
Internet Engineering Task Force A. Malhotra
Internet-Draft Boston University
Intended status: Standards Track M. Hoffmann
Expires: May 3, 2018 Open Netlabs
 W. Toorop
 NLnet Labs
 October 30, 2017

 On Implementing Time
 draft-aanchal-time-implementation-guidance-00

Abstract

 This document describes the properties of different types of time
 values available on digital systems and provides guidance on choices
 of these time values to the implementors of applications that use
 time in some form to provide the basic functionality and security
 guarantees.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Malhotra, et al. Expires May 3, 2018 [Page 1]

Internet-Draft On Implementing Time October 2017

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 The basic functionality and security guarantees claimed by many
 applications running on digital systems locally or in the Internet
 hinge on some notion of time. These applications have to choose one
 of the many types of time values available on the system, each of
 which has its own specific properties. However, currently these
 applications seem to be oblivious to the implications of choosing one
 or the other time value for implementation. This behaviour can be
 attributed to: a) the lack of clear understanding of the distinct
 properties of these time values, b) trade-offs of using one or the
 other for an application, and c) availability and compatibilty of
 these time values on different operating systems.

 In this document we describe the properties of various available time
 values on modern operating systems, discuss the trade-offs of using
 one over the other, and provide guidance to help implementors make an
 informed choice with some real-life examples.

2. Keeping Time: Different Clocks

 Because time is relative to an observer, there cannot be a
 universally agreed upon time. At best we can achieve an
 approximation by updating our own observed time with a common
 reference time shared with other observers.

 As this reference time is what we naively assume clocks on a wall are
 showing, we shall call it the "wall time." For most applications, it
 is based on the Universal Coordinated Time (UTC), an international
 standard time determined by averaging the output of several high-
 precision time-keeping devices. However, as UTC is following Earth’s
 solar time, it occasionally needs to be adjusted through leap
 seconds.

 An individual computer system’s preception of time differs from this
 idealized wall time. Staying close to it requires some effort that
 comes with its own set of drawbacks. Systems therefore provide
 access to different types of clocks with different properties.
 Unfortunately, there is no standard terminology and definitions for
 these types. For the purpose of this document, we therefore define
 three different kinds of clocks that a system may or may not provide.

Malhotra, et al. Expires May 3, 2018 [Page 2]

Internet-Draft On Implementing Time October 2017

2.1. Raw Time

 At its most fundamental, a system has its own perception of time; its
 unmodified, "raw time." This time is typically measured by counting
 cycles of an oscillator. Its quality therefore relies on the
 stability of this oscillator.

 As it is a purely subjective time, no general meaning can be attached
 to any specific value. Only the amount of time passed can be
 determined by comparing two values.

 Because raw time is unaltered, it is continuous and strictly
 monotonically increasing. Its value will always grow at a steady
 pace, never decrease, never make unexpected jumps, or stip. Such a
 time is sometimes called a "monotonic time."

2.2. Adjusted Raw Time

 Even if highly accurate oscillators are used, raw time passes at a
 slightly different rate than wall time. This difference is called
 clock drift. It depends not only on the quality of the time source
 but also on environmental factors such as temperature.

 When this drift is componsated by comparing the passage of raw time
 to some external time source that is considered to be closer to wall
 time, the result is "adjusted raw time." This adjustment doesn’t
 happen sporadically but rather, the rate of advance of time is slowed
 down or sped up slightly until it approaches the reference time
 again. As a result, adjusted raw time is still monotonic. Like raw
 time, adjusted raw time is subjective with no specific meaning
 attached to its values.

 The most frequently used method of acquiring an external time source
 is through network timing protocols such as NTP [RFC5905]. As a
 result, adjusted raw time is susceptible to vulnerabilites of these
 protocols which may be exploited to maliciously manipulate this time.

2.3. Real Time

 With adjusted raw time, a system already has access to a time that
 passes at a rate very similar to wall time. By adjusting the time
 value so that it represents the time passed since an epoch, a well-
 defined point of wall time such as seconds since midnight January
 1st, 1970 on Unix systems, time values themselves gather meaning.
 The result is "real time."

 While it is often assumed that real time is set to match wall time,
 this doesn’t need to be the case. A system’s operator is free to

Malhotra, et al. Expires May 3, 2018 [Page 3]

Internet-Draft On Implementing Time October 2017

 change the value of real time at any time, likewise, system services
 such as a local NTP client may decide to do so.

 As a consequence, real time is not monotonic. Not only may it jump
 forward, its value may even decrease.

2.4. Differences from Wall Time

 These three clock types differ from wall time in three aspects:

 o Both raw time and adjusted raw time can only represent differences
 in time by comparing two clock values. Only real time provides
 absolute time values that can be compared to wall time values.

 o On the other hand, raw time and adjusted raw time are always
 monotonic whereas real time may experience sudden changes in value
 in either direction.

 o Only adjusted raw time and real time are subject to external
 adjustments so that time passes at approximately the same rate as
 wall time. Raw time will over time drift away due to inevitable
 imperfections of the clock.

3. Expressing Time

 Protocols or applications can express time in one of the two forms,
 depending on whether global agreement over the point in time is
 necessary.

3.1. Time Stamps

 A "time stamp" expresses an absolute point in time. In order to
 reference the same point across multiple systems, it needs to be
 stated in wall time.

 Time stamps are often used to express the validity of objects with a
 limited lifetime that are shared over the network. For instance,
 PKIX certificates [RFC5280] carry two time stamps expressing their
 earliest and latest validity.

 In order to validate a time stamp, a system needs access to a clock
 that is reasonably close to wall time.

3.2. Time Spans

 In contrast, a "time span" expresses a desired length of time.
 Examples of time spans are timeout values used in protocols to

Malhotra, et al. Expires May 3, 2018 [Page 4]

Internet-Draft On Implementing Time October 2017

 determine packet loss or Time to Live (TTL) values that govern the
 lifetime of a local copy of an object.

 While no access to wall time is necessary for correctly dealing with
 time spans, using a clock whose time passes at a different rate than
 wall time will result in different interpretations of time spans by
 different systems. However, in a network environment, the
 uncertainty introduced by differing transmission times is likely
 larger than that introduced by clock drift.

4. Current Implementations and Their Flaws

 Currently, some software takes a common approach towards time stamps
 and time spans. Time stamps are registered with their wall time
 value, and time spans are registered with two time stamp values
 marking the start and the end of the span. Conversion of a time span
 into those time stamp markers is regularly based on real time.

 Note that the start of a time span will be the current (real) time in
 case of a TTL. So, in case something needs to be cached for a
 certain time, the start time stamp is irrelevant and it is registered
 together with only the (real) expiration time.

 Programmers might have had different reasons to base those markings
 on real time, for example:

 1. A point in time is intuitively thought of as a wall clock time
 stamp. Time stamps from outside the software, which the software
 has to manage are already in wall clock time. The POSIX function
 to get the current (real) time which is regularly used for this,
 is gettimeofday(), which comes accross as something providing
 near wall clock time and which can be used for this purpose.

 2. Managing time stamps and time span similarly, prevents code
 complexity.

 For example, many software is organized around I/O event
 notification mechanisms like the POSIX select() and poll() system
 C API functions. These functions wait for a given time span for
 file descriptors to become ready to perform I/O. The given time
 span is determined by substracting the current real time value
 from smallest registered time stamp. When file descriptors are
 ready, the non-blocking I/O is performed, otherwise the given
 time span has passed and the action associated with the smallest
 registered time stamp needs to be performed.

 For this programming pattern, a sorted list of time stamps has to
 be maintained by the software. To avoid coding complexity,

Malhotra, et al. Expires May 3, 2018 [Page 5]

Internet-Draft On Implementing Time October 2017

 programmers might prefer a single list for both actual wall clock
 time stamps and those generated from real time to mark the end of
 a time span.

 Using real time as a basis for the time stamps marking the start and
 end of a time span is bad because of the following reasons.

 1. It can be set or overwritten manually,

 2. It is subject to adjustments by timing protocols which on one
 hand is important to make sure that this time is in sync with the
 rest of the world but on the other hand makes it dependent on the
 correctness and security of timing protocols.

 Recent attacks [SECNTP], [MCBG] show how timing protocols like NTP
 can be leveraged to shift real time on systems.

 Time stamps are always based on wall time, so the best one can do is
 to use real time while dealing with them. However, this limitation
 does not hold for the time spans. Managing time spans may be
 implemented in alternative ways which may prove to be more secure and
 robust.

 An obvious question to ask is: Why do we need inception and
 expiration time stamps in the first place to define the validity
 period of cryptographic objects? Why can’t we just use time spans
 like TTL values instead? The reason is straightforward.

 The authority determining and setting the validity period on the
 object can be different from the operator delivering the object.
 For example the TTL value on DNS resource records indicates to
 caching DNS resolvers how long to cache those records. These are
 an operational matter and are thus left to the operators of the
 DNS zone.

 The content of the resource records are however determined by the
 signer of the records. When she is not also the zone operator,
 she has no way to determine when the records will be queried for,
 and thus has to depend on cryptographically signed wall clock
 based time stamps to limit the validity.

 Note however that DNSSEC signatures do contain the original TTL of
 a resource record set, restricting the maximum TTL value with
 which the operator may deliver the resource records.

Malhotra, et al. Expires May 3, 2018 [Page 6]

Internet-Draft On Implementing Time October 2017

5. Alternative Approaches

 For time spans, where we only need the rate of passage of time to be
 close enough to the rest of the world, one should not use the real
 time to establish the start and end time for the reasons mentioned
 above. The other two types of time are raw time and adjusted raw
 time. The important aspect of these monotonic time sources is not
 their current value but the guarantee that the time source is
 strictly linearly increasing and thus useful for calculating the
 difference in time between two samplings. But each comes with its
 own caveats.

 Raw time is not subject to any adjustments by timing protocols,
 i.e., it is not adjusted for the error introduced by clock drift.
 This could have two repercussions. First, this makes correctness
 of raw time independent from the errors or security
 vulnerabilities of the timing protocols. Second, its correctness
 depends on the clock drift which further depends on various
 factors such as quality of the oscillator, work load, or ambient
 temperature on the system and may vary.

 Adjusted raw time, on the other hand, is subject to adjustments by
 timing protocols. While it therefore compensates for the errors
 introduced by the drift of the local clock, this time can be
 incorrect as it is vulnerable to accuracy and security
 vulnerabilities of the underlying timing protocol.

 The choice of time value to be used is application-specific. For
 instance in applications that can tolerate a certain amount of clock
 drift [CLOCKDRIFT], implementers can use raw time. However, if that
 is an issue then one has no choice but to fall back to adjusted raw
 time.

 POSIX defines a system C API function which may provide raw time:
 clock_gettime(), when used with a clock_id of CLOCK_MONOTONIC (when
 supported by the system). POSIX does not make a distinction between
 raw time and adjusted raw time in the definition of this function.
 Beware that with some systems, CLOCK_MONOTONIC deliveres adjusted raw
 time and that CLOCK_MONOTONIC_RAW needs to be used as clock_id to get
 unadjusted raw time. Non-POSIX systems may provide different APIs

 Software employing the pattern organized around I/O event
 notification mechanisms, as described in Section 4, should maintain
 two sorted lists of two different types of time stamps:

 1. One to register events based on time stamps expressed in wall
 clock time

Malhotra, et al. Expires May 3, 2018 [Page 7]

Internet-Draft On Implementing Time October 2017

 2. One to register the start and end of time spans in (adjusted) raw
 time

 To determine the timeout value for a call to select() or poll(), the
 program needs to get the current time in both real time and in
 (adjusted) raw time. The current real time is substracted from the
 lowest value of the time stamps expressed in wall time list. The
 current (adjusted) raw time from the lowest value of the time stamps
 expressed in (adjusted) raw time list. The lowest of the values
 should be used as the timeout value for select() or poll() and
 determines which action should be performed when te function times
 out.

 Alternatively a single list of (adjusted) raw time could be used for
 both time stamps and time spans. In that case time stamps expressed
 in wall clock time should be converted into (adjusted) raw time, by
 first converting it into a time span by substracting real time from
 it, and then adding the current time in (adjested) raw time.

6. Acknowledgements

 We are thankful to Sharon Goldberg and Benno Overreinder for useful
 discussions.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 Time is a fundamental component for the security guarantees claimed
 by various applications. Therefore, any implementor concerned with
 security should be concerned with how these time values are
 implemented. This document discusses the security considerations
 with respect to implementing time values in applications in various
 sections.

9. Informative References

 [CLOCKDRIFT]
 Marouani, H. and M. Dagenais, "Internal clock drift
 estimation in computer clusters", 2008,
 <http://downloads.hindawi.com/journals/
 jcnc/2008/583162.pdf>.

 [MCBG] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,
 "Attacking the Network Time Protocol", 2015,
 <https://eprint.iacr.org/2015/1020>.

Malhotra, et al. Expires May 3, 2018 [Page 8]

Internet-Draft On Implementing Time October 2017

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [SECNTP] Malhotra, A., Gundy, M., Varia, M., Kennedy, H., Gardner,
 J., and S. Goldberg, "The Security of NTP’s Datagram
 Protocol", 2016, <http://eprint.iacr.org/2016/1006>.

Authors’ Addresses

 Aanchal Malhotra
 Boston University
 111 Cummington Mall
 Boston 02215
 USA

 Email: aanchal4@bu.edu

 Martin Hoffmann
 Open Netlabs
 Science Park 400
 Amsterdam 1098 XH
 Netherlands

 Email: martin@opennetlabs.com

 Willem Toorop
 NLnet Labs
 Science Park 400
 Amsterdam 1098 XH
 Netherlands

 Email: willem@nlnetlabs.nl

Malhotra, et al. Expires May 3, 2018 [Page 9]

