
Network Working Group M. Kuehlewind
Internet-Draft ETH Zurich
Intended status: Informational T. Pauly
Expires: January 4, 2018 C. Wood
 Apple Inc.
 July 03, 2017

 Separating Crypto Negotiation and Communication
 draft-kuehlewind-taps-crypto-sep-00

Abstract

 Due to the latency involved in connection setup and security
 handshakes, there is an increasing deployment of cryptographic
 session resumption mechanisms. While cryptographic context and
 endpoint capabilities need to be be known before encrypted
 application data can be sent, there is otherwise no technical
 constraint that the crypto handshake must be performed on the same
 transport connection. This document recommends a logical separation
 between the mechanism(s) used to negotiate capabilities and set up
 encryption context (handshake protocol), the application of
 encryption and authentication state to data (record protocol), and
 the associated transport connection(s).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Kuehlewind, et al. Expires January 4, 2018 [Page 1]

Internet-Draft crypto separation July 2017

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Protocol Interfaces . 4
 3.1. Handshake-Transport Interface 5
 3.2. Handshake-Record Interface 6
 3.3. Transport-Record Interface 6
 4. Existing Mappings . 6
 5. Benefits of Separation 8
 5.1. Reducing Connection Latency 9
 5.2. Protocol Flexibility 9
 5.3. Protocol Capability Negotiation 10
 6. IANA Considerations . 10
 7. Security Considerations 10
 8. Acknowledgments . 10
 9. Informative References 10
 Authors’ Addresses . 11

1. Introduction

 Secure transport protocols are generally composed of three pieces:

 1. A transport protocol to control the transfer of data.

 2. A record protocol to frame, encrypt and/or authenticate data

 3. A handshake protocol to negotiate cryptographic secrets.

 For ease of deployment and standardization, among other reasons,
 these constituents are often tightly coupled. For example, in TLS
 [RFC5246], the handshake protocol depends on the record protocol, and
 vice versa. However, more recent transport protocols such as QUIC
 [I-D.ietf-quic-tls] keep these pieces separate. QUIC uses TLS to
 negotiate secrets, and _exports_ those secrets to encrypt packets
 directly.

Kuehlewind, et al. Expires January 4, 2018 [Page 2]

Internet-Draft crypto separation July 2017

 Separating these pieces is important, as new secure transport
 protocols increasingly rely on session resumption mechanisms where
 cryptographic context can be resumed to transmit application data
 with the first packet without delay for connection setup and
 negotiation. In the case where there is no cryptographic context
 available when an application expresses the need to transmit data to
 a certain endpoint, it must first run the handshake protocol on a
 transport connection before being able to transmit application data.
 If the handshake protocol can be separated from the other components,
 then it can use another transport connection to establish secrets
 without blocking the application’s main transport connection. This
 also opens up the possibility to run the handshake protocol well in
 advance of the need to send application data, to avoid unnecessary
 delays. For example, a client system could maintain a database of
 endpoints it is likely to communicate with, and establish keying
 material with a handshake protocol at periodic intervals to ensure
 fresh keys for new transport connections.

 [I-D.moskowitz-sse] proposes a similar approach. However while
 [I-D.moskowitz-sse] proposes a new protocol to negotiate and maintain
 long-term cryptographic sessions, this document relies on the use of
 existing protocols and only discusses requirements for the evolution
 of these protocols and exchange of information within one endpoint
 locally.

2. Terminology

 o Transport Protocol: A protocol that can transport messages between
 two endpoints. This may represent the service offered to
 applications to allow them to send and receive data before
 encryption; and also represent the protocol that can transmit
 handshake data and encrypted records.

 o Handshake Protocol: A protocol that can validate and authenticate
 endpoints, encrypt and authenticate its negotiation, and
 ultimately generate keying material.

 o Record Protocol: A protocol that can use keying material to
 transform messages. A record will generally add a frame around
 application data, and authenticate and/or encrypt the data.

 o Keying Material: One or more pre-shared keys that can be used to
 encrypt and authenticate data, generated by a handshake protocol
 and used by a record protocol.

Kuehlewind, et al. Expires January 4, 2018 [Page 3]

Internet-Draft crypto separation July 2017

3. Protocol Interfaces

 In traditional models in which the protocols are not separated out
 into the three elements of handshake, record, and transport
 protocols, there are two basic approaches to the interactions:

 1. The transport protocol provides data to the security protocol and
 gets back an encrypted version of the data to be sent (handshake
 and record protocols are combined)

 2. The security protocol provides keying material to the transport
 protocol, and the transport protocol is responsible for
 encrypting data (transport and record protocols are combined)

 By teasing apart all three portions as separate protocols, there end
 up being six interface points:

 Application Data
 | ^
 | |
 +----V----+-----+ (1) +---------------+
 | +----------------> |
 | Transport | | Handshake |
 | <----------------+ |
 +-+-----^-------+ (2) +-----+-----^---+
 | | | |
 | |(6) (3)| |
 | | | |(4)
 | | +---------------+ | |
 | +--------+ <-----+ |
 |(5) | Record | |
 +--------------> +-----------+
 +---------------+

 Figure 1: Secure Transport Protocol Components and Interactions

 1. A transport protocol depends upon a handshake protocol to
 establish keying material to protect application data being sent
 through the transport. The main interface it relies upon is
 starting the handshake, or ensuring that the material is ready.

 2. A handshake protocol depends upon a transport protocol in order
 to send and receive negotiation messages with the remote peer.

 3. A handshake protocol sends its keying material and cryptographic
 context to the record protocol to use

Kuehlewind, et al. Expires January 4, 2018 [Page 4]

Internet-Draft crypto separation July 2017

 4. A record protocol may signal state expiration events to a
 handshake protocol

 5. A transport protocol uses a record protocol to send and receive
 application data

 6. A record protocol uses a transport protocol to send and receive
 encrypted data

3.1. Handshake-Transport Interface

 Note that for the purposes of this interface description, it is
 assumed that the application is primarily interacting with the
 transport protocol, and thus the handshake protocol interacts with
 the application primarily through the abstraction of the transport
 protocol.

 o Start negotiation: The interface MUST provide an indication to
 start the protocol handshake for key negotiation, and have a way
 to be notified when the handshake is complete.

 o Identity constraints: The interface MUST allow the application to
 constrain the identities that it will accept a connection to, such
 as the hostname it expects to be provided in certificate SAN.

 o Local identities: The interface MUST allow the local identity to
 be set via a raw private key or interface to one to perform
 cryptographic operations such as signing and decryption.

 o State changes: The interface SHOULD provide a way for the
 transport to be notified of important state changes during the
 protocol execution and session lifetime, e.g., when the handshake
 begins, ends, or when a key update occurs.

 o Validation: The interface MUST provide a way for the application
 to participate in the endpoint authentication and validation,
 which can either be specified as parameters to define how the
 peer’s authentication can be validated, or when the protocol
 provides the authentication information for the application to
 inspect directly.

 o Caching domain and lifetime: The application SHOULD be able to
 specify the instances of the protocol that can share cached keys,
 as well as the lifetime of cached resources.

 o The protocol SHOULD allow applications to negotiate application
 protocols and related information.

Kuehlewind, et al. Expires January 4, 2018 [Page 5]

Internet-Draft crypto separation July 2017

 o The protocol SHOULD allow applications to specify negotiable
 cryptographic algorithm suites.

 o The protocol SHOULD expose the peer’s identity information.

3.2. Handshake-Record Interface

 o Key export: The interface MUST provide a way to export keying
 material from a handshake protocol to a record protocol with well-
 defined cryptographic properties, e.g., "forward-secure" or
 "perfectly forward secure"

 o Key lifetime and rotation: The interface MUST provide a way for
 the handshake protocol to define key lifetime bounds in terms of
 time or _bytes encrypted_ and, additionally, provide a way to
 forcefully update cryptographic session keys at will. The record
 protocol MUST be able to signal back to the handshake protocol
 that a lifetime has been reached and that rotation is required.
 These values SHOULD be configurable by the application.

3.3. Transport-Record Interface

 o Transform data: The interface MUST provide a way to send raw
 application data from the transport protocol to a record protocol
 to transform it based on the keying material. This data is then
 sent out by the transport protocol. The same applies for inbound
 data, in which inbound transport data is transformed by the record
 protocol into raw application data.

 o Reliability: The transport MUST specify if messages are
 transmitted reliable and in order.

 o Maximum message size (optional): The transport may specify a
 maximum message size for the encrypted data if e.g. a datagram
 transport is used

4. Existing Mappings

 In this section we document existing mappings between common
 transport security protocols and the three components described in
 Section I.

 o TLS/DTLS: TLS [RFC5246] and DTLS [RFC6347] is a combination of a
 handshake and record protocol, with a dependency on some
 underlying transport.

Kuehlewind, et al. Expires January 4, 2018 [Page 6]

Internet-Draft crypto separation July 2017

 Application (configure and I/O)
 | ^
 | |
 +---------V-----+--------+
 | Connection |
 +----+----^--------------+
 +----------|----|------------------------------------+
 | | | --TLS-- |
 | +----V----+-----+ +---------------+ |
	+--------->			
	Handshake		Record	
	<---------+			
+---------------+ +----+------^---+				
 +------------------------------------|------|--------+
 | |
 +----V------+----+
 | Transport |
 +----------------+

 o QUIC + TLS: The emerging QUIC standard is decomposed into the
 three pieces outlined in Section I [I-D.ietf-quic-tls]. TLS is
 used as the handshake protocol running on a dedicated QUIC stream,
 a QUIC-specific record protocol encrypts and encapsulates stream
 frames, and the main QUIC component handles the transport of these
 frames.

Kuehlewind, et al. Expires January 4, 2018 [Page 7]

Internet-Draft crypto separation July 2017

 Application (configure and I/O)
 | ^
 +-----|-----|------------------------------------+
 | | | --QUIC-- |
 | | | |
 | +--V-----+---+ +--------------+ |
	QUIC	------------>	TLS	
	(transport)		(handshake)	
	<-------------+			
++---^--+--^-+ +--^-------+---+				
				+V---------+-+
			+--> Packet +--+	
				Protection
		+-----+ (record) <----------+		
		+------------+		
 +---|---|----------+-----------------------------+
 | |
 +---V---+--------+
 | Transport |
 +----------------+

 o IKEv2 + ESP: IKEv2 [RFC7296] is a handshake protocol commonly used
 to establish keys for use in IPsec (often VPN) deployments. It is
 already a distinct protocol from its commonly paired record
 protocol, which is ESP [RFC4303]. ESP encrypts and authenticates
 IP datagrams, and sends them as datagrams over a transport
 mechanism such, e.g., IP or UDP.

 Application (configure) Application (I/O)
 | ^ | ^
 +----V----+-----+ +-----V----+----+
 | +---------> |
 | IKEv2 | | Record |
 | <---------+ |
 +----+------^---+ +----+------^---+
 | | | |
 +----V------+------------------V------+----+
 | (Unreliable) Transport |
 +--+

5. Benefits of Separation

Kuehlewind, et al. Expires January 4, 2018 [Page 8]

Internet-Draft crypto separation July 2017

5.1. Reducing Connection Latency

 One of the clearest benefits of separating the handshake protocol
 from the record protocol is that the handshake can be performed out-
 of-band from the application’s data transfer. This should
 essentially reduce the number of RTTs required before being able to
 send data by the full length of the handshake (which is commonly 1 or
 2 RTTs in the best cases for TLS 1.2 and IKEv2, potentially more if
 cookie challenges or extended authentication are required).

 To avoid long-lived transport connections that wouldn’t be actively
 used, and thus would be vulnerable to timeouts on NATs or firewalls,
 an obvious approach to separating the handshake and record protocols
 is to use different transport connections for the early handshake and
 the data transfer. However, this approach of using separate
 connections will not always save RTTs if the handshake and data
 transfer are back-to-back. Each connection may require its own
 transport protocol handshake, and if the data transfer must wait for
 two transport protocols to establish and the cryptographic handshake
 to be finished before sending, then it may experience higher latency.
 Implementations SHOULD avoid this by either allowing the handshake
 and record protocols to share a single transport connection or open
 two connections in parallel when the handshake protocol has not pre-
 fetched keys. Latency benefits, however, can even be achieved when
 ensuring that this scenario does not occur by always having the
 handshake protocol refresh the keys whenever old ones are near
 expiry.

5.2. Protocol Flexibility

 Separation of the handshake, record, and transport protocols also
 allows for more flexible composition of protocols with one another.
 If a deployment uses a handshake protocol like TLS, which requires a
 stream-based transport protocol like TCP, separation of protocols
 will allow it to use the resulting keys for record protocols that run
 on datagram transport protocols like UDP.

 This flexibility may be useful for implementations that are
 optimizing for packet size by choosing minimal/lightweight record
 protocols, while being able to use commonly supported handshake
 protocols like TLS. One example here is the approach of a VPN tunnel
 that uses ESP or Diet-ESP [I-D.mglt-ipsecme-diet-esp] to encrypt
 datagrams, but uses TLS for establishing keys.

Kuehlewind, et al. Expires January 4, 2018 [Page 9]

Internet-Draft crypto separation July 2017

5.3. Protocol Capability Negotiation

 Enabling the use of a different transport protocol for the actual
 data transmission than for the cryptographic handshakes opens also
 the possibility to negotiate protocol capabilities for the data
 transmission. For TLS, usually TCP is the appropriate transport
 protocol to use, as it is also widely supported by endpoints.
 Allowing an endpoint to indicate the support of other, new transport
 protocols within the TCP connection that is used for the handshake,
 provides a dynamic transition path to enable easy deployment of new
 protocols.

6. IANA Considerations

 This document has on request to IANA.

7. Security Considerations

 (editor’s note: this section will be added later. However, this
 document discusses the use of cryptographic context for transport
 connections and as such it has security relevant consideration within
 the whole document.)

8. Acknowledgments

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

9. Informative References

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-04 (work in
 progress), June 2017.

 [I-D.mglt-ipsecme-diet-esp]
 Migault, D., Guggemos, T., and C. Bormann, "ESP Header
 Compression and Diet-ESP", draft-mglt-ipsecme-diet-esp-04
 (work in progress), June 2017.

 [I-D.moskowitz-sse]
 Moskowitz, R., Faynberg, I., Lu, H., Hares, S., and P.
 Giacomin, "Session Security Envelope", draft-moskowitz-
 sse-05 (work in progress), June 2017.

Kuehlewind, et al. Expires January 4, 2018 [Page 10]

Internet-Draft crypto separation July 2017

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, DOI 10.17487/RFC4303, December 2005,
 <http://www.rfc-editor.org/info/rfc4303>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <http://www.rfc-editor.org/info/rfc7296>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

Authors’ Addresses

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

Kuehlewind, et al. Expires January 4, 2018 [Page 11]

Internet-Draft crypto separation July 2017

 Christopher A. Wood
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Kuehlewind, et al. Expires January 4, 2018 [Page 12]

