
Network Working Group C. Jennings
Internet-Draft Cisco Systems
Intended status: Standards Track J. Mattsson
Expires: December 25, 2020 Ericsson AB
 D. McGrew
 Cisco Systems
 D. Wing
 Citrix Systems, Inc.
 F. Andreason
 Cisco Systems
 June 23, 2020

 Encrypted Key Transport for DTLS and Secure RTP
 draft-ietf-perc-srtp-ekt-diet-13

Abstract

 Encrypted Key Transport (EKT) is an extension to DTLS (Datagram
 Transport Layer Security) and Secure Real-time Transport Protocol
 (SRTP) that provides for the secure transport of SRTP master keys,
 rollover counters, and other information within SRTP. This facility
 enables SRTP for decentralized conferences by distributing a common
 key to all of the conference endpoints.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 25, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Jennings, et al. Expires December 25, 2020 [Page 1]

Internet-Draft EKT SRTP June 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Overview . 4
 3. Conventions Used In This Document 4
 4. Encrypted Key Transport 4
 4.1. EKTField Formats . 5
 4.2. SPIs and EKT Parameter Sets 8
 4.3. Packet Processing and State Machine 8
 4.3.1. Outbound Processing 9
 4.3.2. Inbound Processing 10
 4.4. Ciphers . 12
 4.4.1. AES Key Wrap . 12
 4.4.2. Defining New EKT Ciphers 13
 4.5. Synchronizing Operation 13
 4.6. Timing and Reliability Consideration 13
 5. Use of EKT with DTLS-SRTP 15
 5.1. DTLS-SRTP Recap . 15
 5.2. SRTP EKT Key Transport Extensions to DTLS-SRTP 15
 5.2.1. Negotiating an EKTCipher 17
 5.2.2. Establishing an EKT Key 17
 5.3. Offer/Answer Considerations 19
 5.4. Sending the DTLS EKTKey Reliably 19
 6. Security Considerations 19
 7. IANA Considerations . 21
 7.1. EKT Message Types . 21
 7.2. EKT Ciphers . 21
 7.3. TLS Extensions . 22
 7.4. TLS Handshake Type 22
 8. Acknowledgements . 23
 9. References . 23
 9.1. Normative References 23
 9.2. Informative References 24
 Authors’ Addresses . 24

Jennings, et al. Expires December 25, 2020 [Page 2]

Internet-Draft EKT SRTP June 2020

1. Introduction

 Real-time Transport Protocol (RTP) is designed to allow decentralized
 groups with minimal control to establish sessions, such as for
 multimedia conferences. Unfortunately, Secure RTP (SRTP [RFC3711])
 cannot be used in many minimal-control scenarios, because it requires
 that synchronization source (SSRC) values and other data be
 coordinated among all of the participants in a session. For example,
 if a participant joins a session that is already in progress, that
 participant needs to be told the SRTP keys along with the SSRC,
 rollover counter (ROC) and other details of the other SRTP sources.

 The inability of SRTP to work in the absence of central control was
 well understood during the design of the protocol; the omission was
 considered less important than optimizations such as bandwidth
 conservation. Additionally, in many situations SRTP is used in
 conjunction with a signaling system that can provide the central
 control needed by SRTP. However, there are several cases in which
 conventional signaling systems cannot easily provide all of the
 coordination required.

 This document defines Encrypted Key Transport (EKT) for SRTP and
 reduces the amount of external signaling control that is needed in a
 SRTP session with multiple receivers. EKT securely distributes the
 SRTP master key and other information for each SRTP source. With
 this method, SRTP entities are free to choose SSRC values as they see
 fit, and to start up new SRTP sources with new SRTP master keys
 within a session without coordinating with other entities via
 external signaling or other external means.

 EKT extends DTLS and SRTP to enable a common key encryption key
 (called an EKTKey) to be distributed to all endpoints, so that each
 endpoint can securely send its SRTP master key and current SRTP
 rollover counter to the other participants in the session. This data
 furnishes the information needed by the receiver to instantiate an
 SRTP receiver context.

 EKT can be used in conferences where the central media distributor or
 conference bridge cannot decrypt the media, such as the type defined
 for [I-D.ietf-perc-private-media-framework]. It can also be used for
 large scale conferences where the conference bridge or media
 distributor can decrypt all the media but wishes to encrypt the media
 it is sending just once and then send the same encrypted media to a
 large number of participants. This reduces the amount of CPU time
 needed for encryption and can be used for some optimization to media
 sending that use source specific multicast.

Jennings, et al. Expires December 25, 2020 [Page 3]

Internet-Draft EKT SRTP June 2020

 EKT does not control the manner in which the SSRC is generated. It
 is only concerned with distributing the security parameters that an
 endpoint needs to associate with a given SSRC in order to decrypt
 SRTP packets from that sender.

 EKT is not intended to replace external key establishment mechanisms.
 Instead, it is used in conjunction with those methods, and it
 relieves those methods of the burden to deliver the context for each
 SRTP source to every SRTP participant. This document defines how EKT
 works with the DTLS-SRTP approach to key establishment, by using keys
 derived from the DTLS-SRTP handshake to encipher the EKTKey in
 addition to the SRTP media.

2. Overview

 This specification defines a way for the server in a DTLS-SRTP
 negotiation, see Section 5, to provide an EKTKey to the client during
 the DTLS handshake. The EKTKey thus obtained can be used to encrypt
 the SRTP master key that is used to encrypt the media sent by the
 endpoint. This specification also defines a way to send the
 encrypted SRTP master key (with the EKTKey) along with the SRTP
 packet, see Section 4. Endpoints that receive this and know the
 EKTKey can use the EKTKey to decrypt the SRTP master key which can
 then be used to decrypt the SRTP packet.

 One way to use this is described in the architecture defined by
 [I-D.ietf-perc-private-media-framework]. Each participant in the
 conference forms a DTLS-SRTP connection to a common key distributor
 that distributes the same EKTKey to all the endpoints. Then each
 endpoint picks its own SRTP master key for the media they send. When
 sending media, the endpoint also includes the SRTP master key
 encrypted with the EKTKey in the SRTP packet. This allows all the
 endpoints to decrypt the media.

3. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Encrypted Key Transport

 EKT defines a new method of providing SRTP master keys to an
 endpoint. In order to convey the ciphertext corresponding to the
 SRTP master key, and other additional information, an additional
 field, called EKTField, is added to the SRTP packets. The EKTField

Jennings, et al. Expires December 25, 2020 [Page 4]

Internet-Draft EKT SRTP June 2020

 appears at the end of the SRTP packet. It appears after the optional
 authentication tag if one is present, otherwise the EKTField appears
 after the ciphertext portion of the packet.

 EKT MUST NOT be used in conjunction with SRTP’s MKI (Master Key
 Identifier) or with SRTP’s <From, To> [RFC3711], as those SRTP
 features duplicate some of the functions of EKT. Senders MUST NOT
 include MKI when using EKT. Receivers SHOULD simply ignore any MKI
 field received if EKT is in use.

 This document defines the use of EKT with SRTP. Its use with SRTCP
 would be similar, but is reserved for a future specification. SRTP
 is preferred for transmitting key material because it shares fate
 with the transmitted media, because SRTP rekeying can occur without
 concern for RTCP transmission limits, and because it avoids the need
 for SRTCP compound packets with RTP translators and mixers.

4.1. EKTField Formats

 The EKTField uses the format defined in Figure 1 for the FullEKTField
 and ShortEKTField. The EKTField appended to an SRTP packet can be
 referred to as an "EKT tag".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 : :
 : EKT Ciphertext :
 : :
 +-+
 | Security Parameter Index | Epoch |
 +-+
 | Length |0 0 0 0 0 0 1 0|
 +-+

 Figure 1: FullEKTField format

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0 0 0 0 0 0 0 0|
 +-+-+-+-+-+-+-+-+

 Figure 2: ShortEKTField format

 The following shows the syntax of the EKTField expressed in ABNF
 [RFC5234]. The EKTField is added to the end of an SRTP packet. The
 EKTPlaintext is the concatenation of SRTPMasterKeyLength,
 SRTPMasterKey, SSRC, and ROC in that order. The EKTCiphertext is

Jennings, et al. Expires December 25, 2020 [Page 5]

Internet-Draft EKT SRTP June 2020

 computed by encrypting the EKTPlaintext using the EKTKey. Future
 extensions to the EKTField MUST conform to the syntax of
 ExtensionEKTField.

 BYTE = %x00-FF

 EKTMsgTypeFull = %x02
 EKTMsgTypeShort = %x00
 EKTMsgTypeExtension = %x03-FF ; Message type %x01 is reserved, due to
 ; usage by legacy implementations.

 EKTMsgLength = 2BYTE;

 SRTPMasterKeyLength = BYTE
 SRTPMasterKey = 1*242BYTE
 SSRC = 4BYTE; SSRC from RTP
 ROC = 4BYTE ; ROC from SRTP FOR THE GIVEN SSRC

 EKTPlaintext = SRTPMasterKeyLength SRTPMasterKey SSRC ROC

 EKTCiphertext = 1*251BYTE ; EKTEncrypt(EKTKey, EKTPlaintext)
 Epoch = 2BYTE
 SPI = 2BYTE

 FullEKTField = EKTCiphertext SPI Epoch EKTMsgLength EKTMsgTypeFull

 ShortEKTField = EKTMsgTypeShort

 ExtensionData = 1*1024BYTE
 ExtensionEKTField = ExtensionData EKTMsgLength EKTMsgTypeExtension

 EKTField = FullEKTField / ShortEKTField / ExtensionEKTField

 Figure 3: EKTField Syntax

 These fields and data elements are defined as follows:

 EKTPlaintext: The data that is input to the EKT encryption operation.
 This data never appears on the wire, and is used only in computations
 internal to EKT. This is the concatenation of the SRTP Master Key
 and its length, the SSRC, and the ROC.

 EKTCiphertext: The data that is output from the EKT encryption
 operation, described in Section 4.4. This field is included in SRTP
 packets when EKT is in use. The length of EKTCiphertext can be
 larger than the length of the EKTPlaintext that was encrypted.

Jennings, et al. Expires December 25, 2020 [Page 6]

Internet-Draft EKT SRTP June 2020

 SRTPMasterKey: On the sender side, the SRTP Master Key associated
 with the indicated SSRC.

 SRTPMasterKeyLength: The length of the SRTPMasterKey in bytes. This
 depends on the cipher suite negotiated for SRTP using SDP Offer/
 Answer [RFC3264] for the SRTP.

 SSRC: On the sender side, this is the SSRC for this SRTP source. The
 length of this field is 32 bits. The SSRC value in the EKT tag MUST
 be the same as the one in the header of the SRTP packet to which the
 tag is appended.

 Rollover Counter (ROC): On the sender side, this is set to the
 current value of the SRTP rollover counter in the SRTP context
 associated with the SSRC in the SRTP packet. The length of this
 field is 32 bits.

 Security Parameter Index (SPI): This field indicates the appropriate
 EKTKey and other parameters for the receiver to use when processing
 the packet, within a given conference. The length of this field is
 16 bits, representing a two-byte integer in network byte order. The
 parameters identified by this field are:

 o The EKT cipher used to process the packet.

 o The EKTKey used to process the packet.

 o The SRTP Master Salt associated with any master key encrypted with
 this EKT Key. The master salt is communicated separately, via
 signaling, typically along with the EKTKey. (Recall that the SRTP
 master salt is used in the formation of IVs / nonces.)

 Epoch: This field indicates how many SRTP keys have been sent for
 this SSRC under the current EKTKey, prior to the current key, as a
 two-byte integer in network byte order. It starts at zero at the
 beginning of a session and resets to zero whenever the EKTKey is
 changed (i.e., when a new SPI appears). The epoch for an SSRC
 increments by one every time the sender transmits a new key. The
 recipient of a FullEKTField MUST reject any future FullEKTField for
 this SPI and SSRC that has an equal or lower epoch value to an epoch
 already seen.

 Together, these data elements are called an EKT parameter set. Each
 distinct EKT parameter set that is used MUST be associated with a
 distinct SPI value to avoid ambiguity.

 EKTMsgLength: All EKT messages types other than the ShortEKTField
 have a length as second from the last element. This is the length in

Jennings, et al. Expires December 25, 2020 [Page 7]

Internet-Draft EKT SRTP June 2020

 octets (in network byte order) of either the FullEKTField/
 ExtensionEKTField including this length field and the following EKT
 Message Type.

 Message Type: The last byte is used to indicate the type of the
 EKTField. This MUST be 2 for the FullEKTField format and 0 in
 ShortEKTField format. If a received EKT tag has an unknown message
 type, then the receiver MUST discard the whole EKT tag.

4.2. SPIs and EKT Parameter Sets

 The SPI field identifies the parameters for how the EKT tag should be
 processed:

 o The EKTKey and EKT cipher used to process the packet.

 o The SRTP Master Salt associated with any master key encrypted with
 this EKT Key. The master salt is communicated separately, via
 signaling, typically along with the EKTKey.

 Together, these data elements are called an "EKT parameter set".
 Each distinct EKT parameter set that is used MUST be associated with
 a distinct SPI value to avoid ambiguity. The association of a given
 parameter set with a given SPI value is configured by some other
 protocol, e.g., the DTLS-SRTP extension defined in Section 5.

4.3. Packet Processing and State Machine

 At any given time, each SRTP source has associated with it a single
 EKT parameter set. This parameter set is used to process all
 outbound packets, and is called the outbound parameter set for that
 SSRC. There may be other EKT parameter sets that are used by other
 SRTP sources in the same session, including other SRTP sources on the
 same endpoint (e.g., one endpoint with voice and video might have two
 EKT parameter sets, or there might be multiple video sources on an
 endpoint each with their own EKT parameter set). All of the received
 EKT parameter sets SHOULD be stored by all of the participants in an
 SRTP session, for use in processing inbound SRTP traffic. If a
 participant deletes an EKT parameter set (e.g., because of space
 limitations, then it will be unable to process Full EKT Tags
 containing updated media keys, and thus unable to receive media from
 a particpant that has changed its media key.

 Either the FullEKTField or ShortEKTField is appended at the tail end
 of all SRTP packets. The decision on which to send when is specified
 in Section 4.6.

Jennings, et al. Expires December 25, 2020 [Page 8]

Internet-Draft EKT SRTP June 2020

4.3.1. Outbound Processing

 See Section 4.6 which describes when to send an SRTP packet with a
 FullEKTField. If a FullEKTField is not being sent, then a
 ShortEKTField is sent so the receiver can correctly determine how to
 process the packet.

 When an SRTP packet is sent with a FullEKTField, the EKTField for
 that packet is created as follows, or uses an equivalent set of
 steps.

 1. The Security Parameter Index (SPI) field is set to the value of
 the Security Parameter Index that is associated with the outbound
 parameter set.

 2. The EKTPlaintext field is computed from the SRTP Master Key,
 SSRC, and ROC fields, as shown in Section 4.1. The ROC, SRTP
 Master Key, and SSRC used in EKT processing MUST be the same as
 the one used in the SRTP processing.

 3. The EKTCiphertext field is set to the ciphertext created by
 encrypting the EKTPlaintext with the EKTCipher using the EKTKey
 as the encryption key. The encryption process is detailed in
 Section 4.4.

 4. Then the FullEKTField is formed using the EKTCiphertext and the
 SPI associated with the EKTKey used above. Also appended are the
 Length and Message Type using the FullEKTField format.

 * Note: the value of the EKTCiphertext field is identical in
 successive packets protected by the same EKTKey and SRTP
 master key. This value MAY be cached by an SRTP sender to
 minimize computational effort.

 The computed value of the FullEKTField is appended to the end of the
 SRTP packet, after the encrypted payload.

 When a packet is sent with the ShortEKTField, the ShortEKFField is
 simply appended to the packet.

 Outbound packets SHOULD continue to use the old SRTP Master Key for
 250 ms after sending any new key in a FullEKTField value. This gives
 all the receivers in the system time to get the new key before they
 start receiving media encrypted with the new key. (The specific
 value of 250ms is chosen to represent a reasonable upper bound on the
 amount of latency and jitter that is tolerable in a real-time
 context.)

Jennings, et al. Expires December 25, 2020 [Page 9]

Internet-Draft EKT SRTP June 2020

4.3.2. Inbound Processing

 When receiving a packet on a RTP stream, the following steps are
 applied for each SRTP received packet.

 1. The final byte is checked to determine which EKT format is in
 use. When an SRTP packet contains a ShortEKTField, the
 ShortEKTField is removed from the packet then normal SRTP
 processing occurs. If the packet contains a FullEKTField, then
 processing continues as described below. The reason for using
 the last byte of the packet to indicate the type is that the
 length of the SRTP part is not known until the decryption has
 occurred. At this point in the processing, there is no easy way
 to know where the EKTField would start. However, the whole UDP
 packet has been received, so instead of the starting at the front
 of the packet, the parsing works backwards at the end of the
 packet and thus the type is placed at the very end of the packet.

 2. The Security Parameter Index (SPI) field is used to find the
 right EKT parameter set to be used for processing the packet. If
 there is no matching SPI, then the verification function MUST
 return an indication of authentication failure, and the steps
 described below are not performed. The EKT parameter set
 contains the EKTKey, EKTCipher, and the SRTP Master Salt.

 3. The EKTCiphertext is authenticated and decrypted, as described in
 Section 4.4, using the EKTKey and EKTCipher found in the previous
 step. If the EKT decryption operation returns an authentication
 failure, then EKT processing MUST be aborted. The receiver
 SHOULD discard the whole UDP packet.

 4. The resulting EKTPlaintext is parsed as described in Section 4.1,
 to recover the SRTP Master Key, SSRC, and ROC fields. The SRTP
 Master Salt that is associated with the EKTKey is also retrieved.
 If the value of the srtp_master_salt sent as part of the EKTkey
 is longer than needed by SRTP, then it is truncated by taking the
 first N bytes from the srtp_master_salt field.

 5. If the SSRC in the EKTPlaintext does not match the SSRC of the
 SRTP packet received, then this FullEKTField MUST be discarded
 and the following steps in this list skipped. After stripping
 the FullEKTField, the remainder of the SRTP packet MAY be
 processed as normal.

 6. The SRTP Master Key, ROC, and SRTP Master Salt from the previous
 steps are saved in a map indexed by the SSRC found in the
 EKTPlaintext and can be used for any future crypto operations on
 the inbound packets with that SSRC.

Jennings, et al. Expires December 25, 2020 [Page 10]

Internet-Draft EKT SRTP June 2020

 * Unless the transform specifies other acceptable key lengths,
 the length of the SRTP Master Key MUST be the same as the
 master key length for the SRTP transform in use. If this is
 not the case, then the receiver MUST abort EKT processing and
 SHOULD discared the whole UDP packet.

 * If the length of the SRTP Master Key is less than the master
 key length for the SRTP transform in use, and the transform
 specifies that this length is acceptable, then the SRTP Master
 Key value is used to replace the first bytes in the existing
 master key. The other bytes remain the same as in the old
 key. For example, the Double GCM transform
 [I-D.ietf-perc-double] allows replacement of the first, "end
 to end" half of the master key.

 7. At this point, EKT processing has successfully completed, and the
 normal SRTP processing takes place.

 The value of the EKTCiphertext field is identical in successive
 packets protected by the same EKT parameter set and the same SRTP
 master key, and ROC. SRTP senders and receivers MAY cache an
 EKTCiphertext value to optimize processing in cases where the master
 key hasn’t changed. Instead of encrypting and decrypting, senders
 can simply copy the pre-computed value and receivers can compare a
 received EKTCiphertext to the known value.

 Section 4.3.1 recommends that SRTP senders continue using an old key
 for some time after sending a new key in an EKT tag. Receivers that
 wish to avoid packet loss due to decryption failures MAY perform
 trial decryption with both the old key and the new key, keeping the
 result of whichever decryption succeeds. Note that this approach is
 only compatible with SRTP transforms that include integrity
 protection.

 When receiving a new EKTKey, implementations need to use the ekt_ttl
 field (see Section 5.2.2) to create a time after which this key
 cannot be used and they also need to create a counter that keeps
 track of how many times the key has been used to encrypt data to
 ensure it does not exceed the T value for that cipher (see
 Section 4.4). If either of these limits are exceeded, the key can no
 longer be used for encryption. At this point implementation need to
 either use the call signaling to renegotiate a new session or need to
 terminate the existing session. Terminating the session is a
 reasonable implementation choice because these limits should not be
 exceeded except under an attack or error condition.

Jennings, et al. Expires December 25, 2020 [Page 11]

Internet-Draft EKT SRTP June 2020

4.4. Ciphers

 EKT uses an authenticated cipher to encrypt and authenticate the
 EKTPlaintext. This specification defines the interface to the
 cipher, in order to abstract the interface away from the details of
 that function. This specification also defines the default cipher
 that is used in EKT. The default cipher described in Section 4.4.1
 MUST be implemented, but another cipher that conforms to this
 interface MAY be used. The cipher used for a given EKTCiphertext
 value is negotiated using the supported_ekt_ciphers and indicated
 with the SPI value in the FullEKTField.

 An EKTCipher consists of an encryption function and a decryption
 function. The encryption function E(K, P) takes the following
 inputs:

 o a secret key K with a length of L bytes, and

 o a plaintext value P with a length of M bytes.

 The encryption function returns a ciphertext value C whose length is
 N bytes, where N may be larger than M. The decryption function D(K,
 C) takes the following inputs:

 o a secret key K with a length of L bytes, and

 o a ciphertext value C with a length of N bytes.

 The decryption function returns a plaintext value P that is M bytes
 long, or returns an indication that the decryption operation failed
 because the ciphertext was invalid (i.e. it was not generated by the
 encryption of plaintext with the key K).

 These functions have the property that D(K, E(K, P)) = P for all
 values of K and P. Each cipher also has a limit T on the number of
 times that it can be used with any fixed key value. The EKTKey MUST
 NOT be used for encryption more that T times. Note that if the same
 FullEKTField is retransmitted 3 times, that only counts as 1
 encryption.

 Security requirements for EKT ciphers are discussed in Section 6.

4.4.1. AES Key Wrap

 The default EKT Cipher is the Advanced Encryption Standard (AES) Key
 Wrap with Padding [RFC5649] algorithm. It requires a plaintext
 length M that is at least one octet, and it returns a ciphertext with
 a length of N = M + (M mod 8) + 8 octets.

Jennings, et al. Expires December 25, 2020 [Page 12]

Internet-Draft EKT SRTP June 2020

 It can be used with key sizes of L = 16, and L = 32 octets, and its
 use with those key sizes is indicated as AESKW128, or AESKW256,
 respectively. The key size determines the length of the AES key used
 by the Key Wrap algorithm. With this cipher, T=2^48.

 +----------+----+------+
 | Cipher | L | T |
 +----------+----+------+
 | AESKW128 | 16 | 2^48 |
 | AESKW256 | 32 | 2^48 |
 +----------+----+------+

 Table 1: EKT Ciphers

 As AES-128 is the mandatory to implement transform in SRTP, AESKW128
 MUST be implemented for EKT and AESKW256 MAY be implemented.

4.4.2. Defining New EKT Ciphers

 Other specifications may extend this document by defining other
 EKTCiphers as described in Section 7. This section defines how those
 ciphers interact with this specification.

 An EKTCipher determines how the EKTCiphertext field is written, and
 how it is processed when it is read. This field is opaque to the
 other aspects of EKT processing. EKT ciphers are free to use this
 field in any way, but they SHOULD NOT use other EKT or SRTP fields as
 an input. The values of the parameters L, and T MUST be defined by
 each EKTCipher. The cipher MUST provide integrity protection.

4.5. Synchronizing Operation

 If a source has its EKTKey changed by the key management, it MUST
 also change its SRTP master key, which will cause it to send out a
 new FullEKTField and eventually begin encrypting with it, as defined
 in Section 4.3.1. This ensures that if key management thought the
 EKTKey needs changing (due to a participant leaving or joining) and
 communicated that to a source, the source will also change its SRTP
 master key, so that traffic can be decrypted only by those who know
 the current EKTKey.

4.6. Timing and Reliability Consideration

 A system using EKT learns the SRTP master keys distributed with the
 FullEKTField sent with the SRTP, rather than with call signaling. A
 receiver can immediately decrypt an SRTP packet, provided the SRTP
 packet contains a FullEKTField.

Jennings, et al. Expires December 25, 2020 [Page 13]

Internet-Draft EKT SRTP June 2020

 This section describes how to reliably and expediently deliver new
 SRTP master keys to receivers.

 There are three cases to consider. The first case is a new sender
 joining a session, which needs to communicate its SRTP master key to
 all the receivers. The second case is a sender changing its SRTP
 master key which needs to be communicated to all the receivers. The
 third case is a new receiver joining a session already in progress
 which needs to know the sender’s SRTP master key.

 The three cases are:

 New sender:
 A new sender SHOULD send a packet containing the FullEKTField as
 soon as possible, always before or coincident with sending its
 initial SRTP packet. To accommodate packet loss, it is
 RECOMMENDED that the FullEKTField be transmitted in three
 consecutive packets. If the sender does not send a FullEKTField
 in its initial packets and receivers have not otherwise been
 provisioned with a decryption key, then decryption will fail and
 SRTP packets will be dropped until the receiver receives a
 FullEKTField from the sender.

 Rekey:
 By sending EKT tag over SRTP, the rekeying event shares fate with
 the SRTP packets protected with that new SRTP master key. To
 accommodate packet loss, it is RECOMMENDED that three consecutive
 packets contain the FullEKTField be transmitted.

 New receiver:
 When a new receiver joins a session it does not need to
 communicate its sending SRTP master key (because it is a
 receiver). When a new receiver joins a session, the sender is
 generally unaware of the receiver joining the session. Thus,
 senders SHOULD periodically transmit the FullEKTField. That
 interval depends on how frequently new receivers join the session,
 the acceptable delay before those receivers can start processing
 SRTP packets, and the acceptable overhead of sending the
 FullEKTField. If sending audio and video, the RECOMMENDED
 frequency is the same as the rate of intra coded video frames. If
 only sending audio, the RECOMMENDED frequency is every 100ms.

 In general, sending EKT tags less frequently will consume less
 bandwidth, but increase the time it takes for a join or rekey to take
 effect. Applications should schedule the sending of EKT tags in a
 way that makes sense for their bandwidth and latency requirements.

Jennings, et al. Expires December 25, 2020 [Page 14]

Internet-Draft EKT SRTP June 2020

5. Use of EKT with DTLS-SRTP

 This document defines an extension to DTLS-SRTP called SRTP EKTKey
 Transport which enables secure transport of EKT keying material from
 the DTLS-SRTP peer in the server role to the client. This allows
 those peers to process EKT keying material in SRTP and retrieve the
 embedded SRTP keying material. This combination of protocols is
 valuable because it combines the advantages of DTLS, which has strong
 authentication of the endpoint and flexibility, along with allowing
 secure multiparty RTP with loose coordination and efficient
 communication of per-source keys.

 In cases where the DTLS termination point is more trusted than the
 media relay, the protection that DTLS affords to EKT key material can
 allow EKT keys to be tunneled through an untrusted relay such as a
 centralized conference bridge. For more details, see
 [I-D.ietf-perc-private-media-framework].

5.1. DTLS-SRTP Recap

 DTLS-SRTP [RFC5764] uses an extended DTLS exchange between two peers
 to exchange keying material, algorithms, and parameters for SRTP.
 The SRTP flow operates over the same transport as the DTLS-SRTP
 exchange (i.e., the same 5-tuple). DTLS-SRTP combines the
 performance and encryption flexibility benefits of SRTP with the
 flexibility and convenience of DTLS-integrated key and association
 management. DTLS-SRTP can be viewed in two equivalent ways: as a new
 key management method for SRTP, and a new RTP-specific data format
 for DTLS.

5.2. SRTP EKT Key Transport Extensions to DTLS-SRTP

 This document defines a new TLS negotiated extension
 supported_ekt_ciphers and a new TLS handshake message type ekt_key.
 The extension negotiates the cipher to be used in encrypting and
 decrypting EKTCiphertext values, and the handshake message carries
 the corresponding key.

 Figure 4 shows a message flow of DTLS 1.3 client and server using EKT
 configured using the DTLS extensions described in this section. (The
 initial cookie exchange and other normal DTLS messages are omitted.)
 To be clear, EKT can be used with versions of DTLS prior to 1.3. The
 only difference is that in a pre-1.3 TLS stacks will not have built-
 in support for generating and processing ACK messages.

Jennings, et al. Expires December 25, 2020 [Page 15]

Internet-Draft EKT SRTP June 2020

 Client Server

 ClientHello
 + use_srtp
 + supported_ekt_ciphers
 -------->

 ServerHello
 {EncryptedExtensions}
 + use_srtp
 + supported_ekt_ciphers
 {... Finished}
 <--------

 {... Finished} -------->

 [ACK]
 <-------- [EKTKey]

 [ACK] -------->

 |SRTP packets| <-------> |SRTP packets|
 + <EKT tags> + <EKT tags>

 {} Messages protected using DTLS handshake keys

 [] Messages protected using DTLS application traffic keys

 <> Messages protected using the EKTKey and EKT cipher

 || Messages protected using the SRTP Master Key sent in
 a Full EKT Tag

 Figure 4

 In the context of a multi-party SRTP session in which each endpoint
 performs a DTLS handshake as a client with a central DTLS server, the
 extensions defined in this document allow the DTLS server to set a
 common EKTKey for all participants. Each endpoint can then use EKT
 tags encrypted with that common key to inform other endpoint of the
 keys it uses to protect SRTP packets. This avoids the need for many
 individual DTLS handshakes among the endpoints, at the cost of
 preventing endpoints from directly authenticating one another.

Jennings, et al. Expires December 25, 2020 [Page 16]

Internet-Draft EKT SRTP June 2020

 Client A Server Client B

 <----DTLS Handshake---->
 <--------EKTKey---------
 <----DTLS Handshake---->
 ---------EKTKey-------->

 -------------SRTP Packet + EKT Tag------------->
 <------------SRTP Packet + EKT Tag--------------

5.2.1. Negotiating an EKTCipher

 To indicate its support for EKT, a DTLS-SRTP client includes in its
 ClientHello an extension of type supported_ekt_ciphers listing the
 ciphers used for EKT by the client supports in preference order, with
 the most preferred version first. If the server agrees to use EKT,
 then it includes a supported_ekt_ciphers extension in its ServerHello
 containing a cipher selected from among those advertised by the
 client.

 The extension_data field of this extension contains an "EKTCipher"
 value, encoded using the syntax defined in [RFC8446]:

 enum {
 reserved(0),
 aeskw_128(1),
 aeskw_256(2),
 } EKTCipherType;

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 EKTCipherType supported_ciphers<1..255>;

 case server_hello:
 EKTCipherType selected_cipher;
 };
 } EKTCipher;

5.2.2. Establishing an EKT Key

 Once a client and server have concluded a handshake that negotiated
 an EKTCipher, the server MUST provide to the client a key to be used
 when encrypting and decrypting EKTCiphertext values. EKTKeys are
 sent in encrypted handshake records, using handshake type
 ekt_key(TBD). The body of the handshake message contains an EKTKey
 structure:

Jennings, et al. Expires December 25, 2020 [Page 17]

Internet-Draft EKT SRTP June 2020

 [[NOTE: RFC Editor, please replace "TBD" above with the code point
 assigned by IANA]]

 struct {
 opaque ekt_key_value<1..256>;
 opaque srtp_master_salt<1..256>;
 uint16 ekt_spi;
 uint24 ekt_ttl;
 } EKTKey;

 The contents of the fields in this message are as follows:

 ekt_key_value
 The EKTKey that the recipient should use when generating
 EKTCiphertext values

 srtp_master_salt
 The SRTP Master Salt to be used with any Master Key encrypted with
 this EKT Key

 ekt_spi
 The SPI value to be used to reference this EKTKey and SRTP Master
 Salt in EKT tags (along with the EKT cipher negotiated in the
 handshake)

 ekt_ttl
 The maximum amount of time, in seconds, that this EKTKey can be
 used. The ekt_key_value in this message MUST NOT be used for
 encrypting or decrypting information after the TTL expires.

 If the server did not provide a supported_ekt_ciphers extension in
 its ServerHello, then EKTKey messages MUST NOT be sent by the client
 or the server.

 When an EKTKey is received and processed successfully, the recipient
 MUST respond with an ACK message as described in Section 7 of
 [I-D.ietf-tls-dtls13]. The EKTKey message and ACK MUST be
 retransmitted following the rules of the negotiated version of DTLS.

 EKT MAY be used with versions of DTLS prior to 1.3. In such cases,
 the ACK message is still used to provide reliability. Thus, DTLS
 implementations supporting EKT with DTLS pre-1.3 will need to have
 explicit affordances for sending the ACK message in response to an
 EKTKey message, and for verifying that an ACK message was received.
 The retransmission rules for both sides are otherwise defined by the
 negotiated version of DTLS.

Jennings, et al. Expires December 25, 2020 [Page 18]

Internet-Draft EKT SRTP June 2020

 If an EKTKey message is received that cannot be processed, then the
 recipient MUST respond with an appropriate DTLS alert.

5.3. Offer/Answer Considerations

 When using EKT with DTLS-SRTP, the negotiation to use EKT is done at
 the DTLS handshake level and does not change the [RFC3264] Offer /
 Answer messaging.

5.4. Sending the DTLS EKTKey Reliably

 The DTLS EKTKey message is sent using the retransmissions specified
 in Section 4.2.4. of DTLS [RFC6347]. Retransmission is finished
 with an ACK message or an alert is received.

6. Security Considerations

 EKT inherits the security properties of the the key management
 protocol that is used to establish the EKTKey, e.g., the DTLS-SRTP
 extension defined in this document.

 With EKT, each SRTP sender and receiver MUST generate distinct SRTP
 master keys. This property avoids any security concern over the re-
 use of keys, by empowering the SRTP layer to create keys on demand.
 Note that the inputs of EKT are the same as for SRTP with key-
 sharing: a single key is provided to protect an entire SRTP session.
 However, EKT remains secure even when SSRC values collide.

 SRTP master keys MUST be randomly generated, and [RFC4086] offers
 some guidance about random number generation. SRTP master keys MUST
 NOT be re-used for any other purpose, and SRTP master keys MUST NOT
 be derived from other SRTP master keys.

 The EKT Cipher includes its own authentication/integrity check. For
 an attacker to successfully forge a FullEKTField, it would need to
 defeat the authentication mechanisms of the EKT Cipher authentication
 mechanism.

 The presence of the SSRC in the EKTPlaintext ensures that an attacker
 cannot substitute an EKTCiphertext from one SRTP stream into another
 SRTP stream. This mitigates the impact of the cut-and-paste attacks
 that arise due to the lack of a cryptographic binding between the EKT
 tag and the rest of the SRTP packet. SRTP tags can only be cut-and-
 pasted within the stream of packets sent by a given RTP endpoint; an
 attacker cannot "cross the streams" and use an EKT tag from one SSRC
 to reset the key for another SSRC. The epoch field in the
 FullEKTField also prevents an attacker from rolling back to a
 previous key.

Jennings, et al. Expires December 25, 2020 [Page 19]

Internet-Draft EKT SRTP June 2020

 An attacker could send packets containing a FullEKTField, in an
 attempt to consume additional CPU resources of the receiving system
 by causing the receiving system to decrypt the EKT ciphertext and
 detect an authentication failure. In some cases, caching the
 previous values of the Ciphertext as described in Section 4.3.2 helps
 mitigate this issue.

 In a similar vein, EKT has no replay protection, so an attacker could
 implant improper keys in receivers by capturing EKTCiphertext values
 encrypted with a given EKTKey and replaying them in a different
 context, e.g., from a different sender. When the underlying SRTP
 transform provides integrity protection, this attack will just result
 in packet loss. If it does not, then it will result in random data
 being fed to RTP payload processing. An attacker that is in a
 position to mount these attacks, however, could achieve the same
 effects more easily without attacking EKT.

 The key encryption keys distributed with EKTKey messages are group
 shared symmetric keys, which means they do not provide protection
 within the group. Group members can impersonate each other; for
 example, any group member can generate an EKT tag for any SSRC. The
 entity that distributes EKTKeys can decrypt any keys distributed
 using EKT, and thus any media protected with those keys.

 Each EKT cipher specifies a value T that is the maximum number of
 times a given key can be used. An endpoint MUST NOT encrypt more
 than T different FullEKTField values using the same EKTKey. In
 addition, the EKTKey MUST NOT be used beyond the lifetime provided by
 the TTL described in Section 5.2.

 The confidentiality, integrity, and authentication of the EKT cipher
 MUST be at least as strong as the SRTP cipher and at least as strong
 as the DTLS-SRTP ciphers.

 Part of the EKTPlaintext is known, or easily guessable to an
 attacker. Thus, the EKT Cipher MUST resist known plaintext attacks.
 In practice, this requirement does not impose any restrictions on our
 choices, since the ciphers in use provide high security even when
 much plaintext is known.

 An EKT cipher MUST resist attacks in which both ciphertexts and
 plaintexts can be adaptively chosen and adversaries that can query
 both the encryption and decryption functions adaptively.

 In some systems, when a member of a conference leaves the
 conferences, the conferences is rekeyed so that member no longer has
 the key. When changing to a new EKTKey, it is possible that the
 attacker could block the EKTKey message getting to a particular

Jennings, et al. Expires December 25, 2020 [Page 20]

Internet-Draft EKT SRTP June 2020

 endpoint and that endpoint would keep sending media encrypted using
 the old key. To mitigate that risk, the lifetime of the EKTKey MUST
 be limited using the ekt_ttl.

7. IANA Considerations

7.1. EKT Message Types

 IANA is requested to create a new table for "EKT Messages Types" in
 the "Real-Time Transport Protocol (RTP) Parameters" registry. The
 initial values in this registry are:

 +--------------+-------+---------------+
 | Message Type | Value | Specification |
 +--------------+-------+---------------+
 | Short | 0 | RFCAAAA |
 | Full | 2 | RFCAAAA |
 | Unallocated | 3-254 | RFCAAAA |
 | Reserved | 255 | RFCAAAA |
 +--------------+-------+---------------+

 Table 2: EKT Messages Types

 Note to RFC Editor: Please replace RFCAAAA with the RFC number for
 this specification.

 New entries to this table can be added via "Specification Required"
 as defined in [RFC8126]. IANA SHOULD prefer allocation of even
 values over odd ones until the even code points are consumed to avoid
 conflicts with pre standard versions of EKT that have been deployed.
 Allocated values MUST be in the range of 0 to 254.

 All new EKT messages MUST be defined to have a length as second from
 the last element, as specified.

7.2. EKT Ciphers

 IANA is requested to create a new table for "EKT Ciphers" in the
 "Real-Time Transport Protocol (RTP) Parameters" registry. The
 initial values in this registry are:

Jennings, et al. Expires December 25, 2020 [Page 21]

Internet-Draft EKT SRTP June 2020

 +-------------+-------+---------------+
 | Name | Value | Specification |
 +-------------+-------+---------------+
 | AESKW128 | 0 | RFCAAAA |
 | AESKW256 | 1 | RFCAAAA |
 | Unallocated | 2-254 | |
 | Reserved | 255 | RFCAAAA |
 +-------------+-------+---------------+

 Table 3: EKT Cipher Types

 Note to RFC Editor: Please replace RFCAAAA with the RFC number for
 this specification.

 New entries to this table can be added via "Specification Required"
 as defined in [RFC8126]. The expert SHOULD ensure the specification
 defines the values for L and T as required in Section 4.4 of RFCAAAA.
 Allocated values MUST be in the range of 0 to 254.

7.3. TLS Extensions

 IANA is requested to add supported_ekt_ciphers as a new extension
 name to the "TLS ExtensionType Values" table of the "Transport Layer
 Security (TLS) Extensions" registry:

 Value: [TBD-at-Registration]
 Extension Name: supported_ekt_ciphers
 TLS 1.3: CH, SH
 Recommended: Y
 Reference: RFCAAAA

 [[Note to RFC Editor: TBD will be allocated by IANA.]]

7.4. TLS Handshake Type

 IANA is requested to add ekt_key as a new entry in the "TLS
 HandshakeType Registry" table of the "Transport Layer Security (TLS)
 Parameters" registry:

 Value: [TBD-at-Registration]
 Description: ekt_key
 DTLS-OK: Y
 Reference: RFCAAAA
 Comment:

 [[Note to RFC Editor: TBD will be allocated by IANA.]]

Jennings, et al. Expires December 25, 2020 [Page 22]

Internet-Draft EKT SRTP June 2020

8. Acknowledgements

 Thank you to Russ Housley provided detailed review and significant
 help with crafting text for this document. Thanks to David Benham,
 Yi Cheng, Lakshminath Dondeti, Kai Fischer, Nermeen Ismail, Paul
 Jones, Eddy Lem, Jonathan Lennox, Michael Peck, Rob Raymond, Sean
 Turner, Magnus Westerlund, and Felix Wyss for fruitful discussions,
 comments, and contributions to this document.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002,
 <https://www.rfc-editor.org/info/rfc3264>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 DOI 10.17487/RFC5649, September 2009,
 <https://www.rfc-editor.org/info/rfc5649>.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Jennings, et al. Expires December 25, 2020 [Page 23]

Internet-Draft EKT SRTP June 2020

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

9.2. Informative References

 [I-D.ietf-perc-double]
 Jennings, C., Jones, P., Barnes, R., and A. Roach, "SRTP
 Double Encryption Procedures", draft-ietf-perc-double-12
 (work in progress), August 2019.

 [I-D.ietf-perc-private-media-framework]
 Jones, P., Benham, D., and C. Groves, "A Solution
 Framework for Private Media in Privacy Enhanced RTP
 Conferencing (PERC)", draft-ietf-perc-private-media-
 framework-12 (work in progress), June 2019.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-38 (work in progress), May
 2020.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

Authors’ Addresses

 Cullen Jennings
 Cisco Systems

 Email: fluffy@iii.ca

Jennings, et al. Expires December 25, 2020 [Page 24]

Internet-Draft EKT SRTP June 2020

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 David A. McGrew
 Cisco Systems

 Email: mcgrew@cisco.com

 Dan Wing
 Citrix Systems, Inc.

 Email: dwing-ietf@fuggles.com

 Flemming Andreason
 Cisco Systems

 Email: fandreas@cisco.com

Jennings, et al. Expires December 25, 2020 [Page 25]

