue has originated from

mul tiple sources, then the description statement in the YANG nodul e
SHOULD be used as gui dance for choosing the appropriate origin. For
exanpl e:

If for a particular configuration node, the associated YANG
description statenent indicates that a protocol negotiated val ue
overrides any configured value, then the origin wuld be reported as
"l earned", even when a |learned value is the sane as the configured
val ue.

Conversely, if for a particular configuration node, the associated
YANG description statenent indicates that a protocol negotiated val ue
does not override an explicitly configured value, then the origin
woul d be reported as "intended" even when a | earned value is the same
as the configured val ue.
In the case that a device cannot provide an accurate origin for a
particul ar configuration data node then it SHOULD use the origin
"unknown" .

6. Inplications on YANG

6.1. XPath Context
This section updates section 6.4.1 of RFC 7950.

If a server inplenents the architecture defined in this docunent, the
accessible trees for sone XPath contexts are refined as foll ows:

Bj orkl und, et al. Expires May 3, 2018 [Page 16]

Internet-Draft Cct ober 2017

o If the XPath expression is defined in a substatement to a data
node that represents systemstate, the accessible tree is al
operational state in the server. The root node has all top-Ieve
data nodes in all nodules as children

o If the XPath expression is defined in a substatement to a
"notification" statement, the accessible tree is the notification
instance and all operational state in the server. |If the
notification is defined on the top level in a nodule, then the
root node has the node representing the notification being defined
and all top-level data nodes in all nodul es as children
O herwi se, the root node has all top-level data nodes in al
nodul es as chil dren

o If the XPath expression is defined in a substatenent to an "input"”
statenent in an "rpc" or "action" statenent, the accessible tree
is the RPC or action operation instance and all operational state
in the server. The root node has top-level data nodes in al
modul es as children. Additionally, for an RPC, the root node al so
has the node representing the RPC operation being defined as a
child. The node representing the operation being defined has the
operation’s input paraneters as children

o If the XPath expression is defined in a substatenent to an
"output" statenent in an "rpc" or "action" statenent, the
accessible tree is the RPC or action operation instance and all
operational state in the server. The root node has top-level data
nodes in all nodules as children. Additionally, for an RPC, the
root node al so has the node representing the RPC operation being
defined as a child. The node representing the operation being
defined has the operation’s output paraneters as children

7. YANG Modul es
<CODE BEG NS> file "ietf-datastores@017-08-17.yang"
nmodul e ietf-datastores {
yang-version 1.1;
nanespace "urn:ietf:parans: xnm :ns:yang:ietf-datastores”
prefix ds;

organi zati on
"I ETF Network Mdeling (NETMOD) Working G oup”;

cont act
"WG Web: <https://datatracker.ietf.org/wg/ netnod/ >

WG List: <mailto:netnod@etf.org>

Bj orkl und, et al. Expires May 3, 2018 [Page 17]

Internet-Draft Cct ober 2017

Aut hor : Martin Bjorklund
<mailto:nmbj @ail-f.conmp

Aut hor : Juer gen Schoenwael der
<mai | t0:] . schoenwael der @ acobs- uni versity. de>

Aut hor : Phil Shaf er
<mai | t o: phi | @ uni per. net >

Aut hor : Kent Wt sen
<mai | t 0: kwat sen@ uni per. net >

Aut hor : Rob Wl ton
<rwi | ton@i sco. conp";

description
"Thi s YANG nodul e defines two sets of identities for datastores.
The first identifies the datastores thensel ves, the second
identifies datastore properties.

Copyright (c) 2017 | ETF Trust and the persons identified as
authors of the code. All rights reserved.

Redi stribution and use in source and binary forms, with or

wi t hout nodification, is pernmitted pursuant to, and subject to
the license ternms contained in, the Sinplified BSD Li cense set
forth in Section 4.c of the I ETF Trust’s Legal Provisions

Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodule is part of RFC XXXX
(http://ww. rfc-editor.org/info/rfcxxxx); see the RFC itself
for full legal notices.";

revision 2017-08-17 {
description
"Initial revision.";
ref erence
"RFC XXXX: Networ k Managenent Datastore Architecture”;

}

/*
* |dentities
*/

identity datastore {

description
"Abstract base identity for datastore identities.";

Bj orkl und, et al. Expires May 3, 2018 [Page 18]

Internet-Draft Cct ober 2017

}

identity conventional {
base datastore
description
"Abstract base identity for conventional configuration
dat astores.";

}

identity running {
base conventi onal
description
"The running configuration datastore."

}

identity candidate {
base conventi onal
description
"The candi date configuration datastore.";

}

identity startup {
base conventi onal
description
"The startup configuration datastore."

}

identity intended {
base conventi onal
description
"The intended configuration datastore.";

}

identity dynam c {
base datastore
description
"Abstract base identity for dynam c configuration datastores."”;

}

identity operational {
base datastore
description
"The operational state datastore.";

}

/*
* Type definitions
*/

Bj orkl und, et al. Expires May 3, 2018 [Page 19]

Internet-Draft

Cct ober

typedef datastore-ref {
type identityref {
base dat ast ore;

}

description

"A datastore identity reference."”;

}
<CODE ENDS>

<CCDE BEG NS> file "ietf-origi n@017-08-17. yang"

modul e ietf-origin {
yang-version 1.1;
nanespace "urn:ietf:parans: xnl:ns:yang:ietf-origin";

prefix or;

i mport ietf-yang-metadata {

prefix nd;

}

organi zati on

"I ETF Network Mdeling (NETMOD) Wbrking G oup”;

cont act
"WG Web:

WG Li st

Aut hor :

Aut hor :

Aut hor :

Aut hor :

Aut hor :

description

<https://datatracker.ietf.org/wg/ netnod/ >
<mailto: netnod@etf.org>

Martin Bjorkl und
<mailto:nmbj @ail-f.conp

Juer gen Schoenwael der
<mai | t0:] . schoenwael der @ acobs- uni versity. de>

Phi | Shafer
<mai | t o: phi | @ uni per. net >

Kent Watsen
<mai | t 0: kwat sen@ uni per. net >

Rob Wl ton
<rwi | ton@i sco. conmp";

2017

"This YANG nodul e defines an "origin’ netadata annotation, and a

Bj orkl und, et al.

Expires May 3, 2018 [Page 20]

Internet-Draft Cct ober 2017

set of identities for the origin val ue.

Copyright (c) 2017 | ETF Trust and the persons identified as
authors of the code. All rights reserved.

Redi stribution and use in source and binary forms, with or

wi thout nodification, is pernmitted pursuant to, and subject to
the license ternms contained in, the Sinplified BSD License set
forth in Section 4.c of the I ETF Trust’s Legal Provisions

Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodule is part of RFC XXXX
(http://ww. rfc-editor.org/info/rfcxxxx); see the RFC itself
for full legal notices.";

revision 2017-08-17 {
description
"Initial revision.";
ref erence
"RFC XXXX: Networ k Managenent Datastore Architecture”;

}

/*
* |dentities
*/

identity origin {
description
"Abstract base identity for the origin annotation.";

}

identity intended {
base origin;
description
"Denotes configuration fromthe intended configuration
dat astore";

}

identity dynam c {
base origin;
description
"Denotes configuration froma dynam c configuration
datastore.";

}

identity system {
base origin;

Bj orkl und, et al. Expires May 3, 2018 [Page 21]

Internet-Draft Cct ober 2017

description
"Denotes configuration originated by the systemitself.

Exanpl es of system configuration include applied configuration
for an al ways existing | oopback interface, or interface
configuration that is auto-created due to the hardware
currently present in the device.";

}

identity learned {
base origin;
description
"Denotes configuration | earned fromprotocol interactions with
ot her devices, instead of via either the intended
configuration datastore or any dynam c configuration
dat ast or e.

Exanpl es of protocols that provide | earned configuration
i nclude link-I1ayer negotiations, routing protocols, and
DHCP. " ;

}

identity default {
base origin;
description
"Denotes configuration that does not have an configured or
| earned val ue, but has a default value in use. Covers both
val ues defined in a 'default’ statenent, and val ues defined
via an explanation in a 'description’ statenment.";

}

identity unknown {
base origin;
description
"Denotes configuration for which the systemcannot identify the

origin.";
}
/*
* Type definitions
*/

typedef origin-ref {
type identityref {
base origin;
}
description
"An origin identity reference.";

Bj orkl und, et al. Expires May 3, 2018 [Page 22]

Internet-Draft Cct ober 2017

}

/*
* Met adat a annot ati ons
*/

md: annot ation origin {
type origin-ref;
description
"The 'origin’ annotation can be present on any configuration
data node in the operational datastore. It specifies from
where the node originated. |f not specified for a given
configuration data node then the origin is the sane as the
origin of its parent node in the data tree. The origin for
any top level configuration data nodes nust be specified.”

}
}

<CCDE ENDS>
8. | ANA Consi derations
8.1. Updates to the | ETF XM. Registry
This docunent registers two URIs in the | ETF XM registry [RFC3688].
Following the format in [RFC3688], the followi ng registrations are
request ed:
URI: urn:ietf:parans: xnl:ns:yang:ietf-datastores
Regi strant Contact: The | ESG
XML: N A the requested URI is an XM. nanespace
URI: urn:ietf:parans:xm:ns:yang:ietf-origin
Regi strant Contact: The | ESG
XM.: NA, the requested URI is an XM. nanespace.
8.2. Updates to the YANG Mbdul e Nanes Regi stry
Thi s docunment registers two YANG nodul es in the YANG Mbdul e Nanes

registry [RFC6020]. Following the format in [RFC6020], the the
followi ng registrations are requested:

Bj orkl und, et al. Expires May 3, 2018 [Page 23]

Internet-Draft

name: i etf-datastores

nanespace: urn:ietf:parans: xm :ns:yang:ietf-datastores
prefix: ds

ref erence: RFC XXXX

nane: ietf-origin

nanespace: urn:ietf:paranms:xm:ns:yang:ietf-origin
prefix: or

ref erence: RFC XXXX

9. Security Considerations

Cct ober 2017

Thi s docunent di scusses an architectural nodel of datastores for
net wor k managemnent usi ng NETCONF/ RESTCONF and YANG It has no

security inmpact on the Internet.

Al t hough this docunent specifies several YANG nodul es, these nodul es
only define identities and neta-data, hence the "YANG nodul e security

gui del i nes” do not apply.

10. Acknow edgnents

Thi s docunment grew out of nmany discussions that took place since
2010. Several Internet-Drafts ([I-D.bjorklund-netnnod-operational],
[1-D.wilton-netnod-opstate-yang], [|-D.ietf-netnod-opstate-reqs],
[1-D. kwat sen-net nod- opstate], [I-D.openconfig-netnod-opstate]) and

[RFC6244] touched on sone of the problens of the origina

dat astore

nodel . The followi ng people were authors to these Internet-Drafts or
otherwi se actively involved in the discussions that led to this

docunent :

0 Lou Berger, LabN Consulting, L.L.C., <l|berger@ abn. net>

0 Andy Biernman, YumaWrks, <andy@unmaworks. con®

o Marcus Hines, CGoogle, <hines@oogle.cons

o Christian Hopps, Deutsche Tel ekom <chopps@hopps. org>

o Balazs Lengyel, Ericsson, <bal azs.|engyel @ricsson.conp

0 Acee Lindem Cisco Systens, <acee@i sco.conp

0 Ladislav Lhotka, CZ.NIC, <l hotka@ic.cz>

o Thomas Nadeau, Brocade Networ ks, <tnadeau@ uci dvi sion.con®

0 Tom Petch, Engineering Networks Ltd, <ietfc@otconnect.conpr

Bj orkl und, et al. Expires May 3, 2018

[Page 24]

Internet-Draft

Cct ober 2017

0 Anees Shai kh, Googl e, <aashai kh@oogl e. con»

0 Rob Shakir, Google, <robjs@oogle.conr

o Jason St

erne, Nokia, <jason.sterne@okia.co>

Juergen Schoenwael der was partly funded by Fl ami ngo, a Network of

Excel | ence

project (ICT-318488) supported by the European Conm ssion

under its Seventh Framework Progranme.

11. References

11.1. Normati

[RFC2119]

[RFC6241]

[RFC7950]

[RFC7952]

[RFC8040]

[RFC8174]

ve References

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,

DA 10.17487/ RFC2119, March 1997, <https://ww.rfc-
editor.org/info/rfc2119>.

Enns, R, Ed., Bjorklund, M, Ed., Schoenwael der, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DA 10.17487/ RFC6241, June 2011,
<https://www. rfc-editor.org/info/rfc6241>.

Bj orklund, M, Ed., "The YANG 1.1 Data Mddeling Language",
RFC 7950, DA 10. 17487/ RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "Defining and Using Metadata with YANG',
RFC 7952, DO 10. 17487/ RFC7952, August 2016,
<https://ww. rfc-editor.org/info/rfc7952>.

Bi erman, A, Bjorklund, M, and K Wtsen, "RESTCONF
Protocol ", RFC 8040, DO 10.17487/ RFC8040, January 2017,
<https://ww.rfc-editor.org/info/rfc8040>.

Lei ba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DA 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

11.2. Informative References

[I-D.bjorkl

Bj or kl und, et

und- net nod- oper at i onal]

Bj orklund, M and L. Lhotka, "Operational Data in NETCONF
and YANG', draft-bjorklund-netnod-operational -00 (work in
progress), Cctober 2012.

al . Expires May 3, 2018 [Page 25]

Internet-Draft Cct ober 2017

[1-D.ietf-netnod-opstate-reqs]
Wat sen, K. and T. Nadeau, "Term nol ogy and Requirenents
for Enhanced Handling of Operational State", draft-ietf-
net nod- opst ate-reqs-04 (work in progress), January 2016.

[1-D. kwat sen- net nod- opst at €]
Watsen, K., Bierman, A., Bjorklund, M, and J.
Schoenwael der, "Operational State Enhancenments for YANG
NETCONF, and RESTCONF", draft-kwatsen-net nod-opstate-02
(work in progress), February 2016.

[I-D. openconfi g- net nod- opst at €]
Shakir, R, Shaikh, A, and M Hines, "Consistent Mddeling
of Operational State Data in YANG', draft-openconfig-
net nod- opstate-01 (work in progress), July 2015.

[1-D.wilton-netnod-opstate-yang]
Wliton, R, ""Wth-config-state" Capability for NETCONF/
RESTCONF", draft-wilton-netnod-opstate-yang-02 (work in
progress), Decenber 2015.

[RFC3688] Mealling, M, "The I ETF XML Registry", BCP 81, RFC 3688,
DA 10. 17487/ RFC3688, January 2004, <https://ww.rfc-
editor.org/infol/rfc3688>.

[RFC6020] Bjorklund, M, Ed., "YANG - A Data Mdeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DA 10. 17487/ RFC6020, COctober 2010, <https://ww.rfc-
editor.org/infol/rfc6020>.

[RFC6244] Shafer, P., "An Architecture for Network Managenent Using
NETCONF and YANG', RFC 6244, DO 10.17487/ RFC6244, June
2011, <https://ww.rfc-editor.org/info/rfc6244>.

[RFC7223] Bjorklund, M, "A YANG Data Model for Interface
Managenent ", RFC 7223, DO 10.17487/ RFC7223, May 2014,
<https://ww.rfc-editor.org/info/rfc7223>.

[RFC7277] Bjorklund, M, "A YANG Data Mdel for |IP Management",
RFC 7277, DO 10. 17487/ RFC7277, June 2014,
<https://www. rfc-editor.org/info/rfc7277>.

Appendi x A. Cuidelines for Defining Datastores
The definition of a new datastore in this architecture should be
provided in a docunent (e.g., an RFC) purposed to the definition of

the datastore. Wen it nakes sense, nore than one datastore nmay be
defined in the same document (e.g., when the datastores are logically

Bj orkl und, et al. Expires May 3, 2018 [Page 26]

Internet-Draft Cct ober 2017

connected). Each datastore’s definition should address the points
specified in the sections bel ow

A 1. Define which YANG nodul es can be used in the datastore

Not all YANG nodules nay be used in all datastores. Sone datastores
may constrain which data nodels can be used in them If it is
desirable that a subset of all nodul es can be targeted to the

dat astore, then the docunentation defining the datastore nust

i ndicate this.

A. 2. Define which subset of YANG nodel ed data applies

By default, the data in a datastore is nodeled by all YANG statenents
in the avail able YANG nodul es. However, it is possible to specify
criteria that YANG statenents nust satisfy in order to be present in
a datastore. For instance, maybe only "config true" nodes, or
"config fal se" nodes that al so have a specific YANG extension, are
present in the datastore.

A. 3. Define how data is actual i zed

The new datastore nust specify howit interacts with other
dat ast or es.

For exanple, the diagramin Section 5 depicts dynanic configuration
dat astores feeding into <operational> How this interaction occurs
has to be defined by the particular dynam c configuration datastores
In sone cases, it may occur inplicitly, as soon as the data is put
into the dynanmic configuration datastore while, in other cases, an
explicit action (e.g., an RPC) may be required to trigger the
application of the datastore’s data.

A. 4. Define which protocols can be used

By default, it is assumed that both the NETCONF and RESTCONF
protocols can be used to interact with a datastore. However, it may
be that only a specific protocol can be used (e.g., ForCES) or that a
subset of all protocol operations or capabilities are avail able
(e.g., no locking or no XPath-based filtering).

A.5. Define YANG identities for the datastore
The datastore nust be defined with a YANG identity that uses the
"ds: datastore" identity, or one of its derived identities, as its

base. This identity is necessary so that the datastore can be
referenced in protocol operations (e.g., <get-data>).

Bj orkl und, et al. Expires May 3, 2018 [Page 27]

Internet-Draft Cct ober 2017

The datastore may al so be defined with an identity that uses the
"or:origin" identity or one its derived identities as its base. This
identity is needed if the datastore interacts with <operational > so
that data originating fromthe datastore can be identified as such
via the "origin" nmetadata attribute defined in Section 7.

An exanpl e of these guidelines in use is provided in Appendi x B.
Appendi x B. Ephemeral Dynanic Configuration Datastore Exanple

The section defines docunentation for an exanpl e dynanic
configuration datastore using the guidelines provided in Appendi x A
While this exanple is very terse, it is expected to be that a

st andal one RFC woul d be needed when fully expanded.

This exanpl e defines a dynanic configuration datastore called
"epheneral ", which is |oosely nodel ed after the work done in the |I2RS
wor ki ng group.

B oo e m e +
| Nane | Val ue |
S o s m m e oo +
| Nare | epheneral |
| YANG nodules | all (default) |
| YANG nodes | all "config true" data nodes [
| How applied | changes automatically propagated to <operational > |
| Protocols | NC/RC (default) |
I I I

YANG Modul e (see bel ow)

The exanpl e "epheneral " datastore properties

Bj orkl und, et al. Expires May 3, 2018 [Page 28]

Internet-Draft Cct ober 2017

nodul e exanpl e-ds- epheneral {
yang-version 1.1;
nanespace "urn: exanpl e: ds-epheneral ";
prefix eph;

import ietf-datastores {
prefix ds;

}

inmport ietf-origin {
prefix or;

}

/] datastore identity
identity ds-epheneral {
base ds: dynami c;
description
"The epheneral dynam c configuration datastore.";
}

[l origin identity
identity or-epheneral {
base or:dynami c;
description
"Denotes data fromthe epheneral dynami c configuration
datastore.";
}
}

Appendi x C. Exanple Data

The use of datastores is conplex, and many of the subtle effects are
nmore easily presented using exanples. This section presents a series
of exanple data nodels with sone sanple contents of the various

dat ast or es.

C. 1. System Exanple
In this exanple, the followi ng fictional nodule is used:
nmodul e exanpl e- system {
yang-version 1.1;
namespace urn: exanpl e: system
prefix sys;
inmport ietf-inet-types {
prefix inet;

}

Bj orkl und, et al. Expires May 3, 2018 [Page 29]

Internet-Draft Cct ober 2017

cont ai ner system {
| eaf host nane {
type string;

list interface {
key narne;

| eaf nane {
type string;

cont ai ner aut o-negotiation {
| eaf enabled {
type bool ean;
default true;

| eaf speed {
type uint32;
units nbps;
description
"The advertised speed, in nbps.";
}

}

| eaf speed {
type uint32;
units nbps;
config fal se
description
"The speed of the interface, in nmbps.";

}

|ist address {
key ip;

leaf ip {
type inet:ip-address;

| eaf prefix-length {
type uint8;
}
}

Bj orkl und, et al. Expires May 3, 2018 [Page 30]

Internet-Draft Cct ober 2017

The operator has configured the host name and two interfaces, so the
contents of <intended> are:

<syst em xm ns="ur n: exanpl e: systent' >
<host nane>f oo</ host nanme>

<interface>
<name>et h0</ name>
<aut o- negoti ati on>
<speed>1000</ speed>
</ aut o- negoti ati on>
<addr ess>
<i p>2001: db8: : 10</i p>
<prefix-1engt h>64</ prefix-Iength>
</ addr ess>
</interface>

<interface>
<nane>et hl</ nane>
<addr ess>
<i p>2001: db8: : 20</i p>
<prefi x-1 engt h>64</ prefix-1engt h>
</ addr ess>
</interface>

</ syst enp

The system has detected that the hardware for one of the configured
interfaces ("ethl") is not yet present, so the configuration for that
interface is not applied. Further, the system has received a host
nane and an additional |IP address for "eth0" over DHCP. 1In addition
to a default value, a |oopback interface is automatically added by
the system and the result of the "speed" auto-negotiation. Al of
this is reflected in <operational> Note how the origin netadata
attribute for several "config true" data nodes is inherited from
their parent data nodes.

Bj orkl und, et al. Expires May 3, 2018 [Page 31]

Internet-Draft Cct ober 2017

<system
xm ns="ur n: exanpl e: syst ent
xm ns:or="urn:ietf:parans: xm :ns:yang:ietf-origin">

<host nane or:origi n="or:dynam c" >bar </ host nane>

<interface or:origin="or:intended">
<name>et h0</ name>
<aut o- negoti ati on>
<enabl ed or:origi n="or: defaul t">true</ enabl ed>
<speed>1000</ speed>
</ aut o- negoti ati on>
<speed>100</ speed>
<addr ess>
<i p>2001: db8: : 10</i p>
<prefi x-1 engt h>64</ prefix-Iengt h>
</ addr ess>
<address or:origin="or:dynamc">
<i p>2001: db8: : 1: 100</i p>
<prefix-1engt h>64</ prefix-Iengt h>
</ addr ess>
</interface>

<interface or:origin="or:system>
<name>| 00</ name>
<addr ess>
<ip>:1</ip>
<prefix-1ength>128</prefix-1engt h>
</ addr ess>
</interface>

</ syst enp
C. 2. BGP Exanpl e

Consider the following fragnent of a fictional BGP nodul e:

Bj orkl und, et al. Expires May 3, 2018 [Page 32]

Internet-Draft Cct ober 2017

cont ai ner bgp {
| eaf | ocal-as {
type uint32;

| eaf peer-as {
type uint32;

list peer {
key nane;
| eaf nane {
type i paddress;

| eaf | ocal-as {
type uint32;
description
".... Defaults to ../l ocal-as"
}
| eaf peer-as {
type uint32;
description
"... Defaults to ../peer-as"

| eaf | ocal-port {
type inet:port;

| eaf renote-port {
type inet:port;
default 179;

| eaf state {
config fal se
type enuneration {
enuminit;
enum est abl i shed;
enum cl osi ng;
}
}
}
}

In this exanpl e nodel, both bgp/peer/local -as and bgp/ peer/ peer-as
have conpl ex hierarchical values, allow ng the user to specify
default values for all peers in a single |location

The nmodel also follows the pattern of fully integrating state

("config false") nodes with configuration ("config true") nodes.
There is no separate "bgp-state" hierarchy, with the acconpanying

Bj orkl und, et al. Expires May 3, 2018 [Page 33]

Internet-Draft Cct ober 2017

repetition of containment and naning nodes. This makes the nodel
simpl er and nore readabl e.

C 2. 1. Dat ast or es

Each datastore represents differing views of these nodes. <running>
will hold the configuration provided by the operator, for exanple a
single BGP peer. <intended> will conceptually hold the data as
val i dated, after the renoval of data not intended for validation and
after any |l ocal tenplate nechanisns are perfornmed. <operational >
will show data from <intended> as well as any "config fal se" nodes

C.2.2. Adding a Peer

If the user configures a single BGP peer, then that peer will be
visible in both <running> and <intended>. It nay al so appear in
<candi date>, if the server supports the candidate configuration
datastore. Retrieving the peer will return only the user-specified
val ues.

No tine delay shoul d exi st between the appearance of the peer in
<runni ng> and <i nt ended>

In this scenario, we’'ve added the following to <running>

<bgp>
<l ocal - as>64501</1| ocal - as>
<peer - as>64502</ peer - as>
<peer >
<nanme>10. 1. 2. 3</ nane>
</ peer >
</ bgp>

C.2.2.1. <operational >

The operational datastore will contain the fully expanded peer data,
including "config fal se" nodes. |In our exanple, this neans the
"state" node wll appear.

In addition, <operational> will contain the "currently in use" val ues
for all nodes. This neans that |ocal-as and peer-as will be

popul ated even if they are not given values in <intended> The val ue
of bgp/local-as will be used if bgp/peer/local-as is not provided,
bgp/ peer-as and bgp/ peer/peer-as will have the sane relationship. In
the operational view, this neans that every peer will have values for
their local-as and peer-as, even if those values are not explicitly
configured but are provided by bgp/local -as and bgp/ peer-as.

Bj orkl und, et al. Expires May 3, 2018 [Page 34]

Internet-Draft Cct ober 2017

Each BGP peer has a TCP connection associated with it, using the

val ues of local-port and renpte-port from <intended> |If those

val ues are not supplied, the systemw | select values. When the
connection is established, <operational> will contain the current

val ues for the local-port and renote-port nodes regardl ess of the
origin. |If the systemhas chosen the values, the "origin" attribute
will be set to "systent. Before the connection is established, one
or both of the nodes may not appear, since the system may not yet
have their val ues.

<bgp or:origin="or:intended">
<l ocal - as>64501</1 ocal - as>
<peer - as>64502</ peer - as>
<peer >
<name>10. 1. 2. 3</ nane>
<l ocal -as or:origin="or:default">64501</1ocal - as>
<peer-as or:origin="or:defaul t">64502</ peer - as>
<l ocal -port or:origin="or:systenl>60794</| ocal -port >
<renote-port or:origin="or:default">179</renote-port>
<st at e>est abl i shed</ st at e>
</ peer >
</ bgp>

C.2.3. Renoving a Peer

Changes to configuration may take tine to percol ate through the
various software conponents involved. During this period, it is

i nperative to continue to give an accurate view of the working of the
device. <operational> will contain nodes for both the previ ous and
current configuration, as closely as possible tracking the current
operation of the device.

Consi der the scenario where a client renmoves a BGP peer. Wen a peer
is renoved, the operational state will continue to reflect the

exi stence of that peer until the peer’s resources are rel eased,
including closing the peer’s connection. During this period, the
current data values will continue to be visible in <operational >,
with the "origin" attribute set to indicate the origin of the
ori gi nal data.

Bj orkl und, et al. Expires May 3, 2018 [Page 35]

Internet-Draft Cct ober 2017

<bgp or:origin="or:intended">
<l ocal - as>64501</1 ocal - as>
<peer - as>64502</ peer - as>
<peer >
<nane>10. 1. 2. 3</ nane>
<l ocal -as or:origin="or:default">64501</1ocal - as>
<peer-as or:origin="or:default">64502</ peer - as>
<l ocal -port or:origin="or:systen!>60794</1| ocal - port>
<renote-port or:origin="or:default">179</renote-port>
<st at e>cl osi ng</ st at e>
</ peer >
</ bgp>

Once resources are rel eased and the connection is closed, the peer’s
data is renmoved from <operati onal >.

C.3. Interface Exanple
In this section, we will use this sinple interface data nodel:

contai ner interfaces {
list interface {
key nane;
| eaf nane {
type string;

| eaf description {
type string;

}
| eaf nmtu {
type uint 16;

leaf-1ist ip-address {
type inet:ip-address;
}

}
}

C.3.1. Pre-provisioned Interfaces

One common issue in networking devices is the support of Field

Repl aceabl e Units (FRUs) that can be inserted and renoved fromthe
device without requiring a reboot or interfering with normal
operation. These FRUs are typically interface cards, and the devices
support pre-provisioning of these interfaces.

Bj orkl und, et al. Expires May 3, 2018 [Page 36]

Internet-Draft Cct ober 2017

If a client creates an interface "et-0/0/0" but the interface does
not physically exist at this point, then <intended> m ght contain the
fol | owi ng:

<i nterfaces>
<interface>
<nane>et - 0/ 0/ 0</ nane>
<description>Test interface</description>
</interface>
</interfaces>

Since the interface does not exist, this data does not appear in
<oper ati onal >.

When a FRU containing this interface is inserted, the systemwl|
detect it and process the associated configuration. <operational>
will contain the data from <i ntended>, as well as nodes added by the
system such as the current value of the interface’'s MU

<interfaces or:origin="or:intended">
<interface>
<nane>et - 0/ 0/ 0</ nanme>
<description>Test interface</description>
<mtu or:origin="or:systen>1500</nt u>
</interface>
</[interfaces>

If the FRUis renoved, the interface data is renoved from
<oper ati onal >.

C. 3.2. Systemprovided Interface

Imagine if the system provides a | oopback interface (nanmed "I o0")
with a default ip-address of "127.0.0.1" and a default ip-address of
"::1". The systemw |l only provide configuration for this interface
if there is no data for it in <intended>

When no configuration for "I o0" appears in <intended> then
<operational > will show the system provi ded dat a:

<interfaces or:origin="or:intended">
<interface or:origin="or:system>
<nane>| 00</ name>
<i p-address>127. 0. 0. 1</ i p- addr ess>
<i p- addr ess>: : 1</ i p- addr ess>
</interface>
</interfaces>

Bj orkl und, et al. Expires May 3, 2018 [Page 37]

Internet-Draft Cct ober 2017

When configuration for "l o0" does appear in <intended>, then
<operational > will show that data with the origin set to "intended".
If the "ip-address” is not provided, then the system provi ded val ue
will appear as follows:

<interfaces or:origin="or:intended">
<interface>
<nane>| 00</ nane>
<descri pti on>l oopback</descri pti on>
<i p-address or:origin="or:systenl>127.0.0. 1</i p- addr ess>
<i p- addr ess>: : 1</ i p- addr ess>
</interface>
</interfaces>
Aut hors’ Addresses

Martin Bjorklund
Tail -f Systens

Email: nmbj @ail-f.com
Juer gen Schoenwael der
Jacobs University

Emai | : j.schoenwael der @ acobs-uni versity. de
Phi | Shaf er

Juni per Networks

Emai | : phil @ uni per. net
Kent Watsen

Juni per Networks

Emai | : kwat sen@ uni per. net
Robert WIton

Cisco Systens

Email: rwilton@i sco.com

Bj orkl und, et al. Expires May 3, 2018 [Page 38]

