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Abstract

   This document proposes a number of coding tools that could be
   incorporated into a next-generation video codec.
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1.  Introduction

   One of the biggest contributing factors to the success of the
   Internet is that the underlying protocols are implementable on a
   royalty-free basis.  This allows them to be implemented widely and
   easily distributed by application developers, service operators, and
   end users, without asking for permission.  In order to produce a
   next-generation video codec that is competitive with the best patent-
   encumbered standards, yet avoids patents which are not available on
   an open-source compatible, royalty-free basis, we must use old coding
   tools in new ways and develop new coding tools.  This draft documents
   some of the tools we have been working on for inclusion in such a
   codec.  This is early work, and the performance of some of these
   tools (especially in relation to other approaches) is not yet fully
   known.  Nevertheless, it still serves to outline some possibilities
   that NETVC could consider.

2.  Entropy Coding

   The basic theory of entropy coding was well-established by the late
   1970’s [Pas76].  Modern video codecs have focused on Huffman codes
   (or "Variable-Length Codes"/VLCs) and binary arithmetic coding.
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   Huffman codes are limited in the amount of compression they can
   provide and the design flexibility they allow, but as each code word
   consists of an integer number of bits, their implementation
   complexity is very low, so they were provided at least as an option
   in every video codec up through H.264.  Arithmetic coding, on the
   other hand, uses code words that can take up fractional parts of a
   bit, and are more complex to implement.  However, the prevalence of
   cheap, H.264 High Profile hardware, which requires support for
   arithmetic coding, shows that it is no longer so expensive that a
   fallback VLC-based approach is required.  Having a single entropy-
   coding method simplifies both up-front design costs and
   interoperability.

   However, the primary limitation of arithmetic coding is that it is an
   inherently serial operation.  A given symbol cannot be decoded until
   the previous symbol is decoded, because the bits (if any) that are
   output depend on the exact state of the decoder at the time it is
   decoded.  This means that a hardware implementation must run at a
   sufficiently high clock rate to be able to decode all of the symbols
   in a frame.  Higher clock rates lead to increased power consumption,
   and in some cases the entropy coding is actually becoming the
   limiting factor in these designs.

   As fabrication processes improve, implementers are very willing to
   trade increased gate count for lower clock speeds.  So far, most
   approaches to allowing parallel entropy coding have focused on
   splitting the encoded symbols into multiple streams that can be
   decoded independently.  This "independence" requirement has a non-
   negligible impact on compression, parallelizability, or both.  For
   example, H.264 can split frames into "slices" which might cover only
   a small subset of the blocks in the frame.  In order to allow
   decoding these slices independently, they cannot use context
   information from blocks in other slices (harming compression).  Those
   contexts must adapt rapidly to account for the generally small number
   of symbols available for learning probabilities (also harming
   compression).  In some cases the number of contexts must be reduced
   to ensure enough symbols are coded in each context to usefully learn
   probabilities at all (once more, harming compression).  Furthermore,
   an encoder must specially format the stream to use multiple slices
   per frame to allow any parallel entropy decoding at all.  Encoders
   rarely have enough information to evaluate this "compression
   efficiency" vs. "parallelizability" trade-off, since they don’t
   generally know the limitations of the decoders for which they are
   encoding.  That means there will be many files or streams which could
   have been decoded if they were encoded with different options, but
   which a given decoder cannot decode because of bad choices made by
   the encoder (at least from the perspective of that decoder).  The
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   same set of drawbacks apply to the DCT token partitions in
   VP8 [RFC6386].

2.1.  Non-binary Arithmetic Coding

   Instead, we propose a very different approach: use non-binary
   arithmetic coding.  In binary arithmetic coding, each decoded symbol
   has one of two possible values: 0 or 1.  The original arithmetic
   coding algorithms allow a symbol to take on any number of possible
   values, and allow the size of that alphabet to change with each
   symbol coded.  Reasonable values of N (for example, N <= 16) offer
   the potential for a decent throughput increase for a reasonable
   increase in gate count for hardware implementations.

   Binary coding allows a number of computational simplifications.  For
   example, for each coded symbol, the set of valid code points is
   partitioned in two, and the decoded value is determined by finding
   the partition in which the actual code point that was received lies.
   This can be determined by computing a single partition value (in both
   the encoder and decoder) and (in the decoder) doing a single
   comparison.  A non-binary arithmetic coder partitions the set of
   valid code points into multiple pieces (one for each possible value
   of the coded symbol).  This requires the encoder to compute two
   partition values, in general (for both the upper and lower bound of
   the symbol to encode).  The decoder, on the other hand, must search
   the partitions for the one that contains the received code point.
   This requires computing at least O(log N) partition values.

   However, coding a parameter with N possible values with a binary
   arithmetic coder requires O(log N) symbols in the worst case (the
   only case that matters for hardware design).  Hence, this does not
   represent any actual savings (indeed, it represents an increase in
   the number of partition values computed by the encoder).  In
   addition, there are a number of overheads that are per-symbol, rather
   than per-value.  For example, renormalization (which enlarges the set
   of valid code points after partitioning has reduced it too much),
   carry propagation (to deal with the case where the high and low ends
   of a partition straddle a bit boundary), etc., are all performed on a
   symbol-by-symbol basis.  Since a non-binary arithmetic coder codes a
   given set of values with fewer symbols than a binary one, it incurs
   these per-symbol overheads less often.  This suggests that a non-
   binary arithmetic coder can actually be more efficient than a binary
   one.
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2.2.  Non-binary Context Modeling

   The other aspect that binary coding simplifies is probability
   modeling.  In arithmetic coding, the size of the sets the code points
   are partitioned into are (roughly) proportional to the probability of
   each possible symbol value.  Estimating these probabilities is part
   of the coding process, though it can be cleanly separated from the
   task of actually producing the coded bits.  In a binary arithmetic
   coder, this requires estimating the probability of only one of the
   two possible values (since the total probability is 1.0).  This is
   often done with a simple table lookup that maps the old probability
   and the most recently decoded symbol to a new probability to use for
   the next symbol in the current context.  The trade-off, of course, is
   that non-binary symbols must be "binarized" into a series of bits,
   and a context (with an associated probability) chosen for each one.

   In a non-binary arithmetic coder, the decoder must compute at least
   O(log N) cumulative probabilities (one for each partition value it
   needs).  Because these probabilities are usually not estimated
   directly in "cumulative" form, this can require computing (N - 1)
   non-cumulative probability values.  Unless N is very small, these
   cannot be updated with a single table lookup.  The normal approach is
   to use "frequency counts".  Define the frequency of value k to be

          f[k] = A*<the number of times k has been observed> + B

   where A and B are parameters (usually A=2 and B=1 for a traditional
   Krichevsky-Trofimov estimator).  The resulting probability, p[k], is
   given by

                                     N-1
                                     __
                                ft = \   f[k]
                                     /_
                                     k=0

                                     f[k]
                              p[k] = ----
                                      ft

   When ft grows too large, the frequencies are rescaled (e.g., halved,
   rounding up to prevent reduction of a probability to 0).

   When ft is not a power of two, partitioning the code points requires
   actual divisions (see [RFC6716] Section 4.1 for one detailed example
   of exactly how this is done).  These divisions are acceptable in an
   audio codec like Opus [RFC6716], which only has to code a few
   hundreds of these symbols per second.  But video requires hundreds of
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   thousands of symbols per second, at a minimum, and divisions are
   still very expensive to implement in hardware.

   There are two possible approaches to this.  One is to come up with a
   replacement for frequency counts that produces probabilities that sum
   to a power of two.  Some possibilities, which can be applied
   individually or in combination:

   1.  Use probabilities that are fixed for the duration of a frame.
       This is the approach taken by VP8, for example, even though it
       uses a binary arithmetic coder.  In fact, it is possible to
       convert many of VP8’s existing binary-alphabet probabilities into
       probabilities for non-binary alphabets, an approach that is used
       in the experiment presented at the end of this section.

   2.  Use parametric distributions.  For example, DCT coefficient
       magnitudes usually have an approximately exponential
       distribution.  This distribution can be characterized by a single
       parameter, e.g., the expected value.  The expected value is
       trivial to update after decoding a coefficient.  For example

              E[x[n+1]] = E[x[n]] + floor(C*(x[n] - E[x[n]]))

       produces an exponential moving average with a decay factor of
       (1 - C).  For a choice of C that is a negative power of two
       (e.g., 1/16 or 1/32 or similar), this can be implemented with two
       adds and a shift.  Given this expected value, the actual
       distribution to use can be obtained from a small set of pre-
       computed distributions via a lookup table.  Linear interpolation
       between these pre-computed values can improve accuracy, at the
       cost of O(N) computations, but if N is kept small this is
       trivially parallelizable, in SIMD or otherwise.

   3.  Change the frequency count update mechanism so that ft is
       constant.  This approach is described in the next section.

2.3.  Dyadic Adaptation

   The goal with context adaptation using dyadic probabilities is to
   maintain the invariant that the probabilities all sum to a power of
   two before and after adaptation.  This can be achieved with a special
   update function that blends the cumulative probabilities of the
   current context with a cumulative distribution function where the
   coded symbol has probability 1.

   Suppose we have model for a given context that codes 8 symbols with
   the following probabilities:

Terriberry & Egge       Expires October 26, 2017                [Page 6]



Internet-Draft                Coding Tools                    April 2017

         +------+------+------+------+------+------+------+------+
         | p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7] |
         +------+------+------+------+------+------+------+------+
         |  1/8 |  1/8 | 3/16 | 1/16 | 1/16 | 3/16 |  1/8 |  1/8 |
         +------+------+------+------+------+------+------+------+

   Then the cumulative distribution function is:

      CDF

    1  +                                                +------+
       |                                                |
       |                                         +------+
       |                                         |
   3/4 +                                  +------+
       |                                  |
       |                                  |
       |                           +------+
   1/2 +                    +------+
       |             +------+
       |             |
       |             |
   1/4 +      +------+
       |      |
       +------+
       |
    0  +------+------+------+------+------+------+------+------+ Bin
        fl[1]  fl[2]  fl[3]  fl[4]  fl[5]  fl[6]  fl[7]  fl[8]

   Suppose we code symbol 3 and wish to update the context model so that
   this symbol is now more likely.  This can be done by blending the CDF
   for the current context with a CDF that has symbol 3 with likelihood
   1.

      CDF

    1  +                    +----------------------------------+
       |                    |
       |                    |
       |                    |
    0  +------+------+------+------+------+------+------+------+ Bin
        fl[1]  fl[2]  fl[3]  fl[4]  fl[5]  fl[6]  fl[7]  fl[8]

   Given an adaptation rate g between 0 and 1, and assuming ft = 2^4 =
   16, what we are computing is:
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   +------+------+------+------+------+------+------+------+
   |   2  |   4  |   7  |   8  |   9  |  12  |  14  |  16  |  * (1 - g)
   +------+------+------+------+------+------+------+------+

                               +

   +------+------+------+------+------+------+------+------+
   |   0  |   0  |   0  |  16  |  16  |  16  |  16  |  16  |  * g
   +------+------+------+------+------+------+------+------+

   In order to prevent the probability of any one symbol from going to
   zero, the blending functions above and below the coded symbol are
   adjusted so that no adjacent cumulative probabilities are the same.

   Let M be the alphabet size and 1/2^r be the adaptation rate:

           ( fl[i] - floor((fl[i] + 2^r - i - 1)/2^r), i <= coded symbol
   fl[i] = <
           ( fl[i] - floor((fl[i] + M - i - ft)/2^r),  i > coded symbol

   Applying these formulas to the example CDF where M = 8 with
   adaptation rate 1/2^16 gives the updated CDF:

         +------+------+------+------+------+------+------+------+
         |   1  |   3  |   6  |   9  |  10  |  13  |  15  |  16  |
         +------+------+------+------+------+------+------+------+

   Looking at the graph of the CDF we see that the likelihood for symbol
   3 has gone up from 1/16 to 3/16, dropping the likelihood of all other
   symbols to make room.

Terriberry & Egge       Expires October 26, 2017                [Page 8]



Internet-Draft                Coding Tools                    April 2017

      CDF

    1  +                                                +------+
       |                                         +------+
       |                                         |
       |                                  +------+
   3/4 +                                  |
       |                                  |
       |                           +------+
       |                    +------+
   1/2 +                    |
       |                    |
       |             +------+
       |             |
   1/4 +             |
       |      +------+
       |      |
       +------+
    0  +------+------+------+------+------+------+------+------+ Bin
        fl[1]  fl[2]  fl[3]  fl[4]  fl[5]  fl[6]  fl[7]  fl[8]

2.4.  Simplified Partition Function

   Let the range of valid code points in the current arithmetic coder
   state be [L, L + R), where L is the lower bound of the range and R is
   the number of valid code points.  The goal of the arithmetic coder is
   to partition this interval proportional to the probability of each
   symbol.  When using dyadic probabilities, the partition point in the
   range corresponding to a given CDF value can be determined via

                                        fl[k]*R
                         u[k] = floor ( ------- )
                                          ft

   Since ft is a power of two, this may be implemented using a right
   shift by T bits in place of the division:

                           u[k] = (fl[k]*R) >> T

   The latency of the multiply still dominates the hardware timing.
   However, we can reduce this latency by using a smaller multiply, at
   the cost of some accuracy in the partition.  We cannot, in general,
   reduce the size of fl[k], since this might send a probability to zero
   (i.e., cause u[k] to have the same value as u[k+1]).  On the other
   hand, we know that the top bit of R is always 1, since it gets
   renormalized with every symbol that is encoded.  Suppose R contains
   16 bits and that T is at least 8.  Then we can greatly reduce the
   size of the multiply by using the formula
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                    ( (fl[k]*(R >> 8)) >> (T - 8), 0 <= k < M
             u[k] = <
                    ( R,                           k == M

   The special case for k == M is required because, with the general
   formula, u[M] no longer exactly equals R.  Without the special case
   we would waste some amount of code space and require the decoder to
   check for invalid streams.  This special case slightly inflates the
   probability of the last symbol.  Unfortunately, in codecs the usual
   convention is that the last symbol is the least probable, while the
   first symbol (e.g., 0) is the most probable.  That maximizes the
   coding overhead introduced by this approximation error.  To minimize
   it, we instead add all of the accumulated error to the first symbol
   by using a variation of the above update formula:

              ( 0,                                        k == 0
       u[k] = <
              ( R - (((ft - fl[k])*(R >> 8)) >> (T - 8)), 0 < k <= M

   This also aids the software decoder search, since it can prime the
   search loop with the special case, instead of needing to check for it
   on every iteration of the loop.  It is easier to incorporate into a
   SIMD search as well.  It does, however, add two subtractions.  Since
   the encoder always operates on the difference between two partition
   points, the first subtraction (involving R) can be eliminated.
   Similar optimizations can eliminate this subtraction in the decoder
   by flipping its internal state (measuring the distance of the encoder
   output from the top of the range instead of the bottom).  To avoid
   the other subtraction, we can simply use "inverse CDFs" that natively
   store ifl[k] = (ft - fl[k]) instead of fl[k].  This produces the
   following partition function:

                      ( R,                            k == 0
           R - u[k] = <
                      ( (ifl[k]*(R >> 8)) >> (T - 8), 0 < k <= M

   The reduction in hardware latency can be as much as 20%, and the
   impact on area is even larger.  The overall software complexity
   overhead is minimal, and the coding efficiency overhead due to the
   approximation is about 0.02%.  We could have achieved the same
   efficiency by leaving the special case on the last symbol and
   reversing the alphabet instead of inverting the probabilities.
   However, reversing the alphabet at runtime would have required an
   extra subtraction (or more general re-ordering requires a table
   lookup).  That may be avoidable in some cases, but only by
   propagating the reordering alphabet outside of the entropy coding
   machinery, requiring changes to every coding tool and potentially
   leading to confusion.  CDFs, on the other hand, are already a
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   somewhat abstract representation of the underlying probabilities used
   for computational efficiency reasons.  Generalizing these to "inverse
   CDFs" is a straightforward change that only affects probability
   initialization and adaptation, without impacting the design of other
   coding tools.

2.5.  Context Adaptation

   The dyadic adaptation scheme described in Section 2.3 implements a
   low-complexity IIR filter for the steady-state case where we only
   want to adapt the context CDF as fast as the 1/2^r adaptation rate.
   In many cases, for example when coding symbols at the start of a
   video frame, only a limited number of symbols have been seen per
   context.  Using this steady-state adaptation scheme risks adapting
   too slowly and spending too many bits to code symbols with incorrect
   probability estimates.  In other video codecs, this problem is
   reduced by either implicitly or explicitly allowing for mechanisms to
   set the initial probability models for a given context.

2.5.1.  Implicit Adaptation

   One implicit way to use default probabilities is to simply require as
   a normative part of the decoder that some specific CDFs are used to
   initialize each context.  A representative set of inputs is run
   through the encoder and a frequency based probability model is
   computed and reloaded at the start of every frame.  This has the
   advantage of having zero bitstream overhead and is optimal for
   certain stationary symbols.  However for other non-stationary
   symbols, or highly content dependent contexts where the sample input
   is not representative, this can be worse than starting with a flat
   distribution as it now takes even longer to adapt to the steady-
   state.  Moreover the amount of hardware area required to store
   initial probability tables for each context goes up with the number
   of contexts in the codec.

   Another implicit way to deal with poor initial probabilities is
   through backward adaptation based on the probability estimates from
   the previous frame.  After decoding a frame, the adapted CDFs for
   each context are simply kept as-is and not reset to their defaults.
   This has the advantage of having no bitstream overhead, and tracking
   to certain content types closely as we expect frames with similar
   content at similar rates, to have well correlated CDFs.  However,
   this only works when we know there will be no bitstream errors due to
   the transport layer, e.g., TCP or HTTP.  In low delay use cases
   (video on demand, live streaming, video conferencing), implicit
   backwards adaptation is avoided as it risks desynchronizing the
   entropy decoder state and permanently losing the video stream.
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2.5.2.  Explicit Adaptation

   For codecs that include the ability to update the probability models
   in the bitstream, it is possible to explicitly signal a starting CDF.
   The previously described implicit backwards adaptation is now
   possible by simply explicitly coding a probability update for each
   frame.  However, the cost of signaling the updated CDF must be
   overcome by the savings from coding with the updated CDF.  Blindly
   updating all contexts per frame may work at high rates where the size
   of the CDFs is small relative to the coded symbol data.  However at
   low rates, the benefit of using more accurate CDFs is quickly
   overcome by the cost of coding them, which increases with the number
   of contexts.

   More sophisticated encoders can compute the cost of coding a
   probability update for a given context, and compare it to the size
   reduction achieved by coding symbols with this context.  Here all
   symbols for a given frame (or tile) are buffered and not serialized
   by the entropy coder until the end of the frame (or tile) is reached.
   Once the end of the entropy segment has been reached, the cost in
   bits for coding symbols with both the default probabilities and the
   proposed updated probabilities can be measured and compared.
   However, note that with the symbols already buffered, rather than
   consider the context probabilities from the previous frame, a simple
   frequency based probability model can be computed and measured.
   Because this probability model is computed based on the symbols we
   are about to code this technique is called forward adaptation.  If
   the cost in bits to signal and code with this new probability model
   is less than that of using the default then it is used.  This has the
   advantage of only ever coding a probability update if it is an
   improvement and producing a bitstream that is robust to errors, but
   requires an entire entropy segments worth of symbols be cached.

2.5.3.  Early Adaptation

   We would like to take advantage of the low-cost multi-symbol CDF
   adaptation described in Section 2.3 without in the broadest set of
   use cases.  This means the initial probability adaptation scheme
   should support low-delay, error-resilient streams that efficiently
   implemented in both hardware and software.  We propose an early
   adaptation scheme that supports this goal.

   At the beginning of a frame (or tile), all CDFs are initialized to a
   flat distribution.  For a given multi-symbol context with M potential
   symbols, assume that the initial dyadic CDF is initialized so that
   each symbol has probability 1/M.  For the first M coded symbols, the
   CDF is updated as follows:
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   a[c,M] = ft/(M + c)

           ( fl[i] - floor((fl[i] - i)*a/ft),          i <= coded symbol
   fl[i] = <
           ( fl[i] - floor((fl[i] + M - i - ft)*a/ft), i > coded symbol

   where c goes from 0 to M-1 and is the running count of the number of
   symbols coded with this CDF.  Note that for a fixed CDF precision (ft
   is always a power of two) and a maximum number of possible symbols M,
   the values of a[c,M] can be stored in a M*(M+1)/2 element table,
   which is 136 entries when M = 16.

2.6.  Simple Experiment

   As a simple experiment to validate the non-binary approach, we
   compared a non-binary arithmetic coder to the VP8 (binary) entropy
   coder.  This was done by instrumenting vp8_treed_read() in libvpx to
   dump out the symbol decoded and the associated probabilities used to
   decode it.  This data only includes macroblock mode and motion vector
   information, as the DCT token data is decoded with custom inline
   functions, and not vp8_treed_read().  This data is available at [1].
   It includes 1,019,670 values encode using 2,125,995 binary symbols
   (or 2.08 symbols per value).  We expect that with a conscious effort
   to group symbols during the codec design, this average could easily
   be increased.

   We then implemented both the regular VP8 entropy decoder (in plain C,
   using all of the optimizations available in libvpx at the time) and a
   multisymbol entropy decoder (also in plain C, using similar
   optimizations), which encodes each value with a single symbol.  For
   the decoder partition search in the non-binary decoder, we used a
   simple for loop (O(N) worst-case), even though this could be made
   constant-time and branchless with a few SIMD instructions such as (on
   x86) PCMPGTW, PACKUSWB, and PMOVMASKB followed by BSR.  The source
   code for both implementations is available at [2] (compile with
   -DEC_BINARY for the binary version and -DEC_MULTISYM for the non-
   binary version).

   The test simply loads the tokens, and then loops 1024 times encoding
   them using the probabilities provided, and then decoding them.  The
   loop was added to reduce the impact of the overhead of loading the
   data, which is implemented very inefficiently.  The total runtime on
   a Core i7 from 2010 is 53.735 seconds for the binary version, and
   27.937 seconds for the non-binary version, or a 1.92x improvement.
   This is very nearly equal to the number of symbols per value in the
   binary coder, suggesting that the per-symbol overheads account for
   the vast majority of the computation time in this implementation.
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3.  Reversible Integer Transforms

   Integer transforms in image and video coding date back to at least
   1969 [PKA69].  Although standards such as MPEG2 and MPEG4 Part 2
   allow some flexibility in the transform implementation,
   implementations were subject to drift and error accumulation, and
   encoders had to impose special macroblock refresh requirements to
   avoid these problems, not always successfully.  As transforms in
   modern codecs only account for on the order of 10% of the total
   decoder complexity, and, with the use of weighted prediction with
   gains greater than unity and intra prediction, are far more
   susceptible to drift and error accumulation, it no longer makes sense
   to allow a non-exact transform specification.

   However, it is also possible to make such transforms "reversible", in
   the sense that applying the inverse transform to the result of the
   forward transform gives back the original input values, exactly.
   This gives a lossy codec, which normally quantizes the coefficients
   before feeding them into the inverse transform, the ability to scale
   all the way to lossless compression without requiring any new coding
   tools.  This approach has been used successfully by JPEG XR, for
   example [TSSRM08].

   Such reversible transforms can be constructed using "lifting steps",
   a series of shear operations that can represent any set of plane
   rotations, and thus any orthogonal transform.  This approach dates
   back to at least 1992 [BE92], which used it to implement a four-point
   1-D Discrete Cosine Transform (DCT).  Their implementation requires
   6 multiplications, 10 additions, 2 shifts, and 2 negations, and
   produces output that is a factor of sqrt(2) larger than the
   orthonormal version of the transform.  The expansion of the dynamic
   range directly translates into more bits to code for lossless
   compression.  Because the least significant bits are usually very
   nearly random noise, this scaling increases the coding cost by
   approximately half a bit per sample.

3.1.  Lifting Steps

   To demonstrate the idea of lifting steps, consider the two-point
   transform

                                  ___
                      [ y0 ]     / 1  [  1 1 ] [ x0 ]
                      [    ] =  / --- [      ] [    ]
                      [ y1 ]   v   2  [ -1 1 ] [ x1 ]

   This can be implemented up to scale via
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                              y0 = x0 + x1

                              y1 = 2*x1 - y0

   and reversed via

                            x1 = (y0 + y1) >> 1

                            x0 = y0 - x1

   Both y0 and y1 are too large by a factor of sqrt(2), however.

   It is also possible to implement any rotation by an angle t,
   including the orthonormal scale factor, by decomposing it into three
   steps:

                                   cos(t) - 1
                         u0 = x0 + ---------- * x1
                                     sin(t)

                         y1 = x1 + sin(t)*u0

                                   cos(t) - 1
                         y0 = u0 + ---------- * y1
                                     sin(t)

   By letting t=-pi/4, we get an implementation of the first transform
   that includes the scaling factor.  To get an integer approximation of
   this transform, we need only replace the transcendental constants by
   fixed-point approximations:

                       u0 = x0 + ((27*x1 + 32) >> 6)

                       y1 = x1 - ((45*u0 + 32) >> 6)

                       y0 = u0 + ((27*y1 + 32) >> 6)

   This approximation is still perfectly reversible:

                       u0 = y0 - ((27*y1 + 32) >> 6)

                       x1 = y1 + ((45*u0 + 32) >> 6)

                       x0 = u0 - ((27*x1 + 32) >> 6)

   Each of the three steps can be implemented using just two ARM
   instructions, with constants that have up to 14 bits of precision
   (though using fewer bits allows more efficient hardware
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   implementations, at a small cost in coding gain).  However, it is
   still much more complex than the first approach.

   We can get a compromise with a slight modification:

                            y0 = x0 + x1

                            y1 = x1 - (y0 >> 1)

   This still only implements the original orthonormal transform up to
   scale.  The y0 coefficient is too large by a factor of sqrt(2) as
   before, but y1 is now too small by a factor of sqrt(2).  If our goal
   is simply to (optionally quantize) and code the result, this is good
   enough.  The different scale factors can be incorporated into the
   quantization matrix in the lossy case, and the total expansion is
   roughly equivalent to that of the orthonormal transform in the
   lossless case.  Plus, we can perform each step with just one ARM
   instruction.

   However, if instead we want to apply additional transformations to
   the data, or use the result to predict other data, it becomes much
   more convenient to have uniformly scaled outputs.  For a two-point
   transform, there is little we can do to improve on the three-
   multiplications approach above.  However, for a four-point transform,
   we can use the last approach and arrange multiple transform stages
   such that the "too large" and "too small" scaling factors cancel out,
   producing a result that has the true, uniform, orthonormal scaling.
   To do this, we need one more tool, which implements the following
   transform:

                        ___
            [ y0 ]     / 1  [ cos(t) -sin(t) ] [ 1  0 ] [ x0 ]
            [    ] =  / --- [                ] [      ] [    ]
            [ y1 ]   v   2  [ sin(t)  cos(t) ] [ 0  2 ] [ x1 ]

   This takes unevenly scaled inputs, rescales them, and then rotates
   them.  Like an ordinary rotation, it can be reduced to three lifting
   steps:
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                                             _
                                 2*cos(t) - v2
                       u0 = x0 + ------------- * x1
                                     sin(t)
                                   ___
                                  / 1
                       y1 = x1 + / --- * sin(t)*u0
                                v   2
                                           _
                                 cos(t) - v2
                       y0 = u0 + ----------- * y1
                                    sin(t)

   As before, the transcendental constants may be replaced by fixed-
   point approximations without harming the reversibility property.

3.2.  4-Point Transform

   Using the tools from the previous section, we can design a reversible
   integer four-point DCT approximation with uniform, orthonormal
   scaling.  This requires 3 multiplies, 9 additions, and 2 shifts (not
   counting the shift and rounding offset used in the fixed-point
   multiplies, as these are built into the multiplier).  This is
   significantly cheaper than the [BE92] approach, and the output
   scaling is smaller by a factor of sqrt(2), saving half a bit per
   sample in the lossless case.  By comparison, the four-point forward
   DCT approximation used in VP9, which is not reversible, uses
   6 multiplies, 6 additions, and 2 shifts (counting shifts and rounding
   offsets which cannot be merged into a single multiply instruction on
   ARM).  Four of its multipliers also require 28-bit accumulators,
   whereas this proposal can use much smaller multipliers without giving
   up the reversibility property.  The total dynamic range expansion is
   1 bit: inputs in the range [-256,255) produce transformed values in
   the range [-512,510).  This is the smallest dynamic range expansion
   possible for any reversible transform constructed from mostly-linear
   operations.  It is possible to make reversible orthogonal transforms
   with no dynamic range expansion by using "piecewise-linear"
   rotations [SLD04], but each step requires a large number of
   operations in a software implementation.

   Pseudo-code for the forward transform follows:
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   Input:  x0, x1, x2, x3
   Output: y0, y1, y2, y3
   /* Rotate (x3, x0) by -pi/4, asymmetrically scaled output. */
   t3  = x0 - x3
   t0  = x0 - (t3 >> 1)
   /* Rotate (x1, x2) by pi/4, asymmetrically scaled output. */
   t2  = x1 + x2
   t2h = t2 >> 1
   t1  = t2h - x2
   /* Rotate (t2, t0) by -pi/4, asymmetrically scaled input. */
   y0  = t0 + t2h
   y2  = y0 - t2
   /* Rotate (t3, t1) by 3*pi/8, asymmetrically scaled input. */
   t3  = t3 - (45*t1 + 32 >> 6)
   y1  = t1 + (21*t3 + 16 >> 5)
   y3  = t3 - (71*y1 + 32 >> 6)

   Even though there are three asymmetrically scaled rotations by pi/4,
   by careful arrangement we can share one of the shift operations (to
   help software implementations: shifts by a constant are basically
   free in hardware).  This technique can be used to even greater effect
   in larger transforms.

   The inverse transform is constructed by simply undoing each step in
   turn:

   Input:  y0, y1, y2, y3
   Output: x0, x1, x2, x3
   /* Rotate (y3, y1) by -3*pi/8, asymmetrically scaled output. */
   t3  = y3 + (71*y1 + 32 >> 6)
   t1  = y1 - (21*t3 + 16 >> 5)
   t3  = t3 + (45*t1 + 32 >> 6)
   /* Rotate (y2, y0) by pi/4, asymmetrically scaled output. */
   t2  = y0 - y2
   t2h = t2 >> 1
   t0  = y0 - t2h
   /* Rotate (t1, t2) by -pi/4, asymmetrically scaled input. */
   x2  = t2h - t1
   x1  = t2 - x2
   /* Rotate (x3, x0) by pi/4, asymmetrically scaled input. */
   x0  = t0 - (t3 >> 1)
   x3  = x0 - t3

   Although the right shifts make this transform non-linear, we can
   compute "basis functions" for it by sending a vector through it with
   a single value set to a large constant (256 was used here), and the
   rest of the values set to zero.  The true basis functions for a four-
   point DCT (up to five digits) are
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   [ y0 ]   [ 0.50000  0.50000  0.50000  0.50000 ] [ x0 ]
   [ y1 ] = [ 0.65625  0.26953 -0.26953 -0.65625 ] [ x1 ]
   [ y2 ]   [ 0.50000 -0.50000 -0.50000  0.50000 ] [ x2 ]
   [ y3 ]   [ 0.27344 -0.65234  0.65234 -0.27344 ] [ x3 ]

   The corresponding basis functions for our reversible, integer DCT,
   computed using the approximation described above, are

   [ y0 ]   [ 0.50000  0.50000  0.50000  0.50000 ] [ x0 ]
   [ y1 ] = [ 0.65328  0.27060 -0.27060 -0.65328 ] [ x1 ]
   [ y2 ]   [ 0.50000 -0.50000 -0.50000  0.50000 ] [ x2 ]
   [ y3 ]   [ 0.27060 -0.65328  0.65328 -0.27060 ] [ x3 ]

   The mean squared error (MSE) of the output, compared to a true DCT,
   can be computed with some assumptions about the input signal.  Let G
   be the true DCT basis and G’ be the basis for our integer
   approximation (computed as described above).  Then the error in the
   transformed results is

   e = G.x - G’.x = (G - G’).x = D.x

   where D = (G - G’) .  The MSE is then [Que98]

   1              1
   - * E[e^T.e] = - * E[x^T.D^T.D.x]
   N              N

                  1
                = - * E[tr(D.x.x^T.D^T)]
                  N

                  1
                = - * E[tr(D.Rxx.D^T)]
                  N

   where Rxx is the autocorrelation matrix of the input signal.
   Assuming the input is a zero-mean, first-order autoregressive (AR(1))
   process gives an autocorrelation matrix of

                 |i - j|
   Rxx[i,j] = rho

   for some correlation coefficient rho.  A value of rho = 0.95 is
   typical for image compression applications.  Smaller values are more
   normal for motion-compensated frame differences, but this makes
   surprisingly little difference in transform design.  Using the above
   procedure, the theoretical MSE of this approximation is 1.230E-6,
   which is below the level of the truncation error introduced by the
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   right shift operations.  This suggests the dynamic range of the input
   would have to be more than 20 bits before it became worthwhile to
   increase the precision of the constants used in the multiplications
   to improve accuracy, though it may be worth using more precision to
   reduce bias.

3.3.  Larger Transforms

   The same techniques can be applied to construct a reversible eight-
   point DCT approximation with uniform, orthonormal scaling using
   15 multiplies, 31 additions, and 5 shifts.  It is possible to reduce
   this to 11 multiplies and 29 additions, which is the minimum number
   of multiplies possible for an eight-point DCT with uniform
   scaling [LLM89], by introducing a scaling factor of sqrt(2), but this
   harms lossless performance.  The dynamic range expansion is 1.5 bits
   (again the smallest possible), and the MSE is 1.592E-06.  By
   comparison, the eight-point transform in VP9 uses 12 multiplications,
   32 additions, and 6 shifts.

   Similarly, we have constructed a reversible sixteen-point DCT
   approximation with uniform, orthonormal scaling using 33 multiplies,
   83 additions, and 16 shifts.  This is just 2 multiplies and
   2 additions more than the (non-reversible, non-integer, but uniformly
   scaled) factorization in [LLM89].  By comparison, the sixteen-point
   transform in VP9 uses 44 multiplies, 88 additions, and 18 shifts.
   The dynamic range expansion is only 2 bits (again the smallest
   possible), and the MSE is 1.495E-5.

   We also have a reversible 32-point DCT approximation with uniform,
   orthonormal scaling using 87 multiplies, 215 additions, and
   38 shifts.  By comparison, the 32-point transform in VP9 uses
   116 multiplies, 194 additions, and 66 shifts.  Our dynamic range
   expansion is still the minimal 2.5 bits, and the MSE is 8.006E-05

   Code for all of these transforms is available in the development
   repository listed in Section 4.

3.4.  Walsh-Hadamard Transforms

   These techniques can also be applied to constructing Walsh-Hadamard
   Transforms, another useful transform family that is cheaper to
   implement than the DCT (since it requires no multiplications at all).
   The WHT has many applications as a cheap way to approximately change
   the time and frequency resolution of a set of data (either individual
   bands, as in the Opus audio codec, or whole blocks).  VP9 uses it as
   a reversible transform with uniform, orthonormal scaling for lossless
   coding in place of its DCT, which does not have these properties.
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   Applying a 2x2 WHT to a block of 2x2 inputs involves running a
   2-point WHT on the rows, and then another 2-point WHT on the columns.
   The basis functions for the 2-point WHT are, up to scaling, [1, 1]
   and [1, -1].  The four variations of a two-step lifer given in
   Section 3.1 are exactly the lifting steps needed to implement a 2x2
   WHT: two stages that produce asymmetrically scaled outputs followed
   by two stages that consume asymmetrically scaled inputs.

   Input:  x00, x01, x10, x11
   Output: y00, y01, y10, y11
   /* Transform rows */
   t1 = x00 - x01
   t0 = x00 - (t1 >> 1) /* == (x00 + x01)/2 */
   t2 = x10 + x11
   t3 = (t2 >> 1) - x11 /* == (x10 - x11)/2 */
   /* Transform columns */
   y00 = t0 + (t2 >> 1) /* == (x00 + x01 + x10 + x11)/2 */
   y10 = y00 - t2       /* == (x00 + x01 - x10 - x11)/2 */
   y11 = (t1 >> 1) - t3 /* == (x00 - x01 - x10 + x11)/2 */
   y01 = t1 - y11       /* == (x00 - x01 + x10 - x11)/2 */

   By simply re-ordering the operations, we can see that there are two
   shifts that may be shared between the two stages:

   Input:  x00, x01, x10, x11
   Output: y00, y01, y10, y11
   t1 = x00 - x01
   t2 = x10 + x11
   t0 = x00 - (t1 >> 1) /* == (x00 + x01)/2 */
   y00 = t0 + (t2 >> 1) /* == (x00 + x01 + x10 + x11)/2 */
   t3 = (t2 >> 1) - x11 /* == (x10 - x11)/2 */
   y11 = (t1 >> 1) - t3 /* == (x00 - x01 - x10 + x11)/2 */
   y10 = y00 - t2       /* == (x00 + x01 - x10 - x11)/2 */
   y01 = t1 - y11       /* == (x00 - x01 + x10 - x11)/2 */

   By eliminating the double-negation of x11 and re-ordering the
   additions to it, we can see even more operations in common:

   Input:  x00, x01, x10, x11
   Output: y00, y01, y10, y11
   t1 = x00 - x01
   t2 = x10 + x11
   t0 = x00 - (t1 >> 1) /* == (x00 + x01)/2 */
   y00 = t0 + (t2 >> 1) /* == (x00 + x01 + x10 + x11)/2 */
   t3 = x11 + (t1 >> 1) /* == x11 + (x00 - x01)/2 */
   y11 = t3 - (t2 >> 1) /* == (x00 - x01 - x10 + x11)/2 */
   y10 = y00 - t2       /* == (x00 + x01 - x10 - x11)/2 */
   y01 = t1 - y11       /* == (x00 - x01 + x10 - x11)/2 */
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   Simplifying further, the whole transform may be computed with just
   7 additions and 1 shift:

   Input:  x00, x01, x10, x11
   Output: y00, y01, y10, y11
   t1 = x00 - x01
   t2 = x10 + x11
   t4 = (t2 - t1) >> 1 /* == (-x00 + x01 + x10 + x11)/2 */
   y00 = x00 + t4      /* ==  (x00 + x01 + x10 + x11)/2 */
   y11 = x11 - t4      /* ==  (x00 - x01 - x10 + x11)/2 */
   y10 = y00 - t2      /* ==  (x00 + x01 - x10 - x11)/2 */
   y01 = t1 - y11      /* ==  (x00 - x01 + x10 - x11)/2 */

   This is a significant savings over other approaches described in the
   literature, which require 8 additions, 2 shifts, and
   1 negation [FOIK99] (37.5% more operations), or 10 additions,
   1 shift, and 2 negations [TSSRM08] (62.5% more operations).  The same
   operations can be applied to compute a 4-point WHT in one dimension.
   This implementation is used in this way in VP9’s lossless mode.
   Since larger WHTs may be trivially factored into multiple smaller
   WHTs, the same approach can implement a reversible, orthonormally
   scaled WHT of any size (2**N)x(2**M), so long as (N + M) is even.

4.  Development Repository

   The tools presented here were developed as part of Xiph.Org’s Daala
   project.  They are available, along with many others in greater and
   lesser states of maturity, in the Daala git repository at [3].  See
   [4] for more information.

5.  IANA Considerations

   This document has no actions for IANA.
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