
netvc T. Terriberry
Internet-Draft N. Egge
Intended status: Informational Mozilla Corporation
Expires: October 26, 2017 April 24, 2017

 Coding Tools for a Next Generation Video Codec
 draft-terriberry-netvc-codingtools-02

Abstract

 This document proposes a number of coding tools that could be
 incorporated into a next-generation video codec.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 26, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Terriberry & Egge Expires October 26, 2017 [Page 1]

Internet-Draft Coding Tools April 2017

Table of Contents

 1. Introduction . 2
 2. Entropy Coding . 2
 2.1. Non-binary Arithmetic Coding 4
 2.2. Non-binary Context Modeling 5
 2.3. Dyadic Adaptation . 6
 2.4. Simplified Partition Function 9
 2.5. Context Adaptation 11
 2.5.1. Implicit Adaptation 11
 2.5.2. Explicit Adaptation 12
 2.5.3. Early Adaptation 12
 2.6. Simple Experiment . 13
 3. Reversible Integer Transforms 14
 3.1. Lifting Steps . 14
 3.2. 4-Point Transform . 17
 3.3. Larger Transforms . 20
 3.4. Walsh-Hadamard Transforms 20
 4. Development Repository 22
 5. IANA Considerations . 22
 6. Acknowledgments . 22
 7. References . 22
 7.1. Informative References 22
 7.2. URIs . 23
 Authors’ Addresses . 24

1. Introduction

 One of the biggest contributing factors to the success of the
 Internet is that the underlying protocols are implementable on a
 royalty-free basis. This allows them to be implemented widely and
 easily distributed by application developers, service operators, and
 end users, without asking for permission. In order to produce a
 next-generation video codec that is competitive with the best patent-
 encumbered standards, yet avoids patents which are not available on
 an open-source compatible, royalty-free basis, we must use old coding
 tools in new ways and develop new coding tools. This draft documents
 some of the tools we have been working on for inclusion in such a
 codec. This is early work, and the performance of some of these
 tools (especially in relation to other approaches) is not yet fully
 known. Nevertheless, it still serves to outline some possibilities
 that NETVC could consider.

2. Entropy Coding

 The basic theory of entropy coding was well-established by the late
 1970’s [Pas76]. Modern video codecs have focused on Huffman codes
 (or "Variable-Length Codes"/VLCs) and binary arithmetic coding.

Terriberry & Egge Expires October 26, 2017 [Page 2]

Internet-Draft Coding Tools April 2017

 Huffman codes are limited in the amount of compression they can
 provide and the design flexibility they allow, but as each code word
 consists of an integer number of bits, their implementation
 complexity is very low, so they were provided at least as an option
 in every video codec up through H.264. Arithmetic coding, on the
 other hand, uses code words that can take up fractional parts of a
 bit, and are more complex to implement. However, the prevalence of
 cheap, H.264 High Profile hardware, which requires support for
 arithmetic coding, shows that it is no longer so expensive that a
 fallback VLC-based approach is required. Having a single entropy-
 coding method simplifies both up-front design costs and
 interoperability.

 However, the primary limitation of arithmetic coding is that it is an
 inherently serial operation. A given symbol cannot be decoded until
 the previous symbol is decoded, because the bits (if any) that are
 output depend on the exact state of the decoder at the time it is
 decoded. This means that a hardware implementation must run at a
 sufficiently high clock rate to be able to decode all of the symbols
 in a frame. Higher clock rates lead to increased power consumption,
 and in some cases the entropy coding is actually becoming the
 limiting factor in these designs.

 As fabrication processes improve, implementers are very willing to
 trade increased gate count for lower clock speeds. So far, most
 approaches to allowing parallel entropy coding have focused on
 splitting the encoded symbols into multiple streams that can be
 decoded independently. This "independence" requirement has a non-
 negligible impact on compression, parallelizability, or both. For
 example, H.264 can split frames into "slices" which might cover only
 a small subset of the blocks in the frame. In order to allow
 decoding these slices independently, they cannot use context
 information from blocks in other slices (harming compression). Those
 contexts must adapt rapidly to account for the generally small number
 of symbols available for learning probabilities (also harming
 compression). In some cases the number of contexts must be reduced
 to ensure enough symbols are coded in each context to usefully learn
 probabilities at all (once more, harming compression). Furthermore,
 an encoder must specially format the stream to use multiple slices
 per frame to allow any parallel entropy decoding at all. Encoders
 rarely have enough information to evaluate this "compression
 efficiency" vs. "parallelizability" trade-off, since they don’t
 generally know the limitations of the decoders for which they are
 encoding. That means there will be many files or streams which could
 have been decoded if they were encoded with different options, but
 which a given decoder cannot decode because of bad choices made by
 the encoder (at least from the perspective of that decoder). The

Terriberry & Egge Expires October 26, 2017 [Page 3]

Internet-Draft Coding Tools April 2017

 same set of drawbacks apply to the DCT token partitions in
 VP8 [RFC6386].

2.1. Non-binary Arithmetic Coding

 Instead, we propose a very different approach: use non-binary
 arithmetic coding. In binary arithmetic coding, each decoded symbol
 has one of two possible values: 0 or 1. The original arithmetic
 coding algorithms allow a symbol to take on any number of possible
 values, and allow the size of that alphabet to change with each
 symbol coded. Reasonable values of N (for example, N <= 16) offer
 the potential for a decent throughput increase for a reasonable
 increase in gate count for hardware implementations.

 Binary coding allows a number of computational simplifications. For
 example, for each coded symbol, the set of valid code points is
 partitioned in two, and the decoded value is determined by finding
 the partition in which the actual code point that was received lies.
 This can be determined by computing a single partition value (in both
 the encoder and decoder) and (in the decoder) doing a single
 comparison. A non-binary arithmetic coder partitions the set of
 valid code points into multiple pieces (one for each possible value
 of the coded symbol). This requires the encoder to compute two
 partition values, in general (for both the upper and lower bound of
 the symbol to encode). The decoder, on the other hand, must search
 the partitions for the one that contains the received code point.
 This requires computing at least O(log N) partition values.

 However, coding a parameter with N possible values with a binary
 arithmetic coder requires O(log N) symbols in the worst case (the
 only case that matters for hardware design). Hence, this does not
 represent any actual savings (indeed, it represents an increase in
 the number of partition values computed by the encoder). In
 addition, there are a number of overheads that are per-symbol, rather
 than per-value. For example, renormalization (which enlarges the set
 of valid code points after partitioning has reduced it too much),
 carry propagation (to deal with the case where the high and low ends
 of a partition straddle a bit boundary), etc., are all performed on a
 symbol-by-symbol basis. Since a non-binary arithmetic coder codes a
 given set of values with fewer symbols than a binary one, it incurs
 these per-symbol overheads less often. This suggests that a non-
 binary arithmetic coder can actually be more efficient than a binary
 one.

Terriberry & Egge Expires October 26, 2017 [Page 4]

Internet-Draft Coding Tools April 2017

2.2. Non-binary Context Modeling

 The other aspect that binary coding simplifies is probability
 modeling. In arithmetic coding, the size of the sets the code points
 are partitioned into are (roughly) proportional to the probability of
 each possible symbol value. Estimating these probabilities is part
 of the coding process, though it can be cleanly separated from the
 task of actually producing the coded bits. In a binary arithmetic
 coder, this requires estimating the probability of only one of the
 two possible values (since the total probability is 1.0). This is
 often done with a simple table lookup that maps the old probability
 and the most recently decoded symbol to a new probability to use for
 the next symbol in the current context. The trade-off, of course, is
 that non-binary symbols must be "binarized" into a series of bits,
 and a context (with an associated probability) chosen for each one.

 In a non-binary arithmetic coder, the decoder must compute at least
 O(log N) cumulative probabilities (one for each partition value it
 needs). Because these probabilities are usually not estimated
 directly in "cumulative" form, this can require computing (N - 1)
 non-cumulative probability values. Unless N is very small, these
 cannot be updated with a single table lookup. The normal approach is
 to use "frequency counts". Define the frequency of value k to be

 f[k] = A*<the number of times k has been observed> + B

 where A and B are parameters (usually A=2 and B=1 for a traditional
 Krichevsky-Trofimov estimator). The resulting probability, p[k], is
 given by

 N-1
 __
 ft = \ f[k]
 /_
 k=0

 f[k]
 p[k] = ----
 ft

 When ft grows too large, the frequencies are rescaled (e.g., halved,
 rounding up to prevent reduction of a probability to 0).

 When ft is not a power of two, partitioning the code points requires
 actual divisions (see [RFC6716] Section 4.1 for one detailed example
 of exactly how this is done). These divisions are acceptable in an
 audio codec like Opus [RFC6716], which only has to code a few
 hundreds of these symbols per second. But video requires hundreds of

Terriberry & Egge Expires October 26, 2017 [Page 5]

Internet-Draft Coding Tools April 2017

 thousands of symbols per second, at a minimum, and divisions are
 still very expensive to implement in hardware.

 There are two possible approaches to this. One is to come up with a
 replacement for frequency counts that produces probabilities that sum
 to a power of two. Some possibilities, which can be applied
 individually or in combination:

 1. Use probabilities that are fixed for the duration of a frame.
 This is the approach taken by VP8, for example, even though it
 uses a binary arithmetic coder. In fact, it is possible to
 convert many of VP8’s existing binary-alphabet probabilities into
 probabilities for non-binary alphabets, an approach that is used
 in the experiment presented at the end of this section.

 2. Use parametric distributions. For example, DCT coefficient
 magnitudes usually have an approximately exponential
 distribution. This distribution can be characterized by a single
 parameter, e.g., the expected value. The expected value is
 trivial to update after decoding a coefficient. For example

 E[x[n+1]] = E[x[n]] + floor(C*(x[n] - E[x[n]]))

 produces an exponential moving average with a decay factor of
 (1 - C). For a choice of C that is a negative power of two
 (e.g., 1/16 or 1/32 or similar), this can be implemented with two
 adds and a shift. Given this expected value, the actual
 distribution to use can be obtained from a small set of pre-
 computed distributions via a lookup table. Linear interpolation
 between these pre-computed values can improve accuracy, at the
 cost of O(N) computations, but if N is kept small this is
 trivially parallelizable, in SIMD or otherwise.

 3. Change the frequency count update mechanism so that ft is
 constant. This approach is described in the next section.

2.3. Dyadic Adaptation

 The goal with context adaptation using dyadic probabilities is to
 maintain the invariant that the probabilities all sum to a power of
 two before and after adaptation. This can be achieved with a special
 update function that blends the cumulative probabilities of the
 current context with a cumulative distribution function where the
 coded symbol has probability 1.

 Suppose we have model for a given context that codes 8 symbols with
 the following probabilities:

Terriberry & Egge Expires October 26, 2017 [Page 6]

Internet-Draft Coding Tools April 2017

 +------+------+------+------+------+------+------+------+
 | p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7] |
 +------+------+------+------+------+------+------+------+
 | 1/8 | 1/8 | 3/16 | 1/16 | 1/16 | 3/16 | 1/8 | 1/8 |
 +------+------+------+------+------+------+------+------+

 Then the cumulative distribution function is:

 CDF

 1 + +------+
 | |
 | +------+
 | |
 3/4 + +------+
 | |
 | |
 | +------+
 1/2 + +------+
 | +------+
 | |
 | |
 1/4 + +------+
 | |
 +------+
 |
 0 +------+------+------+------+------+------+------+------+ Bin
 fl[1] fl[2] fl[3] fl[4] fl[5] fl[6] fl[7] fl[8]

 Suppose we code symbol 3 and wish to update the context model so that
 this symbol is now more likely. This can be done by blending the CDF
 for the current context with a CDF that has symbol 3 with likelihood
 1.

 CDF

 1 + +----------------------------------+
 | |
 | |
 | |
 0 +------+------+------+------+------+------+------+------+ Bin
 fl[1] fl[2] fl[3] fl[4] fl[5] fl[6] fl[7] fl[8]

 Given an adaptation rate g between 0 and 1, and assuming ft = 2^4 =
 16, what we are computing is:

Terriberry & Egge Expires October 26, 2017 [Page 7]

Internet-Draft Coding Tools April 2017

 +------+------+------+------+------+------+------+------+
 | 2 | 4 | 7 | 8 | 9 | 12 | 14 | 16 | * (1 - g)
 +------+------+------+------+------+------+------+------+

 +

 +------+------+------+------+------+------+------+------+
 | 0 | 0 | 0 | 16 | 16 | 16 | 16 | 16 | * g
 +------+------+------+------+------+------+------+------+

 In order to prevent the probability of any one symbol from going to
 zero, the blending functions above and below the coded symbol are
 adjusted so that no adjacent cumulative probabilities are the same.

 Let M be the alphabet size and 1/2^r be the adaptation rate:

 (fl[i] - floor((fl[i] + 2^r - i - 1)/2^r), i <= coded symbol
 fl[i] = <
 (fl[i] - floor((fl[i] + M - i - ft)/2^r), i > coded symbol

 Applying these formulas to the example CDF where M = 8 with
 adaptation rate 1/2^16 gives the updated CDF:

 +------+------+------+------+------+------+------+------+
 | 1 | 3 | 6 | 9 | 10 | 13 | 15 | 16 |
 +------+------+------+------+------+------+------+------+

 Looking at the graph of the CDF we see that the likelihood for symbol
 3 has gone up from 1/16 to 3/16, dropping the likelihood of all other
 symbols to make room.

Terriberry & Egge Expires October 26, 2017 [Page 8]

Internet-Draft Coding Tools April 2017

 CDF

 1 + +------+
 | +------+
 | |
 | +------+
 3/4 + |
 | |
 | +------+
 | +------+
 1/2 + |
 | |
 | +------+
 | |
 1/4 + |
 | +------+
 | |
 +------+
 0 +------+------+------+------+------+------+------+------+ Bin
 fl[1] fl[2] fl[3] fl[4] fl[5] fl[6] fl[7] fl[8]

2.4. Simplified Partition Function

 Let the range of valid code points in the current arithmetic coder
 state be [L, L + R), where L is the lower bound of the range and R is
 the number of valid code points. The goal of the arithmetic coder is
 to partition this interval proportional to the probability of each
 symbol. When using dyadic probabilities, the partition point in the
 range corresponding to a given CDF value can be determined via

 fl[k]*R
 u[k] = floor (-------)
 ft

 Since ft is a power of two, this may be implemented using a right
 shift by T bits in place of the division:

 u[k] = (fl[k]*R) >> T

 The latency of the multiply still dominates the hardware timing.
 However, we can reduce this latency by using a smaller multiply, at
 the cost of some accuracy in the partition. We cannot, in general,
 reduce the size of fl[k], since this might send a probability to zero
 (i.e., cause u[k] to have the same value as u[k+1]). On the other
 hand, we know that the top bit of R is always 1, since it gets
 renormalized with every symbol that is encoded. Suppose R contains
 16 bits and that T is at least 8. Then we can greatly reduce the
 size of the multiply by using the formula

Terriberry & Egge Expires October 26, 2017 [Page 9]

Internet-Draft Coding Tools April 2017

 ((fl[k]*(R >> 8)) >> (T - 8), 0 <= k < M
 u[k] = <
 (R, k == M

 The special case for k == M is required because, with the general
 formula, u[M] no longer exactly equals R. Without the special case
 we would waste some amount of code space and require the decoder to
 check for invalid streams. This special case slightly inflates the
 probability of the last symbol. Unfortunately, in codecs the usual
 convention is that the last symbol is the least probable, while the
 first symbol (e.g., 0) is the most probable. That maximizes the
 coding overhead introduced by this approximation error. To minimize
 it, we instead add all of the accumulated error to the first symbol
 by using a variation of the above update formula:

 (0, k == 0
 u[k] = <
 (R - (((ft - fl[k])*(R >> 8)) >> (T - 8)), 0 < k <= M

 This also aids the software decoder search, since it can prime the
 search loop with the special case, instead of needing to check for it
 on every iteration of the loop. It is easier to incorporate into a
 SIMD search as well. It does, however, add two subtractions. Since
 the encoder always operates on the difference between two partition
 points, the first subtraction (involving R) can be eliminated.
 Similar optimizations can eliminate this subtraction in the decoder
 by flipping its internal state (measuring the distance of the encoder
 output from the top of the range instead of the bottom). To avoid
 the other subtraction, we can simply use "inverse CDFs" that natively
 store ifl[k] = (ft - fl[k]) instead of fl[k]. This produces the
 following partition function:

 (R, k == 0
 R - u[k] = <
 ((ifl[k]*(R >> 8)) >> (T - 8), 0 < k <= M

 The reduction in hardware latency can be as much as 20%, and the
 impact on area is even larger. The overall software complexity
 overhead is minimal, and the coding efficiency overhead due to the
 approximation is about 0.02%. We could have achieved the same
 efficiency by leaving the special case on the last symbol and
 reversing the alphabet instead of inverting the probabilities.
 However, reversing the alphabet at runtime would have required an
 extra subtraction (or more general re-ordering requires a table
 lookup). That may be avoidable in some cases, but only by
 propagating the reordering alphabet outside of the entropy coding
 machinery, requiring changes to every coding tool and potentially
 leading to confusion. CDFs, on the other hand, are already a

Terriberry & Egge Expires October 26, 2017 [Page 10]

Internet-Draft Coding Tools April 2017

 somewhat abstract representation of the underlying probabilities used
 for computational efficiency reasons. Generalizing these to "inverse
 CDFs" is a straightforward change that only affects probability
 initialization and adaptation, without impacting the design of other
 coding tools.

2.5. Context Adaptation

 The dyadic adaptation scheme described in Section 2.3 implements a
 low-complexity IIR filter for the steady-state case where we only
 want to adapt the context CDF as fast as the 1/2^r adaptation rate.
 In many cases, for example when coding symbols at the start of a
 video frame, only a limited number of symbols have been seen per
 context. Using this steady-state adaptation scheme risks adapting
 too slowly and spending too many bits to code symbols with incorrect
 probability estimates. In other video codecs, this problem is
 reduced by either implicitly or explicitly allowing for mechanisms to
 set the initial probability models for a given context.

2.5.1. Implicit Adaptation

 One implicit way to use default probabilities is to simply require as
 a normative part of the decoder that some specific CDFs are used to
 initialize each context. A representative set of inputs is run
 through the encoder and a frequency based probability model is
 computed and reloaded at the start of every frame. This has the
 advantage of having zero bitstream overhead and is optimal for
 certain stationary symbols. However for other non-stationary
 symbols, or highly content dependent contexts where the sample input
 is not representative, this can be worse than starting with a flat
 distribution as it now takes even longer to adapt to the steady-
 state. Moreover the amount of hardware area required to store
 initial probability tables for each context goes up with the number
 of contexts in the codec.

 Another implicit way to deal with poor initial probabilities is
 through backward adaptation based on the probability estimates from
 the previous frame. After decoding a frame, the adapted CDFs for
 each context are simply kept as-is and not reset to their defaults.
 This has the advantage of having no bitstream overhead, and tracking
 to certain content types closely as we expect frames with similar
 content at similar rates, to have well correlated CDFs. However,
 this only works when we know there will be no bitstream errors due to
 the transport layer, e.g., TCP or HTTP. In low delay use cases
 (video on demand, live streaming, video conferencing), implicit
 backwards adaptation is avoided as it risks desynchronizing the
 entropy decoder state and permanently losing the video stream.

Terriberry & Egge Expires October 26, 2017 [Page 11]

Internet-Draft Coding Tools April 2017

2.5.2. Explicit Adaptation

 For codecs that include the ability to update the probability models
 in the bitstream, it is possible to explicitly signal a starting CDF.
 The previously described implicit backwards adaptation is now
 possible by simply explicitly coding a probability update for each
 frame. However, the cost of signaling the updated CDF must be
 overcome by the savings from coding with the updated CDF. Blindly
 updating all contexts per frame may work at high rates where the size
 of the CDFs is small relative to the coded symbol data. However at
 low rates, the benefit of using more accurate CDFs is quickly
 overcome by the cost of coding them, which increases with the number
 of contexts.

 More sophisticated encoders can compute the cost of coding a
 probability update for a given context, and compare it to the size
 reduction achieved by coding symbols with this context. Here all
 symbols for a given frame (or tile) are buffered and not serialized
 by the entropy coder until the end of the frame (or tile) is reached.
 Once the end of the entropy segment has been reached, the cost in
 bits for coding symbols with both the default probabilities and the
 proposed updated probabilities can be measured and compared.
 However, note that with the symbols already buffered, rather than
 consider the context probabilities from the previous frame, a simple
 frequency based probability model can be computed and measured.
 Because this probability model is computed based on the symbols we
 are about to code this technique is called forward adaptation. If
 the cost in bits to signal and code with this new probability model
 is less than that of using the default then it is used. This has the
 advantage of only ever coding a probability update if it is an
 improvement and producing a bitstream that is robust to errors, but
 requires an entire entropy segments worth of symbols be cached.

2.5.3. Early Adaptation

 We would like to take advantage of the low-cost multi-symbol CDF
 adaptation described in Section 2.3 without in the broadest set of
 use cases. This means the initial probability adaptation scheme
 should support low-delay, error-resilient streams that efficiently
 implemented in both hardware and software. We propose an early
 adaptation scheme that supports this goal.

 At the beginning of a frame (or tile), all CDFs are initialized to a
 flat distribution. For a given multi-symbol context with M potential
 symbols, assume that the initial dyadic CDF is initialized so that
 each symbol has probability 1/M. For the first M coded symbols, the
 CDF is updated as follows:

Terriberry & Egge Expires October 26, 2017 [Page 12]

Internet-Draft Coding Tools April 2017

 a[c,M] = ft/(M + c)

 (fl[i] - floor((fl[i] - i)*a/ft), i <= coded symbol
 fl[i] = <
 (fl[i] - floor((fl[i] + M - i - ft)*a/ft), i > coded symbol

 where c goes from 0 to M-1 and is the running count of the number of
 symbols coded with this CDF. Note that for a fixed CDF precision (ft
 is always a power of two) and a maximum number of possible symbols M,
 the values of a[c,M] can be stored in a M*(M+1)/2 element table,
 which is 136 entries when M = 16.

2.6. Simple Experiment

 As a simple experiment to validate the non-binary approach, we
 compared a non-binary arithmetic coder to the VP8 (binary) entropy
 coder. This was done by instrumenting vp8_treed_read() in libvpx to
 dump out the symbol decoded and the associated probabilities used to
 decode it. This data only includes macroblock mode and motion vector
 information, as the DCT token data is decoded with custom inline
 functions, and not vp8_treed_read(). This data is available at [1].
 It includes 1,019,670 values encode using 2,125,995 binary symbols
 (or 2.08 symbols per value). We expect that with a conscious effort
 to group symbols during the codec design, this average could easily
 be increased.

 We then implemented both the regular VP8 entropy decoder (in plain C,
 using all of the optimizations available in libvpx at the time) and a
 multisymbol entropy decoder (also in plain C, using similar
 optimizations), which encodes each value with a single symbol. For
 the decoder partition search in the non-binary decoder, we used a
 simple for loop (O(N) worst-case), even though this could be made
 constant-time and branchless with a few SIMD instructions such as (on
 x86) PCMPGTW, PACKUSWB, and PMOVMASKB followed by BSR. The source
 code for both implementations is available at [2] (compile with
 -DEC_BINARY for the binary version and -DEC_MULTISYM for the non-
 binary version).

 The test simply loads the tokens, and then loops 1024 times encoding
 them using the probabilities provided, and then decoding them. The
 loop was added to reduce the impact of the overhead of loading the
 data, which is implemented very inefficiently. The total runtime on
 a Core i7 from 2010 is 53.735 seconds for the binary version, and
 27.937 seconds for the non-binary version, or a 1.92x improvement.
 This is very nearly equal to the number of symbols per value in the
 binary coder, suggesting that the per-symbol overheads account for
 the vast majority of the computation time in this implementation.

Terriberry & Egge Expires October 26, 2017 [Page 13]

Internet-Draft Coding Tools April 2017

3. Reversible Integer Transforms

 Integer transforms in image and video coding date back to at least
 1969 [PKA69]. Although standards such as MPEG2 and MPEG4 Part 2
 allow some flexibility in the transform implementation,
 implementations were subject to drift and error accumulation, and
 encoders had to impose special macroblock refresh requirements to
 avoid these problems, not always successfully. As transforms in
 modern codecs only account for on the order of 10% of the total
 decoder complexity, and, with the use of weighted prediction with
 gains greater than unity and intra prediction, are far more
 susceptible to drift and error accumulation, it no longer makes sense
 to allow a non-exact transform specification.

 However, it is also possible to make such transforms "reversible", in
 the sense that applying the inverse transform to the result of the
 forward transform gives back the original input values, exactly.
 This gives a lossy codec, which normally quantizes the coefficients
 before feeding them into the inverse transform, the ability to scale
 all the way to lossless compression without requiring any new coding
 tools. This approach has been used successfully by JPEG XR, for
 example [TSSRM08].

 Such reversible transforms can be constructed using "lifting steps",
 a series of shear operations that can represent any set of plane
 rotations, and thus any orthogonal transform. This approach dates
 back to at least 1992 [BE92], which used it to implement a four-point
 1-D Discrete Cosine Transform (DCT). Their implementation requires
 6 multiplications, 10 additions, 2 shifts, and 2 negations, and
 produces output that is a factor of sqrt(2) larger than the
 orthonormal version of the transform. The expansion of the dynamic
 range directly translates into more bits to code for lossless
 compression. Because the least significant bits are usually very
 nearly random noise, this scaling increases the coding cost by
 approximately half a bit per sample.

3.1. Lifting Steps

 To demonstrate the idea of lifting steps, consider the two-point
 transform

 [y0] / 1 [1 1] [x0]
 [] = / --- [] []
 [y1] v 2 [-1 1] [x1]

 This can be implemented up to scale via

Terriberry & Egge Expires October 26, 2017 [Page 14]

Internet-Draft Coding Tools April 2017

 y0 = x0 + x1

 y1 = 2*x1 - y0

 and reversed via

 x1 = (y0 + y1) >> 1

 x0 = y0 - x1

 Both y0 and y1 are too large by a factor of sqrt(2), however.

 It is also possible to implement any rotation by an angle t,
 including the orthonormal scale factor, by decomposing it into three
 steps:

 cos(t) - 1
 u0 = x0 + ---------- * x1
 sin(t)

 y1 = x1 + sin(t)*u0

 cos(t) - 1
 y0 = u0 + ---------- * y1
 sin(t)

 By letting t=-pi/4, we get an implementation of the first transform
 that includes the scaling factor. To get an integer approximation of
 this transform, we need only replace the transcendental constants by
 fixed-point approximations:

 u0 = x0 + ((27*x1 + 32) >> 6)

 y1 = x1 - ((45*u0 + 32) >> 6)

 y0 = u0 + ((27*y1 + 32) >> 6)

 This approximation is still perfectly reversible:

 u0 = y0 - ((27*y1 + 32) >> 6)

 x1 = y1 + ((45*u0 + 32) >> 6)

 x0 = u0 - ((27*x1 + 32) >> 6)

 Each of the three steps can be implemented using just two ARM
 instructions, with constants that have up to 14 bits of precision
 (though using fewer bits allows more efficient hardware

Terriberry & Egge Expires October 26, 2017 [Page 15]

Internet-Draft Coding Tools April 2017

 implementations, at a small cost in coding gain). However, it is
 still much more complex than the first approach.

 We can get a compromise with a slight modification:

 y0 = x0 + x1

 y1 = x1 - (y0 >> 1)

 This still only implements the original orthonormal transform up to
 scale. The y0 coefficient is too large by a factor of sqrt(2) as
 before, but y1 is now too small by a factor of sqrt(2). If our goal
 is simply to (optionally quantize) and code the result, this is good
 enough. The different scale factors can be incorporated into the
 quantization matrix in the lossy case, and the total expansion is
 roughly equivalent to that of the orthonormal transform in the
 lossless case. Plus, we can perform each step with just one ARM
 instruction.

 However, if instead we want to apply additional transformations to
 the data, or use the result to predict other data, it becomes much
 more convenient to have uniformly scaled outputs. For a two-point
 transform, there is little we can do to improve on the three-
 multiplications approach above. However, for a four-point transform,
 we can use the last approach and arrange multiple transform stages
 such that the "too large" and "too small" scaling factors cancel out,
 producing a result that has the true, uniform, orthonormal scaling.
 To do this, we need one more tool, which implements the following
 transform:

 [y0] / 1 [cos(t) -sin(t)] [1 0] [x0]
 [] = / --- [] [] []
 [y1] v 2 [sin(t) cos(t)] [0 2] [x1]

 This takes unevenly scaled inputs, rescales them, and then rotates
 them. Like an ordinary rotation, it can be reduced to three lifting
 steps:

Terriberry & Egge Expires October 26, 2017 [Page 16]

Internet-Draft Coding Tools April 2017

 _
 2*cos(t) - v2
 u0 = x0 + ------------- * x1
 sin(t)

 / 1
 y1 = x1 + / --- * sin(t)*u0
 v 2
 _
 cos(t) - v2
 y0 = u0 + ----------- * y1
 sin(t)

 As before, the transcendental constants may be replaced by fixed-
 point approximations without harming the reversibility property.

3.2. 4-Point Transform

 Using the tools from the previous section, we can design a reversible
 integer four-point DCT approximation with uniform, orthonormal
 scaling. This requires 3 multiplies, 9 additions, and 2 shifts (not
 counting the shift and rounding offset used in the fixed-point
 multiplies, as these are built into the multiplier). This is
 significantly cheaper than the [BE92] approach, and the output
 scaling is smaller by a factor of sqrt(2), saving half a bit per
 sample in the lossless case. By comparison, the four-point forward
 DCT approximation used in VP9, which is not reversible, uses
 6 multiplies, 6 additions, and 2 shifts (counting shifts and rounding
 offsets which cannot be merged into a single multiply instruction on
 ARM). Four of its multipliers also require 28-bit accumulators,
 whereas this proposal can use much smaller multipliers without giving
 up the reversibility property. The total dynamic range expansion is
 1 bit: inputs in the range [-256,255) produce transformed values in
 the range [-512,510). This is the smallest dynamic range expansion
 possible for any reversible transform constructed from mostly-linear
 operations. It is possible to make reversible orthogonal transforms
 with no dynamic range expansion by using "piecewise-linear"
 rotations [SLD04], but each step requires a large number of
 operations in a software implementation.

 Pseudo-code for the forward transform follows:

Terriberry & Egge Expires October 26, 2017 [Page 17]

Internet-Draft Coding Tools April 2017

 Input: x0, x1, x2, x3
 Output: y0, y1, y2, y3
 /* Rotate (x3, x0) by -pi/4, asymmetrically scaled output. */
 t3 = x0 - x3
 t0 = x0 - (t3 >> 1)
 /* Rotate (x1, x2) by pi/4, asymmetrically scaled output. */
 t2 = x1 + x2
 t2h = t2 >> 1
 t1 = t2h - x2
 /* Rotate (t2, t0) by -pi/4, asymmetrically scaled input. */
 y0 = t0 + t2h
 y2 = y0 - t2
 /* Rotate (t3, t1) by 3*pi/8, asymmetrically scaled input. */
 t3 = t3 - (45*t1 + 32 >> 6)
 y1 = t1 + (21*t3 + 16 >> 5)
 y3 = t3 - (71*y1 + 32 >> 6)

 Even though there are three asymmetrically scaled rotations by pi/4,
 by careful arrangement we can share one of the shift operations (to
 help software implementations: shifts by a constant are basically
 free in hardware). This technique can be used to even greater effect
 in larger transforms.

 The inverse transform is constructed by simply undoing each step in
 turn:

 Input: y0, y1, y2, y3
 Output: x0, x1, x2, x3
 /* Rotate (y3, y1) by -3*pi/8, asymmetrically scaled output. */
 t3 = y3 + (71*y1 + 32 >> 6)
 t1 = y1 - (21*t3 + 16 >> 5)
 t3 = t3 + (45*t1 + 32 >> 6)
 /* Rotate (y2, y0) by pi/4, asymmetrically scaled output. */
 t2 = y0 - y2
 t2h = t2 >> 1
 t0 = y0 - t2h
 /* Rotate (t1, t2) by -pi/4, asymmetrically scaled input. */
 x2 = t2h - t1
 x1 = t2 - x2
 /* Rotate (x3, x0) by pi/4, asymmetrically scaled input. */
 x0 = t0 - (t3 >> 1)
 x3 = x0 - t3

 Although the right shifts make this transform non-linear, we can
 compute "basis functions" for it by sending a vector through it with
 a single value set to a large constant (256 was used here), and the
 rest of the values set to zero. The true basis functions for a four-
 point DCT (up to five digits) are

Terriberry & Egge Expires October 26, 2017 [Page 18]

Internet-Draft Coding Tools April 2017

 [y0] [0.50000 0.50000 0.50000 0.50000] [x0]
 [y1] = [0.65625 0.26953 -0.26953 -0.65625] [x1]
 [y2] [0.50000 -0.50000 -0.50000 0.50000] [x2]
 [y3] [0.27344 -0.65234 0.65234 -0.27344] [x3]

 The corresponding basis functions for our reversible, integer DCT,
 computed using the approximation described above, are

 [y0] [0.50000 0.50000 0.50000 0.50000] [x0]
 [y1] = [0.65328 0.27060 -0.27060 -0.65328] [x1]
 [y2] [0.50000 -0.50000 -0.50000 0.50000] [x2]
 [y3] [0.27060 -0.65328 0.65328 -0.27060] [x3]

 The mean squared error (MSE) of the output, compared to a true DCT,
 can be computed with some assumptions about the input signal. Let G
 be the true DCT basis and G’ be the basis for our integer
 approximation (computed as described above). Then the error in the
 transformed results is

 e = G.x - G’.x = (G - G’).x = D.x

 where D = (G - G’) . The MSE is then [Que98]

 1 1
 - * E[e^T.e] = - * E[x^T.D^T.D.x]
 N N

 1
 = - * E[tr(D.x.x^T.D^T)]
 N

 1
 = - * E[tr(D.Rxx.D^T)]
 N

 where Rxx is the autocorrelation matrix of the input signal.
 Assuming the input is a zero-mean, first-order autoregressive (AR(1))
 process gives an autocorrelation matrix of

 |i - j|
 Rxx[i,j] = rho

 for some correlation coefficient rho. A value of rho = 0.95 is
 typical for image compression applications. Smaller values are more
 normal for motion-compensated frame differences, but this makes
 surprisingly little difference in transform design. Using the above
 procedure, the theoretical MSE of this approximation is 1.230E-6,
 which is below the level of the truncation error introduced by the

Terriberry & Egge Expires October 26, 2017 [Page 19]

Internet-Draft Coding Tools April 2017

 right shift operations. This suggests the dynamic range of the input
 would have to be more than 20 bits before it became worthwhile to
 increase the precision of the constants used in the multiplications
 to improve accuracy, though it may be worth using more precision to
 reduce bias.

3.3. Larger Transforms

 The same techniques can be applied to construct a reversible eight-
 point DCT approximation with uniform, orthonormal scaling using
 15 multiplies, 31 additions, and 5 shifts. It is possible to reduce
 this to 11 multiplies and 29 additions, which is the minimum number
 of multiplies possible for an eight-point DCT with uniform
 scaling [LLM89], by introducing a scaling factor of sqrt(2), but this
 harms lossless performance. The dynamic range expansion is 1.5 bits
 (again the smallest possible), and the MSE is 1.592E-06. By
 comparison, the eight-point transform in VP9 uses 12 multiplications,
 32 additions, and 6 shifts.

 Similarly, we have constructed a reversible sixteen-point DCT
 approximation with uniform, orthonormal scaling using 33 multiplies,
 83 additions, and 16 shifts. This is just 2 multiplies and
 2 additions more than the (non-reversible, non-integer, but uniformly
 scaled) factorization in [LLM89]. By comparison, the sixteen-point
 transform in VP9 uses 44 multiplies, 88 additions, and 18 shifts.
 The dynamic range expansion is only 2 bits (again the smallest
 possible), and the MSE is 1.495E-5.

 We also have a reversible 32-point DCT approximation with uniform,
 orthonormal scaling using 87 multiplies, 215 additions, and
 38 shifts. By comparison, the 32-point transform in VP9 uses
 116 multiplies, 194 additions, and 66 shifts. Our dynamic range
 expansion is still the minimal 2.5 bits, and the MSE is 8.006E-05

 Code for all of these transforms is available in the development
 repository listed in Section 4.

3.4. Walsh-Hadamard Transforms

 These techniques can also be applied to constructing Walsh-Hadamard
 Transforms, another useful transform family that is cheaper to
 implement than the DCT (since it requires no multiplications at all).
 The WHT has many applications as a cheap way to approximately change
 the time and frequency resolution of a set of data (either individual
 bands, as in the Opus audio codec, or whole blocks). VP9 uses it as
 a reversible transform with uniform, orthonormal scaling for lossless
 coding in place of its DCT, which does not have these properties.

Terriberry & Egge Expires October 26, 2017 [Page 20]

Internet-Draft Coding Tools April 2017

 Applying a 2x2 WHT to a block of 2x2 inputs involves running a
 2-point WHT on the rows, and then another 2-point WHT on the columns.
 The basis functions for the 2-point WHT are, up to scaling, [1, 1]
 and [1, -1]. The four variations of a two-step lifer given in
 Section 3.1 are exactly the lifting steps needed to implement a 2x2
 WHT: two stages that produce asymmetrically scaled outputs followed
 by two stages that consume asymmetrically scaled inputs.

 Input: x00, x01, x10, x11
 Output: y00, y01, y10, y11
 /* Transform rows */
 t1 = x00 - x01
 t0 = x00 - (t1 >> 1) /* == (x00 + x01)/2 */
 t2 = x10 + x11
 t3 = (t2 >> 1) - x11 /* == (x10 - x11)/2 */
 /* Transform columns */
 y00 = t0 + (t2 >> 1) /* == (x00 + x01 + x10 + x11)/2 */
 y10 = y00 - t2 /* == (x00 + x01 - x10 - x11)/2 */
 y11 = (t1 >> 1) - t3 /* == (x00 - x01 - x10 + x11)/2 */
 y01 = t1 - y11 /* == (x00 - x01 + x10 - x11)/2 */

 By simply re-ordering the operations, we can see that there are two
 shifts that may be shared between the two stages:

 Input: x00, x01, x10, x11
 Output: y00, y01, y10, y11
 t1 = x00 - x01
 t2 = x10 + x11
 t0 = x00 - (t1 >> 1) /* == (x00 + x01)/2 */
 y00 = t0 + (t2 >> 1) /* == (x00 + x01 + x10 + x11)/2 */
 t3 = (t2 >> 1) - x11 /* == (x10 - x11)/2 */
 y11 = (t1 >> 1) - t3 /* == (x00 - x01 - x10 + x11)/2 */
 y10 = y00 - t2 /* == (x00 + x01 - x10 - x11)/2 */
 y01 = t1 - y11 /* == (x00 - x01 + x10 - x11)/2 */

 By eliminating the double-negation of x11 and re-ordering the
 additions to it, we can see even more operations in common:

 Input: x00, x01, x10, x11
 Output: y00, y01, y10, y11
 t1 = x00 - x01
 t2 = x10 + x11
 t0 = x00 - (t1 >> 1) /* == (x00 + x01)/2 */
 y00 = t0 + (t2 >> 1) /* == (x00 + x01 + x10 + x11)/2 */
 t3 = x11 + (t1 >> 1) /* == x11 + (x00 - x01)/2 */
 y11 = t3 - (t2 >> 1) /* == (x00 - x01 - x10 + x11)/2 */
 y10 = y00 - t2 /* == (x00 + x01 - x10 - x11)/2 */
 y01 = t1 - y11 /* == (x00 - x01 + x10 - x11)/2 */

Terriberry & Egge Expires October 26, 2017 [Page 21]

Internet-Draft Coding Tools April 2017

 Simplifying further, the whole transform may be computed with just
 7 additions and 1 shift:

 Input: x00, x01, x10, x11
 Output: y00, y01, y10, y11
 t1 = x00 - x01
 t2 = x10 + x11
 t4 = (t2 - t1) >> 1 /* == (-x00 + x01 + x10 + x11)/2 */
 y00 = x00 + t4 /* == (x00 + x01 + x10 + x11)/2 */
 y11 = x11 - t4 /* == (x00 - x01 - x10 + x11)/2 */
 y10 = y00 - t2 /* == (x00 + x01 - x10 - x11)/2 */
 y01 = t1 - y11 /* == (x00 - x01 + x10 - x11)/2 */

 This is a significant savings over other approaches described in the
 literature, which require 8 additions, 2 shifts, and
 1 negation [FOIK99] (37.5% more operations), or 10 additions,
 1 shift, and 2 negations [TSSRM08] (62.5% more operations). The same
 operations can be applied to compute a 4-point WHT in one dimension.
 This implementation is used in this way in VP9’s lossless mode.
 Since larger WHTs may be trivially factored into multiple smaller
 WHTs, the same approach can implement a reversible, orthonormally
 scaled WHT of any size (2**N)x(2**M), so long as (N + M) is even.

4. Development Repository

 The tools presented here were developed as part of Xiph.Org’s Daala
 project. They are available, along with many others in greater and
 lesser states of maturity, in the Daala git repository at [3]. See
 [4] for more information.

5. IANA Considerations

 This document has no actions for IANA.

6. Acknowledgments

 Thanks to Nathan Egge, Gregory Maxwell, and Jean-Marc Valin for their
 assistance in the implementation and experimentation, and in
 preparing this draft.

7. References

7.1. Informative References

 [RFC6386] Bankoski, J., Koleszar, J., Quillio, L., Salonen, J.,
 Wilkins, P., and Y. Xu, "VP8 Data Format and Decoding
 Guide", RFC 6386, November 2011.

Terriberry & Egge Expires October 26, 2017 [Page 22]

Internet-Draft Coding Tools April 2017

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, September 2012.

 [BE92] Bruekers, F. and A. van den Enden, "New Networks for
 Perfect Inversion and Perfect Reconstruction", IEEE
 Journal on Selected Areas in Communication 10(1):129--137,
 January 1992.

 [FOIK99] Fukuma, S., Oyama, K., Iwahashi, M., and N. Kambayashi,
 "Lossless 8-point Fast Discrete Cosine Transform Using
 Lossless Hadamard Transform", Technical Report The
 Institute of Electronics, Information, and Communication
 Engineers of Japan, October 1999.

 [LLM89] Loeffler, C., Ligtenberg, A., and G. Moschytz, "Practical
 Fast 1-D DCT Algorithms with 11 Multiplications", Proc.
 Acoustics, Speech, and Signal Processing (ICASSP’89) vol.
 2, pp. 988--991, May 1989.

 [Pas76] Pasco, R., "Source Coding Algorithms for Fast Data
 Compression", Ph.D. Thesis Dept. of Electrical
 Engineering, Stanford University, May 1976.

 [PKA69] Pratt, W., Kane, J., and H. Andrews, "Hadamard Transform
 Image Coding", Proc. IEEE 57(1):58--68, Jan 1969.

 [Que98] de Queiroz, R., "On Unitary Transform Approximations",
 IEEE Signal Processing Letters 5(2):46--47, Feb 1998.

 [SLD04] Senecal, J., Lindstrom, P., and M. Duchaineau, "An
 Improved N-Bit to N-Bit Reversible Haar-Like Transform",
 Proc. of the 12th Pacific Conference on Computer Graphics
 and Applications (PG’04) pp. 371--380, October 2004.

 [TSSRM08] Tu, C., Srinivasan, S., Sullivan, G., Regunathan, S., and
 H. Malvar, "Low-complexity Hierarchical Lapped Transform
 for Lossy-to-Lossless Image Coding in JPEG XR/HD Photo",
 Applications of Digital Image Processing XXXI vol 7073,
 August 2008.

7.2. URIs

 [1] https://people.xiph.org/˜tterribe/daala/ec_test0/ec_tokens.txt

 [2] https://people.xiph.org/˜tterribe/daala/ec_test0/ec_test.c

 [3] https://git.xiph.org/daala.git

Terriberry & Egge Expires October 26, 2017 [Page 23]

Internet-Draft Coding Tools April 2017

 [4] https://xiph.org/daala/

Authors’ Addresses

 Timothy B. Terriberry
 Mozilla Corporation
 331 E. Evelyn Avenue
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: tterribe@xiph.org

 Nathan E. Egge
 Mozilla Corporation
 331 E. Evelyn Avenue
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: negge@xiph.org

Terriberry & Egge Expires October 26, 2017 [Page 24]

