
Network Working Group J. Arkko
Internet-Draft V. Lehtovirta
Obsoletes: 5448 (if approved) Ericsson
Intended status: Informational P. Eronen
Expires: May 3, 2018 Nokia
 October 30, 2017

 Improved Extensible Authentication Protocol Method for 3rd Generation
 Authentication and Key Agreement (EAP-AKA’)
 draft-arkko-eap-rfc5448bis-00

Abstract

 This specification defines a new EAP method, EAP-AKA’, a small
 revision of the EAP-AKA method. The change is a new key derivation
 function that binds the keys derived within the method to the name of
 the access network. The new key derivation mechanism has been
 defined in the 3rd Generation Partnership Project (3GPP). This
 specification allows its use in EAP in an interoperable manner. In
 addition, EAP-AKA’ employs SHA-256 instead of SHA-1.

 This specification also updates RFC 4187 EAP-AKA to prevent bidding
 down attacks from EAP-AKA’.

 This version of the EAP-AKA’ specification updates a reference to
 constructing one field in the protocol, so that EAP-AKA’ becomes
 compatible with 5G deployments as well.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

Arkko, et al. Expires May 3, 2018 [Page 1]

Internet-Draft EAP-AKA’ October 2017

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 4
 3. EAP-AKA’ . 4
 3.1. AT_KDF_INPUT . 6
 3.2. AT_KDF . 9
 3.3. Key Generation . 11
 3.4. Hash Functions . 13
 3.4.1. PRF’ . 13
 3.4.2. AT_MAC . 13
 3.4.3. AT_CHECKCODE . 13
 4. Bidding Down Prevention for EAP-AKA 14
 5. Security Considerations 15
 5.1. Security Properties of Binding Network Names 18
 6. IANA Considerations . 19
 6.1. Type Value . 19
 6.2. Attribute Type Values 19
 6.3. Key Derivation Function Namespace 20
 7. Contributors . 20
 8. Acknowledgments . 20
 9. References . 20
 9.1. Normative References 20
 9.2. Informative References 22
 Appendix A. Changes from RFC 5448 23
 Appendix B. Changes from RFC 4187 to RFC 5448 23
 Appendix C. Importance of Explicit Negotiation 23
 Appendix D. Test Vectors . 24
 Authors’ Addresses . 27

Arkko, et al. Expires May 3, 2018 [Page 2]

Internet-Draft EAP-AKA’ October 2017

1. Introduction

 This specification defines a new Extensible Authentication Protocol
 (EAP)[RFC3748] method, EAP-AKA’, a small revision of the EAP-AKA
 method originally defined in [RFC4187]. What is new in EAP-AKA’ is
 that it has a new key derivation function, specified in
 [TS-3GPP.33.402]. This function binds the keys derived within the
 method to the name of the access network. This limits the effects of
 compromised access network nodes and keys. This specification
 defines the EAP encapsulation for AKA when the new key derivation
 mechanism is in use.

 3GPP has defined a number of applications for the revised AKA
 mechanism, some based on native encapsulation of AKA over 3GPP radio
 access networks and others based on the use of EAP.

 For making the new key derivation mechanisms usable in EAP-AKA,
 additional protocol mechanisms are necessary. Given that RFC 4187
 calls for the use of CK (the encryption key) and IK (the integrity
 key) from AKA, existing implementations continue to use these. Any
 change of the key derivation must be unambiguous to both sides in the
 protocol. That is, it must not be possible to accidentally connect
 old equipment to new equipment and get the key derivation wrong or
 attempt to use wrong keys without getting a proper error message.
 The change must also be secure against bidding down attacks that
 attempt to force the participants to use the least secure mechanism.

 This specification therefore introduces a variant of the EAP-AKA
 method, called EAP-AKA’. This method can employ the derived keys CK’
 and IK’ from the 3GPP specification and updates the used hash
 function to SHA-256 [FIPS.180-2.2002]. But it is otherwise
 equivalent to RFC 4187. Given that a different EAP method type value
 is used for EAP-AKA and EAP-AKA’, a mutually supported method may be
 negotiated using the standard mechanisms in EAP [RFC3748].

 Note: Appendix C explains why it is important to be explicit about
 the change of semantics for the keys, and why other approaches
 would lead to severe interoperability problems.

 This version of the EAP-AKA’ specification is an update to RFC 5448.
 The update is to the reference on how the Network Name field is
 constructed in the protocol. The update helps ensure that EAP-AKA’
 becomes compatible with 5G deployments as well. RFC 5448 referred to
 the 2008 version of that reference ([TS-3GPP.24.302]) and this update
 points to the 5G version of that reference.

 Arguably, the update is small, as the 3GPP specification number for
 the updated calculation has not changed, only the version. But this

Arkko, et al. Expires May 3, 2018 [Page 3]

Internet-Draft EAP-AKA’ October 2017

 reference is crucial in correct calculation of the keys resulting
 from running the EAP-AKA’ method, so an update of the RFC with the
 newest version pointer may be warranted. As always, feedback is
 welcome on that point as well as on any other topic within this
 document.

 Note: It is an open issue whether this update should refer to only
 the 5G version of the definition, or be explicit that any further
 update of that specification is something that EAP-AKA’
 implementations should take into account. Note that one should
 keep in mind that specification being automatically updated is
 different from implementations taking notice of new things.

 It is an explicit non-goal of this draft to include any other
 technical modifications, addition of new features or other changes.
 The EAP-AKA’ base protocol is stable and needs to stay that way. If
 there are any extensions or variants, those need to be proposed as
 standalone extensions or even as different authentication methods.

 The rest of this specification is structured as follows. Section 3
 defines the EAP-AKA’ method. Section 4 adds support to EAP-AKA to
 prevent bidding down attacks from EAP-AKA’. Section 5 explains the
 security differences between EAP-AKA and EAP-AKA’. Section 6
 describes the IANA considerations and Appendix A and Appendix B
 explains what updates to RFC 5448 AKA’ and RFC 4187 EAP-AKA have been
 made in this specification. Appendix C explains some of the design
 rationale for creating EAP-AKA’ Finally, Appendix D provides test
 vectors.

 Editor’s Note: The publication of this RFC depends on its
 normative references [TS-3GPP.24.302] and [TS-3GPP.33.501] from
 3GPP reaching their final Release 15 status at 3GPP. This is
 expected to happen shortly. The RFC Editor should check with the
 3GPP liaisons that this has happened. RFC Editor: Please delete
 this note upon publication of this specification as an RFC.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. EAP-AKA’

 EAP-AKA’ is a new EAP method that follows the EAP-AKA specification
 [RFC4187] in all respects except the following:

 o It uses the Type code 50, not 23 (which is used by EAP-AKA).

Arkko, et al. Expires May 3, 2018 [Page 4]

Internet-Draft EAP-AKA’ October 2017

 o It carries the AT_KDF_INPUT attribute, as defined in Section 3.1,
 to ensure that both the peer and server know the name of the
 access network.

 o It supports key derivation function negotiation via the AT_KDF
 attribute (Section 3.2) to allow for future extensions.

 o It calculates keys as defined in Section 3.3, not as defined in
 EAP-AKA.

 o It employs SHA-256 [FIPS.180-2.2002], not SHA-1 [FIPS.180-1.1995]
 (Section 3.4).

 Figure 1 shows an example of the authentication process. Each
 message AKA’-Challenge and so on represents the corresponding message
 from EAP-AKA, but with EAP-AKA’ Type code. The definition of these
 messages, along with the definition of attributes AT_RAND, AT_AUTN,
 AT_MAC, and AT_RES can be found in [RFC4187].

 Peer Server
 | EAP-Request/Identity |
 |<---|
 | |
 | EAP-Response/Identity |
 | (Includes user’s Network Access Identifier, NAI) |
 |--->|
 | +--+
 | | Server determines the network name and ensures |
 | | that the given access network is authorized to |
 | | use the claimed name. The server then runs the |
 | | AKA’ algorithms generating RAND and AUTN, and |
 | | derives session keys from CK’ and IK’. RAND and |
 | | AUTN are sent as AT_RAND and AT_AUTN attributes, |
 | | whereas the network name is transported in the |
 | | AT_KDF_INPUT attribute. AT_KDF signals the used |
 | | key derivation function. The session keys are |
 | | used in creating the AT_MAC attribute. |
 | +--+
 | EAP-Request/AKA’-Challenge |
 | (AT_RAND, AT_AUTN, AT_KDF, AT_KDF_INPUT, AT_MAC)|
 |<---|
 +--+ |
The peer determines what the network name should be,	
based on, e.g., what access technology it is using.	
The peer also retrieves the network name sent by	
the network from the AT_KDF_INPUT attribute. The	
two names are compared for discrepancies, and if	
necessary, the authentication is aborted. Otherwise,	

Arkko, et al. Expires May 3, 2018 [Page 5]

Internet-Draft EAP-AKA’ October 2017

the network name from AT_KDF_INPUT attribute is	
used in running the AKA’ algorithms, verifying AUTN	
from AT_AUTN and MAC from AT_MAC attributes. The	
peer then generates RES. The peer also derives	
session keys from CK’/IK’. The AT_RES and AT_MAC	
attributes are constructed.	
 +--+ |
 | EAP-Response/AKA’-Challenge |
 | (AT_RES, AT_MAC) |
 |--->|
 | +---+
 | | Server checks the RES and MAC values received |
 | | in AT_RES and AT_MAC, respectively. Success |
 | | requires both to be found correct. |
 | +---+
 | EAP-Success |
 |<---|

 Figure 1: EAP-AKA’ Authentication Process

 EAP-AKA’ can operate on the same credentials as EAP-AKA and employ
 the same identities. However, EAP-AKA’ employs different leading
 characters than EAP-AKA for the conventions given in Section 4.1.1 of
 [RFC4187] for International Mobile Subscriber Identifier (IMSI) based
 usernames. EAP-AKA’ MUST use the leading character "6" (ASCII 36
 hexadecimal) instead of "0" for IMSI-based permanent usernames. All
 other usage and processing of the leading characters, usernames, and
 identities is as defined by EAP-AKA [RFC4187]. For instance, the
 pseudonym and fast re-authentication usernames need to be constructed
 so that the server can recognize them. As an example, a pseudonym
 could begin with a leading "7" character (ASCII 37 hexadecimal) and a
 fast re-authentication username could begin with "8" (ASCII 38
 hexadecimal). Note that a server that implements only EAP-AKA may
 not recognize these leading characters. According to Section 4.1.4
 of [RFC4187], such a server will re-request the identity via the EAP-
 Request/AKA-Identity message, making obvious to the peer that EAP-AKA
 and associated identity are expected.

3.1. AT_KDF_INPUT

 The format of the AT_KDF_INPUT attribute is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AT_KDF_INPUT | Length | Actual Network Name Length |
 +-+
 | |

Arkko, et al. Expires May 3, 2018 [Page 6]

Internet-Draft EAP-AKA’ October 2017

 . Network Name .
 . .
 | |
 +-+

 The fields are as follows:

 AT_KDF_INPUT

 This is set to 23.

 Length

 The length of the attribute, calculated as defined in [RFC4187],
 Section 8.1.

 Actual Network Name Length

 This is a 2 byte actual length field, needed due to the
 requirement that the previous field is expressed in multiples of 4
 bytes per the usual EAP-AKA rules. The Actual Network Name Length
 field provides the length of the network name in bytes.

 Network Name

 This field contains the network name of the access network for
 which the authentication is being performed. The name does not
 include any terminating null characters. Because the length of
 the entire attribute must be a multiple of 4 bytes, the sender
 pads the name with 1, 2, or 3 bytes of all zero bits when
 necessary.

 Only the server sends the AT_KDF_INPUT attribute. Per
 [TS-3GPP.33.402], the server always verifies the authorization of a
 given access network to use a particular name before sending it to
 the peer over EAP-AKA’. The value of the AT_KDF_INPUT attribute from
 the server MUST be non-empty. If it is empty, the peer behaves as if
 AUTN had been incorrect and authentication fails. See Section 3 and
 Figure 3 of [RFC4187] for an overview of how authentication failures
 are handled.

 In addition, the peer MAY check the received value against its own
 understanding of the network name. Upon detecting a discrepancy, the
 peer either warns the user and continues, or fails the authentication
 process. More specifically, the peer SHOULD have a configurable
 policy that it can follow under these circumstances. If the policy
 indicates that it can continue, the peer SHOULD log a warning message

Arkko, et al. Expires May 3, 2018 [Page 7]

Internet-Draft EAP-AKA’ October 2017

 or display it to the user. If the peer chooses to proceed, it MUST
 use the network name as received in the AT_KDF_INPUT attribute. If
 the policy indicates that the authentication should fail, the peer
 behaves as if AUTN had been incorrect and authentication fails.

 The Network Name field contains a UTF-8 string. This string MUST be
 constructed as specified in [TS-3GPP.24.302] for "Access Network
 Identity". The string is structured as fields separated by colons
 (:). The algorithms and mechanisms to construct the identity string
 depend on the used access technology.

 On the network side, the network name construction is a configuration
 issue in an access network and an authorization check in the
 authentication server. On the peer, the network name is constructed
 based on the local observations. For instance, the peer knows which
 access technology it is using on the link, it can see information in
 a link-layer beacon, and so on. The construction rules specify how
 this information maps to an access network name. Typically, the
 network name consists of the name of the access technology, or the
 name of the access technology followed by some operator identifier
 that was advertised in a link-layer beacon. In all cases,
 [TS-3GPP.24.302] is the normative specification for the construction
 in both the network and peer side. If the peer policy allows running
 EAP-AKA’ over an access technology for which that specification does
 not provide network name construction rules, the peer SHOULD rely
 only on the information from the AT_KDF_INPUT attribute and not
 perform a comparison.

 If a comparison of the locally determined network name and the one
 received over EAP-AKA’ is performed on the peer, it MUST be done as
 follows. First, each name is broken down to the fields separated by
 colons. If one of the names has more colons and fields than the
 other one, the additional fields are ignored. The remaining
 sequences of fields are compared, and they match only if they are
 equal character by character. This algorithm allows a prefix match
 where the peer would be able to match "", "FOO", and "FOO:BAR"
 against the value "FOO:BAR" received from the server. This
 capability is important in order to allow possible updates to the
 specifications that dictate how the network names are constructed.
 For instance, if a peer knows that it is running on access technology
 "FOO", it can use the string "FOO" even if the server uses an
 additional, more accurate description, e.g., "FOO:BAR", that contains
 more information.

 The allocation procedures in [TS-3GPP.24.302] ensure that conflicts
 potentially arising from using the same name in different types of
 networks are avoided. The specification also has detailed rules
 about how a client can determine these based on information available

Arkko, et al. Expires May 3, 2018 [Page 8]

Internet-Draft EAP-AKA’ October 2017

 to the client, such as the type of protocol used to attach to the
 network, beacons sent out by the network, and so on. Information
 that the client cannot directly observe (such as the type or version
 of the home network) is not used by this algorithm.

 The AT_KDF_INPUT attribute MUST be sent and processed as explained
 above when AT_KDF attribute has the value 1. Future definitions of
 new AT_KDF values MUST define how this attribute is sent and
 processed.

3.2. AT_KDF

 AT_KDF is an attribute that the server uses to reference a specific
 key derivation function. It offers a negotiation capability that can
 be useful for future evolution of the key derivation functions.

 The format of the AT_KDF attribute is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AT_KDF | Length | Key Derivation Function |
 +-+

 The fields are as follows:

 AT_KDF

 This is set to 24.

 Length

 The length of the attribute, MUST be set to 1.

 Key Derivation Function

 An enumerated value representing the key derivation function that
 the server (or peer) wishes to use. Value 1 represents the
 default key derivation function for EAP-AKA’, i.e., employing CK’
 and IK’ as defined in Section 3.3.

 Servers MUST send one or more AT_KDF attributes in the EAP-Request/
 AKA’-Challenge message. These attributes represent the desired
 functions ordered by preference, the most preferred function being
 the first attribute.

Arkko, et al. Expires May 3, 2018 [Page 9]

Internet-Draft EAP-AKA’ October 2017

 Upon receiving a set of these attributes, if the peer supports and is
 willing to use the key derivation function indicated by the first
 attribute, the function is taken into use without any further
 negotiation. However, if the peer does not support this function or
 is unwilling to use it, it does not process the received EAP-Request/
 AKA’-Challenge in any way except by responding with the EAP-Response/
 AKA’-Challenge message that contains only one attribute, AT_KDF with
 the value set to the selected alternative. If there is no suitable
 alternative, the peer behaves as if AUTN had been incorrect and
 authentication fails (see Figure 3 of [RFC4187]). The peer fails the
 authentication also if there are any duplicate values within the list
 of AT_KDF attributes (except where the duplication is due to a
 request to change the key derivation function; see below for further
 information).

 Upon receiving an EAP-Response/AKA’-Challenge with AT_KDF from the
 peer, the server checks that the suggested AT_KDF value was one of
 the alternatives in its offer. The first AT_KDF value in the message
 from the server is not a valid alternative. If the peer has replied
 with the first AT_KDF value, the server behaves as if AT_MAC of the
 response had been incorrect and fails the authentication. For an
 overview of the failed authentication process in the server side, see
 Section 3 and Figure 2 of [RFC4187]. Otherwise, the server re-sends
 the EAP-Response/AKA’-Challenge message, but adds the selected
 alternative to the beginning of the list of AT_KDF attributes and
 retains the entire list following it. Note that this means that the
 selected alternative appears twice in the set of AT_KDF values.
 Responding to the peer’s request to change the key derivation
 function is the only legal situation where such duplication may
 occur.

 When the peer receives the new EAP-Request/AKA’-Challenge message, it
 MUST check that the requested change, and only the requested change,
 occurred in the list of AT_KDF attributes. If so, it continues with
 processing the received EAP-Request/AKA’-Challenge as specified in
 [RFC4187] and Section 3.1 of this document. If not, it behaves as if
 AT_MAC had been incorrect and fails the authentication. If the peer
 receives multiple EAP-Request/AKA’-Challenge messages with differing
 AT_KDF attributes without having requested negotiation, the peer MUST
 behave as if AT_MAC had been incorrect and fail the authentication.

 Note that the peer may also request sequence number resynchronization
 [RFC4187]. This happens after AT_KDF negotiation has already
 completed. An AKA’-Synchronization-Failure message is sent as a
 response to the newly received EAP-Request/AKA’-Challenge (the last
 message of the AT_KDF negotiation). The AKA’-Synchronization-Failure
 message MUST contain the AUTS parameter as specified in [RFC4187] and
 a copy the AT_KDF attributes as they appeared in the last message of

Arkko, et al. Expires May 3, 2018 [Page 10]

Internet-Draft EAP-AKA’ October 2017

 the AT_KDF negotiation. If the AT_KDF attributes are found to differ
 from their earlier values, the peer and server MUST behave as if
 AT_MAC had been incorrect and fail the authentication.

3.3. Key Generation

 Both the peer and server MUST derive the keys as follows.

 AT_KDF set to 1

 In this case, MK is derived and used as follows:

 MK = PRF’(IK’|CK’,"EAP-AKA’"|Identity)
 K_encr = MK[0..127]
 K_aut = MK[128..383]
 K_re = MK[384..639]
 MSK = MK[640..1151]
 EMSK = MK[1152..1663]

 Here [n..m] denotes the substring from bit n to m. PRF’ is a new
 pseudo-random function specified in Section 3.4. The first 1664
 bits from its output are used for K_encr (encryption key, 128
 bits), K_aut (authentication key, 256 bits), K_re (re-
 authentication key, 256 bits), MSK (Master Session Key, 512 bits),
 and EMSK (Extended Master Session Key, 512 bits). These keys are
 used by the subsequent EAP-AKA’ process. K_encr is used by the
 AT_ENCR_DATA attribute, and K_aut by the AT_MAC attribute. K_re
 is used later in this section. MSK and EMSK are outputs from a
 successful EAP method run [RFC3748].

 IK’ and CK’ are derived as specified in [TS-3GPP.33.402]. The
 functions that derive IK’ and CK’ take the following parameters:
 CK and IK produced by the AKA algorithm, and value of the Network
 Name field comes from the AT_KDF_INPUT attribute (without length
 or padding) .

 The value "EAP-AKA’" is an eight-characters-long ASCII string. It
 is used as is, without any trailing NUL characters.

 Identity is the peer identity as specified in Section 7 of
 [RFC4187].

 When the server creates an AKA challenge and corresponding AUTN,
 CK, CK’, IK, and IK’ values, it MUST set the Authentication
 Management Field (AMF) separation bit to 1 in the AKA algorithm
 [TS-3GPP.33.102]. Similarly, the peer MUST check that the AMF
 separation bit is set to 1. If the bit is not set to 1, the peer

Arkko, et al. Expires May 3, 2018 [Page 11]

Internet-Draft EAP-AKA’ October 2017

 behaves as if the AUTN had been incorrect and fails the
 authentication.

 On fast re-authentication, the following keys are calculated:

 MK = PRF’(K_re,"EAP-AKA’ re-auth"|Identity|counter|NONCE_S)
 MSK = MK[0..511]
 EMSK = MK[512..1023]

 MSK and EMSK are the resulting 512-bit keys, taking the first 1024
 bits from the result of PRF’. Note that K_encr and K_aut are not
 re-derived on fast re-authentication. K_re is the re-
 authentication key from the preceding full authentication and
 stays unchanged over any fast re-authentication(s) that may happen
 based on it. The value "EAP-AKA’ re-auth" is a sixteen-
 characters-long ASCII string, again represented without any
 trailing NUL characters. Identity is the fast re-authentication
 identity, counter is the value from the AT_COUNTER attribute,
 NONCE_S is the nonce value from the AT_NONCE_S attribute, all as
 specified in Section 7 of [RFC4187]. To prevent the use of
 compromised keys in other places, it is forbidden to change the
 network name when going from the full to the fast re-
 authentication process. The peer SHOULD NOT attempt fast re-
 authentication when it knows that the network name in the current
 access network is different from the one in the initial, full
 authentication. Upon seeing a re-authentication request with a
 changed network name, the server SHOULD behave as if the re-
 authentication identifier had been unrecognized, and fall back to
 full authentication. The server observes the change in the name
 by comparing where the fast re-authentication and full
 authentication EAP transactions were received at the
 Authentication, Authorization, and Accounting (AAA) protocol
 level.

 AT_KDF has any other value

 Future variations of key derivation functions may be defined, and
 they will be represented by new values of AT_KDF. If the peer
 does not recognize the value, it cannot calculate the keys and
 behaves as explained in Section 3.2.

 AT_KDF is missing

 The peer behaves as if the AUTN had been incorrect and MUST fail
 the authentication.

Arkko, et al. Expires May 3, 2018 [Page 12]

Internet-Draft EAP-AKA’ October 2017

 If the peer supports a given key derivation function but is unwilling
 to perform it for policy reasons, it refuses to calculate the keys
 and behaves as explained in Section 3.2.

3.4. Hash Functions

 EAP-AKA’ uses SHA-256 [FIPS.180-2.2002], not SHA-1 [FIPS.180-1.1995]
 as in EAP-AKA. This requires a change to the pseudo-random function
 (PRF) as well as the AT_MAC and AT_CHECKCODE attributes.

3.4.1. PRF’

 The PRF’ construction is the same one IKEv2 uses (see Section 2.13 of
 [RFC4306]). The function takes two arguments. K is a 256-bit value
 and S is an octet string of arbitrary length. PRF’ is defined as
 follows:

 PRF’(K,S) = T1 | T2 | T3 | T4 | ...

 where:
 T1 = HMAC-SHA-256 (K, S | 0x01)
 T2 = HMAC-SHA-256 (K, T1 | S | 0x02)
 T3 = HMAC-SHA-256 (K, T2 | S | 0x03)
 T4 = HMAC-SHA-256 (K, T3 | S | 0x04)
 ...

 PRF’ produces as many bits of output as is needed. HMAC-SHA-256 is
 the application of HMAC [RFC2104] to SHA-256.

3.4.2. AT_MAC

 When used within EAP-AKA’, the AT_MAC attribute is changed as
 follows. The MAC algorithm is HMAC-SHA-256-128, a keyed hash value.
 The HMAC-SHA-256-128 value is obtained from the 32-byte HMAC-SHA-256
 value by truncating the output to the first 16 bytes. Hence, the
 length of the MAC is 16 bytes.

 Otherwise, the use of AT_MAC in EAP-AKA’ follows Section 10.15 of
 [RFC4187].

3.4.3. AT_CHECKCODE

 When used within EAP-AKA’, the AT_CHECKCODE attribute is changed as
 follows. First, a 32-byte value is needed to accommodate a 256-bit
 hash output:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Arkko, et al. Expires May 3, 2018 [Page 13]

Internet-Draft EAP-AKA’ October 2017

 +-+
 | AT_CHECKCODE | Length | Reserved |
 +-+
 | |
 | Checkcode (0 or 32 bytes) |
 | |
 | |
 | |
 +-+

 Second, the checkcode is a hash value, calculated with SHA-256
 [FIPS.180-2.2002], over the data specified in Section 10.13 of
 [RFC4187].

4. Bidding Down Prevention for EAP-AKA

 As discussed in [RFC3748], negotiation of methods within EAP is
 insecure. That is, a man-in-the-middle attacker may force the
 endpoints to use a method that is not the strongest that they both
 support. This is a problem, as we expect EAP-AKA and EAP-AKA’ to be
 negotiated via EAP.

 In order to prevent such attacks, this RFC specifies a new mechanism
 for EAP-AKA that allows the endpoints to securely discover the
 capabilities of each other. This mechanism comes in the form of the
 AT_BIDDING attribute. This allows both endpoints to communicate
 their desire and support for EAP-AKA’ when exchanging EAP-AKA
 messages. This attribute is not included in EAP-AKA’ messages as
 defined in this RFC. It is only included in EAP-AKA messages. This
 is based on the assumption that EAP-AKA’ is always preferable (see
 Section 5). If during the EAP-AKA authentication process it is
 discovered that both endpoints would have been able to use EAP-AKA’,
 the authentication process SHOULD be aborted, as a bidding down
 attack may have happened.

 The format of the AT_BIDDING attribute is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AT_BIDDING | Length |D| Reserved |
 +-+

 The fields are as follows:

 AT_BIDDING

Arkko, et al. Expires May 3, 2018 [Page 14]

Internet-Draft EAP-AKA’ October 2017

 This is set to 136.

 Length

 The length of the attribute, MUST be set to 1.

 D

 This bit is set to 1 if the sender supports EAP-AKA’, is willing
 to use it, and prefers it over EAP-AKA. Otherwise, it should be
 set to zero.

 Reserved

 This field MUST be set to zero when sent and ignored on receipt.

 The server sends this attribute in the EAP-Request/AKA-Challenge
 message. If the peer supports EAP-AKA’, it compares the received
 value to its own capabilities. If it turns out that both the server
 and peer would have been able to use EAP-AKA’ and preferred it over
 EAP-AKA, the peer behaves as if AUTN had been incorrect and fails the
 authentication (see Figure 3 of [RFC4187]). A peer not supporting
 EAP-AKA’ will simply ignore this attribute. In all cases, the
 attribute is protected by the integrity mechanisms of EAP-AKA, so it
 cannot be removed by a man-in-the-middle attacker.

 Note that we assume (Section 5) that EAP-AKA’ is always stronger than
 EAP-AKA. As a result, there is no need to prevent bidding "down"
 attacks in the other direction, i.e., attackers forcing the endpoints
 to use EAP-AKA’.

5. Security Considerations

 A summary of the security properties of EAP-AKA’ follows. These
 properties are very similar to those in EAP-AKA. We assume that
 SHA-256 is at least as secure as SHA-1. This is called the SHA-256
 assumption in the remainder of this section. Under this assumption,
 EAP-AKA’ is at least as secure as EAP-AKA.

 If the AT_KDF attribute has value 1, then the security properties of
 EAP-AKA’ are as follows:

 Protected ciphersuite negotiation

 EAP-AKA’ has no ciphersuite negotiation mechanisms. It does have
 a negotiation mechanism for selecting the key derivation
 functions. This mechanism is secure against bidding down attacks.
 The negotiation mechanism allows changing the offered key

Arkko, et al. Expires May 3, 2018 [Page 15]

Internet-Draft EAP-AKA’ October 2017

 derivation function, but the change is visible in the final EAP-
 Request/AKA’-Challenge message that the server sends to the peer.
 This message is authenticated via the AT_MAC attribute, and
 carries both the chosen alternative and the initially offered
 list. The peer refuses to accept a change it did not initiate.
 As a result, both parties are aware that a change is being made
 and what the original offer was.

 Mutual authentication

 Under the SHA-256 assumption, the properties of EAP-AKA’ are at
 least as good as those of EAP-AKA in this respect. Refer to
 [RFC4187], Section 12 for further details.

 Integrity protection

 Under the SHA-256 assumption, the properties of EAP-AKA’ are at
 least as good (most likely better) as those of EAP-AKA in this
 respect. Refer to [RFC4187], Section 12 for further details. The
 only difference is that a stronger hash algorithm, SHA-256, is
 used instead of SHA-1.

 Replay protection

 Under the SHA-256 assumption, the properties of EAP-AKA’ are at
 least as good as those of EAP-AKA in this respect. Refer to
 [RFC4187], Section 12 for further details.

 Confidentiality

 The properties of EAP-AKA’ are exactly the same as those of EAP-
 AKA in this respect. Refer to [RFC4187], Section 12 for further
 details.

 Key derivation

 EAP-AKA’ supports key derivation with an effective key strength
 against brute force attacks equal to the minimum of the length of
 the derived keys and the length of the AKA base key, i.e., 128
 bits or more. The key hierarchy is specified in Section 3.3.

Arkko, et al. Expires May 3, 2018 [Page 16]

Internet-Draft EAP-AKA’ October 2017

 The Transient EAP Keys used to protect EAP-AKA packets (K_encr,
 K_aut, K_re), the MSK, and the EMSK are cryptographically
 separate. If we make the assumption that SHA-256 behaves as a
 pseudo-random function, an attacker is incapable of deriving any
 non-trivial information about any of these keys based on the other
 keys. An attacker also cannot calculate the pre-shared secret
 from IK, CK, IK’, CK’, K_encr, K_aut, K_re, MSK, or EMSK by any
 practically feasible means.

 EAP-AKA’ adds an additional layer of key derivation functions
 within itself to protect against the use of compromised keys.
 This is discussed further in Section 5.1.

 EAP-AKA’ uses a pseudo-random function modeled after the one used
 in IKEv2 [RFC4306] together with SHA-256.

 Key strength

 See above.

 Dictionary attack resistance

 Under the SHA-256 assumption, the properties of EAP-AKA’ are at
 least as good as those of EAP-AKA in this respect. Refer to
 [RFC4187], Section 12 for further details.

 Fast reconnect

 Under the SHA-256 assumption, the properties of EAP-AKA’ are at
 least as good as those of EAP-AKA in this respect. Refer to
 [RFC4187], Section 12 for further details. Note that
 implementations MUST prevent performing a fast reconnect across
 method types.

 Cryptographic binding

 Note that this term refers to a very specific form of binding,
 something that is performed between two layers of authentication.
 It is not the same as the binding to a particular network name.
 The properties of EAP-AKA’ are exactly the same as those of EAP-
 AKA in this respect, i.e., as it is not a tunnel method, this
 property is not applicable to it. Refer to [RFC4187], Section 12
 for further details.

 Session independence

Arkko, et al. Expires May 3, 2018 [Page 17]

Internet-Draft EAP-AKA’ October 2017

 The properties of EAP-AKA’ are exactly the same as those of EAP-
 AKA in this respect. Refer to [RFC4187], Section 12 for further
 details.

 Fragmentation

 The properties of EAP-AKA’ are exactly the same as those of EAP-
 AKA in this respect. Refer to [RFC4187], Section 12 for further
 details.

 Channel binding

 EAP-AKA’, like EAP-AKA, does not provide channel bindings as
 they’re defined in [RFC3748] and [RFC5247]. New skippable
 attributes can be used to add channel binding support in the
 future, if required.

 However, including the Network Name field in the AKA’ algorithms
 (which are also used for other purposes than EAP-AKA’) provides a
 form of cryptographic separation between different network names,
 which resembles channel bindings. However, the network name does
 not typically identify the EAP (pass-through) authenticator. See
 the following section for more discussion.

5.1. Security Properties of Binding Network Names

 The ability of EAP-AKA’ to bind the network name into the used keys
 provides some additional protection against key leakage to
 inappropriate parties. The keys used in the protocol are specific to
 a particular network name. If key leakage occurs due to an accident,
 access node compromise, or another attack, the leaked keys are only
 useful when providing access with that name. For instance, a
 malicious access point cannot claim to be network Y if it has stolen
 keys from network X. Obviously, if an access point is compromised,
 the malicious node can still represent the compromised node. As a
 result, neither EAP-AKA’ nor any other extension can prevent such
 attacks; however, the binding to a particular name limits the
 attacker’s choices, allows better tracking of attacks, makes it
 possible to identify compromised networks, and applies good
 cryptographic hygiene.

 The server receives the EAP transaction from a given access network,
 and verifies that the claim from the access network corresponds to
 the name that this access network should be using. It becomes
 impossible for an access network to claim over AAA that it is another
 access network. In addition, if the peer checks that the information
 it has received locally over the network-access link layer matches
 with the information the server has given it via EAP-AKA’, it becomes

Arkko, et al. Expires May 3, 2018 [Page 18]

Internet-Draft EAP-AKA’ October 2017

 impossible for the access network to tell one story to the AAA
 network and another one to the peer. These checks prevent some
 "lying NAS" (Network Access Server) attacks. For instance, a roaming
 partner, R, might claim that it is the home network H in an effort to
 lure peers to connect to itself. Such an attack would be beneficial
 for the roaming partner if it can attract more users, and damaging
 for the users if their access costs in R are higher than those in
 other alternative networks, such as H.

 Any attacker who gets hold of the keys CK and IK, produced by the AKA
 algorithm, can compute the keys CK’ and IK’ and, hence, the Master
 Key (MK) according to the rules in Section 3.3. The attacker could
 then act as a lying NAS. In 3GPP systems in general, the keys CK and
 IK have been distributed to, for instance, nodes in a visited access
 network where they may be vulnerable. In order to reduce this risk,
 the AKA algorithm MUST be computed with the AMF separation bit set to
 1, and the peer MUST check that this is indeed the case whenever it
 runs EAP-AKA’. Furthermore, [TS-3GPP.33.402] requires that no CK or
 IK keys computed in this way ever leave the home subscriber system.

 The additional security benefits obtained from the binding depend
 obviously on the way names are assigned to different access networks.
 This is specified in [TS-3GPP.24.302]. See also [TS-3GPP.23.003].
 Ideally, the names allow separating each different access technology,
 each different access network, and each different NAS within a
 domain. If this is not possible, the full benefits may not be
 achieved. For instance, if the names identify just an access
 technology, use of compromised keys in a different technology can be
 prevented, but it is not possible to prevent their use by other
 domains or devices using the same technology.

6. IANA Considerations

6.1. Type Value

 EAP-AKA’ has the EAP Type value 50 in the Extensible Authentication
 Protocol (EAP) Registry under Method Types. Per Section 6.2 of
 [RFC3748], this allocation can be made with Designated Expert and
 Specification Required.

6.2. Attribute Type Values

 EAP-AKA’ shares its attribute space and subtypes with EAP-SIM
 [RFC4186] and EAP-AKA [RFC4187]. No new registries are needed.

 However, a new Attribute Type value (23) in the non-skippable range
 has been assigned for AT_KDF_INPUT (Section 3.1) in the EAP-AKA and
 EAP-SIM Parameters registry under Attribute Types.

Arkko, et al. Expires May 3, 2018 [Page 19]

Internet-Draft EAP-AKA’ October 2017

 Also, a new Attribute Type value (24) in the non-skippable range has
 been assigned for AT_KDF (Section 3.2).

 Finally, a new Attribute Type value (136) in the skippable range has
 been assigned for AT_BIDDING (Section 4).

6.3. Key Derivation Function Namespace

 IANA has also created a new namespace for EAP-AKA’ AT_KDF Key
 Derivation Function Values. This namespace exists under the EAP-AKA
 and EAP-SIM Parameters registry. The initial contents of this
 namespace are given below; new values can be created through the
 Specification Required policy [RFC5226].

 Value Description Reference
 --------- ---------------------- ---------------
 0 Reserved [RFC 5448]
 1 EAP-AKA’ with CK’/IK’ [RFC 5448]
 2-65535 Unassigned

7. Contributors

 The test vectors in Appendix C were provided by Yogendra Pal and
 Jouni Malinen, based on two independent implementations of this
 specification.

8. Acknowledgments

 The authors would like to thank Guenther Horn, Joe Salowey, Mats
 Naslund, Adrian Escott, Brian Rosenberg, Laksminath Dondeti, Ahmad
 Muhanna, Stefan Rommer, Miguel Garcia, Jan Kall, Ankur Agarwal, Jouni
 Malinen, Brian Weis, Russ Housley, Alfred Hoenes, Vesa Torvinen, and
 Mohit Sethi for their in-depth reviews and interesting discussions in
 this problem space.

9. References

9.1. Normative References

 [TS-3GPP.24.302]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Core Network and Terminals; Access to
 the 3GPP Evolved Packet Core (EPC) via non-3GPP access
 networks; Stage 3; (Release 15)", 3GPP Draft Technical
 Specification 24.302, September 2017.

 [TS-3GPP.33.102]

Arkko, et al. Expires May 3, 2018 [Page 20]

Internet-Draft EAP-AKA’ October 2017

 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Services and System Aspects; 3G
 Security; Security architecture (Release 8)", 3GPP
 Technical Specification 33.102, December 2008.

 [TS-3GPP.33.402]
 3GPP, "3GPP System Architecture Evolution (SAE); Security
 aspects of non-3GPP accesses; Release 8", 3GPP Technical
 Specification 33.402, December 2008.

 [TS-3GPP.33.501]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Services and System Aspects; 3G
 Security; Security architecture and procedures for 5G
 System; Release 15", 3GPP Technical Specification 33.501,
 August 2017.

 [FIPS.180-2.2002]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-2, August 2002, <http://
 csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, DOI
 10.17487/RFC2104, February 1997, <https://www.rfc-
 editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997, <https://www.rfc-editor.org/info/
 rfc2119>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004, <https:
 //www.rfc-editor.org/info/rfc3748>.

 [RFC4187] Arkko, J. and H. Haverinen, "Extensible Authentication
 Protocol Method for 3rd Generation Authentication and Key
 Agreement (EAP-AKA)", RFC 4187, DOI 10.17487/RFC4187,
 January 2006, <https://www.rfc-editor.org/info/rfc4187>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226, DOI
 10.17487/RFC5226, May 2008, <https://www.rfc-editor.org/
 info/rfc5226>.

Arkko, et al. Expires May 3, 2018 [Page 21]

Internet-Draft EAP-AKA’ October 2017

9.2. Informative References

 [TS-3GPP.23.003]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Core Network and Terminals; Numbering,
 addressing and identification (Release 8)", 3GPP Technical
 Specification 23.003, December 2008.

 [TS-3GPP.35.208]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Services and System Aspects; 3G
 Security; Specification of the MILENAGE Algorithm Set: An
 example algorithm set for the 3GPP authentication and key
 generation functions f1, f1*, f2, f3, f4, f5 and f5*;
 Document 4: Design Conformance Test Data (Release 8)",
 3GPP Technical Specification 35.208, December 2008.

 [FIPS.180-1.1995]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-1, April 1995,
 <http://www.itl.nist.gov/fipspubs/fip180-1.htm>.

 [RFC4186] Haverinen, H., Ed. and J. Salowey, Ed., "Extensible
 Authentication Protocol Method for Global System for
 Mobile Communications (GSM) Subscriber Identity Modules
 (EAP-SIM)", RFC 4186, DOI 10.17487/RFC4186, January 2006,
 <https://www.rfc-editor.org/info/rfc4186>.

 [RFC4284] Adrangi, F., Lortz, V., Bari, F., and P. Eronen, "Identity
 Selection Hints for the Extensible Authentication Protocol
 (EAP)", RFC 4284, DOI 10.17487/RFC4284, January 2006,
 <https://www.rfc-editor.org/info/rfc4284>.

 [RFC4306] Kaufman, C., Ed., "Internet Key Exchange (IKEv2)
 Protocol", RFC 4306, DOI 10.17487/RFC4306, December 2005,
 <https://www.rfc-editor.org/info/rfc4306>.

 [RFC5113] Arkko, J., Aboba, B., Korhonen, J., Ed., and F. Bari,
 "Network Discovery and Selection Problem", RFC 5113, DOI
 10.17487/RFC5113, January 2008, <https://www.rfc-
 editor.org/info/rfc5113>.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, DOI 10.17487/RFC5247, August 2008, <https://www
 .rfc-editor.org/info/rfc5247>.

Arkko, et al. Expires May 3, 2018 [Page 22]

Internet-Draft EAP-AKA’ October 2017

Appendix A. Changes from RFC 5448

 The changes consist solely of referring to a newer version of
 [TS-3GPP.24.302]. The new version includes an updated definition of
 the Network Name field, to include 5G.

Appendix B. Changes from RFC 4187 to RFC 5448

 The changes to RFC 4187 relate only to the bidding down prevention
 support defined in Section 4. In particular, this document does not
 change how the Master Key (MK) is calculated in RFC 4187 (it uses CK
 and IK, not CK’ and IK’); neither is any processing of the AMF bit
 added to RFC 4187.

Appendix C. Importance of Explicit Negotiation

 Choosing between the traditional and revised AKA key derivation
 functions is easy when their use is unambiguously tied to a
 particular radio access network, e.g., Long Term Evolution (LTE) as
 defined by 3GPP or evolved High Rate Packet Data (eHRPD) as defined
 by 3GPP2. There is no possibility for interoperability problems if
 this radio access network is always used in conjunction with new
 protocols that cannot be mixed with the old ones; clients will always
 know whether they are connecting to the old or new system.

 However, using the new key derivation functions over EAP introduces
 several degrees of separation, making the choice of the correct key
 derivation functions much harder. Many different types of networks
 employ EAP. Most of these networks have no means to carry any
 information about what is expected from the authentication process.
 EAP itself is severely limited in carrying any additional
 information, as noted in [RFC4284] and [RFC5113]. Even if these
 networks or EAP were extended to carry additional information, it
 would not affect millions of deployed access networks and clients
 attaching to them.

 Simply changing the key derivation functions that EAP-AKA [RFC4187]
 uses would cause interoperability problems with all of the existing
 implementations. Perhaps it would be possible to employ strict
 separation into domain names that should be used by the new clients
 and networks. Only these new devices would then employ the new key
 derivation mechanism. While this can be made to work for specific
 cases, it would be an extremely brittle mechanism, ripe to result in
 problems whenever client configuration, routing of authentication
 requests, or server configuration does not match expectations. It
 also does not help to assume that the EAP client and server are
 running a particular release of 3GPP network specifications. Network
 vendors often provide features from future releases early or do not

Arkko, et al. Expires May 3, 2018 [Page 23]

Internet-Draft EAP-AKA’ October 2017

 provide all features of the current release. And obviously, there
 are many EAP and even some EAP-AKA implementations that are not
 bundled with the 3GPP network offerings. In general, these
 approaches are expected to lead to hard-to-diagnose problems and
 increased support calls.

Appendix D. Test Vectors

 Test vectors are provided below for four different cases. The test
 vectors may be useful for testing implementations. In the first two
 cases, we employ the Milenage algorithm and the algorithm
 configuration parameters (the subscriber key K and operator algorithm
 variant configuration value OP) from test set 19 in [TS-3GPP.35.208].

 The last two cases use artificial values as the output of AKA, and is
 useful only for testing the computation of values within EAP-AKA’,
 not AKA itself.

 Case 1

 The parameters for the AKA run are as follows:

 Identity: "0555444333222111"

 Network name: "WLAN"

 RAND: 81e9 2b6c 0ee0 e12e bceb a8d9 2a99 dfa5

 AUTN: bb52 e91c 747a c3ab 2a5c 23d1 5ee3 51d5

 IK: 9744 871a d32b f9bb d1dd 5ce5 4e3e 2e5a

 CK: 5349 fbe0 9864 9f94 8f5d 2e97 3a81 c00f

 RES: 28d7 b0f2 a2ec 3de5

 Then the derived keys are generated as follows:

 CK’: 0093 962d 0dd8 4aa5 684b 045c 9edf fa04

 IK’: ccfc 230c a74f cc96 c0a5 d611 64f5 a76c

 K_encr: 766f a0a6 c317 174b 812d 52fb cd11 a179

 K_aut: 0842 ea72 2ff6 835b fa20 3249 9fc3 ec23
 c2f0 e388 b4f0 7543 ffc6 77f1 696d 71ea

 K_re: cf83 aa8b c7e0 aced 892a cc98 e76a 9b20

Arkko, et al. Expires May 3, 2018 [Page 24]

Internet-Draft EAP-AKA’ October 2017

 95b5 58c7 795c 7094 715c b339 3aa7 d17a

 MSK: 67c4 2d9a a56c 1b79 e295 e345 9fc3 d187
 d42b e0bf 818d 3070 e362 c5e9 67a4 d544
 e8ec fe19 358a b303 9aff 03b7 c930 588c
 055b abee 58a0 2650 b067 ec4e 9347 c75a

 EMSK: f861 703c d775 590e 16c7 679e a387 4ada
 8663 11de 2907 64d7 60cf 76df 647e a01c
 313f 6992 4bdd 7650 ca9b ac14 1ea0 75c4
 ef9e 8029 c0e2 90cd bad5 638b 63bc 23fb

 Case 2

 The parameters for the AKA run are as follows:

 Identity: "0555444333222111"

 Network name: "HRPD"

 RAND: 81e9 2b6c 0ee0 e12e bceb a8d9 2a99 dfa5

 AUTN: bb52 e91c 747a c3ab 2a5c 23d1 5ee3 51d5

 IK: 9744 871a d32b f9bb d1dd 5ce5 4e3e 2e5a

 CK: 5349 fbe0 9864 9f94 8f5d 2e97 3a81 c00f

 RES: 28d7 b0f2 a2ec 3de5

 Then the derived keys are generated as follows:

 CK’: 3820 f027 7fa5 f777 32b1 fb1d 90c1 a0da

 IK’: db94 a0ab 557e f6c9 ab48 619c a05b 9a9f

 K_encr: 05ad 73ac 915f ce89 ac77 e152 0d82 187b

 K_aut: 5b4a caef 62c6 ebb8 882b 2f3d 534c 4b35
 2773 37a0 0184 f20f f25d 224c 04be 2afd

 K_re: 3f90 bf5c 6e5e f325 ff04 eb5e f653 9fa8
 cca8 3981 94fb d00b e425 b3f4 0dba 10ac

 MSK: 87b3 2157 0117 cd6c 95ab 6c43 6fb5 073f
 f15c f855 05d2 bc5b b735 5fc2 1ea8 a757
 57e8 f86a 2b13 8002 e057 5291 3bb4 3b82
 f868 a961 17e9 1a2d 95f5 2667 7d57 2900

Arkko, et al. Expires May 3, 2018 [Page 25]

Internet-Draft EAP-AKA’ October 2017

 EMSK: c891 d5f2 0f14 8a10 0755 3e2d ea55 5c9c
 b672 e967 5f4a 66b4 bafa 0273 79f9 3aee
 539a 5979 d0a0 042b 9d2a e28b ed3b 17a3
 1dc8 ab75 072b 80bd 0c1d a612 466e 402c

 Case 3

 The parameters for the AKA run are as follows:

 Identity: "0555444333222111"

 Network name: "WLAN"

 RAND: e0e0 e0e0 e0e0 e0e0 e0e0 e0e0 e0e0 e0e0

 AUTN: a0a0 a0a0 a0a0 a0a0 a0a0 a0a0 a0a0 a0a0

 IK: b0b0 b0b0 b0b0 b0b0 b0b0 b0b0 b0b0 b0b0

 CK: c0c0 c0c0 c0c0 c0c0 c0c0 c0c0 c0c0 c0c0

 RES: d0d0 d0d0 d0d0 d0d0 d0d0 d0d0 d0d0 d0d0

 Then the derived keys are generated as follows:

 CK’: cd4c 8e5c 68f5 7dd1 d7d7 dfd0 c538 e577

 IK’: 3ece 6b70 5dbb f7df c459 a112 80c6 5524

 K_encr: 897d 302f a284 7416 488c 28e2 0dcb 7be4

 K_aut: c407 00e7 7224 83ae 3dc7 139e b0b8 8bb5
 58cb 3081 eccd 057f 9207 d128 6ee7 dd53

 K_re: 0a59 1a22 dd8b 5b1c f29e 3d50 8c91 dbbd
 b4ae e230 5189 2c42 b6a2 de66 ea50 4473

 MSK: 9f7d ca9e 37bb 2202 9ed9 86e7 cd09 d4a7
 0d1a c76d 9553 5c5c ac40 a750 4699 bb89
 61a2 9ef6 f3e9 0f18 3de5 861a d1be dc81
 ce99 1639 1b40 1aa0 06c9 8785 a575 6df7

 EMSK: 724d e00b db9e 5681 87be 3fe7 4611 4557
 d501 8779 537e e37f 4d3c 6c73 8cb9 7b9d
 c651 bc19 bfad c344 ffe2 b52c a78b d831
 6b51 dacc 5f2b 1440 cb95 1552 1cc7 ba23

Arkko, et al. Expires May 3, 2018 [Page 26]

Internet-Draft EAP-AKA’ October 2017

 Case 4

 The parameters for the AKA run are as follows:

 Identity: "0555444333222111"

 Network name: "HRPD"

 RAND: e0e0 e0e0 e0e0 e0e0 e0e0 e0e0 e0e0 e0e0

 AUTN: a0a0 a0a0 a0a0 a0a0 a0a0 a0a0 a0a0 a0a0

 IK: b0b0 b0b0 b0b0 b0b0 b0b0 b0b0 b0b0 b0b0

 CK: c0c0 c0c0 c0c0 c0c0 c0c0 c0c0 c0c0 c0c0

 RES: d0d0 d0d0 d0d0 d0d0 d0d0 d0d0 d0d0 d0d0

 Then the derived keys are generated as follows:

 CK’: 8310 a71c e6f7 5488 9613 da8f 64d5 fb46

 IK’: 5adf 1436 0ae8 3819 2db2 3f6f cb7f 8c76

 K_encr: 745e 7439 ba23 8f50 fcac 4d15 d47c d1d9

 K_aut: 3e1d 2aa4 e677 025c fd86 2a4b e183 61a1
 3a64 5765 5714 63df 833a 9759 e809 9879

 K_re: 99da 835e 2ae8 2462 576f e651 6fad 1f80
 2f0f a119 1655 dd0a 273d a96d 04e0 fcd3

 MSK: c6d3 a6e0 ceea 951e b20d 74f3 2c30 61d0
 680a 04b0 b086 ee87 00ac e3e0 b95f a026
 83c2 87be ee44 4322 94ff 98af 26d2 cc78
 3bac e75c 4b0a f7fd feb5 511b a8e4 cbd0

 EMSK: 7fb5 6813 838a dafa 99d1 40c2 f198 f6da
 cebf b6af ee44 4961 1054 02b5 08c7 f363
 352c b291 9644 b504 63e6 a693 5415 0147
 ae09 cbc5 4b8a 651d 8787 a689 3ed8 536d

Authors’ Addresses

Arkko, et al. Expires May 3, 2018 [Page 27]

Internet-Draft EAP-AKA’ October 2017

 Jari Arkko
 Ericsson
 Jorvas 02420
 Finland

 Email: jari.arkko@piuha.net

 Vesa Lehtovirta
 Ericsson
 Jorvas 02420
 Finland

 Email: vesa.lehtovirta@ericsson.com

 Pasi Eronen
 Nokia Research Center
 P.O. Box 407
 FIN-00045 Nokia Group
 Finland

 Email: pasi.eronen@nokia.com

Arkko, et al. Expires May 3, 2018 [Page 28]

