
secevent M. Scurtescu
Internet-Draft Google
Intended status: Informational A. Backman
Expires: February 11, 2018 Amazon
 August 10, 2017

 Management API for SET Event Streams
 draft-scurtescu-secevent-event-stream-mgmt-api-00

Abstract

 Security Event Token (SET) delivery requires event receivers to
 indicate to event transmitters the subjects about which they wish to
 receive events, and how they wish to receive them. This
 specification defines an HTTP API for a basic control plane that
 event transmitters can implement and event receivers may use to
 manage the flow of events from one to the other.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 11, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Scurtescu & Backman Expires February 11, 2018 [Page 1]

Internet-Draft event-stream-management-api August 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Notational Conventions 3
 3. Definitions . 3
 4. Event Stream Management 3
 4.1. Stream Configuration 4
 4.1.1. Checking a Stream’s Status 5
 4.1.2. Reading a Stream’s Configuration 6
 4.1.3. Updating a Stream’s Configuration 7
 4.2. Subjects . 9
 4.2.1. Adding a Subject to a Stream 10
 4.2.2. Removing a Subject 11
 4.3. Verification . 13
 4.3.1. Verification Event 13
 4.3.2. Triggering a Verification Event. 13
 5. Security Considerations 15
 5.1. Subject Probing . 15
 5.2. Information Harvesting 16
 5.3. Malicious Subject Removal 16
 6. Normative References . 16
 Authors’ Addresses . 17

1. Introduction

 This specification defines an HTTP API to be implemented by Event
 Transmitters and that can be used by Event Receivers to query the
 Event Stream status, to add and remove subjects and to trigger
 verification.

Scurtescu & Backman Expires February 11, 2018 [Page 2]

Internet-Draft event-stream-management-api August 2017

 +------------+ +------------+
 | | Stream Config | |
 | Event <----------------+ Event |
 | Stream | | Receiver |
 | Management | Stream Status | |
 | API <----------------+ |
 | | | |
 | | Add Subject | |
 | <----------------+ |
 | | | |
 | | Remove Subject | |
 | <----------------+ |
 | | | |
 | | Verification | |
 | <----------------+ |
 | | | |
 +------------+ +------------+

 Figure 1: Event Stream Management API

 How events are delivered and the structure of events are not in scope
 for this specification.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Definitions

 In addition to terms defined in [SET], this specification uses the
 following terms:

 Subject Identifier Object
 A JSON object containing a set of one or more claims about a
 subject that when taken together uniquely identify that subject.
 This set of claims SHOULD be declared as an acceptable way to
 identify subjects of SETs by one or more specifications that
 profile [SET].

4. Event Stream Management

 Event Receivers manage how they receive events, and the subjects
 about which they want to receive events over an Event Stream by
 making HTTP requests to endpoints in the Event Stream Management API.

Scurtescu & Backman Expires February 11, 2018 [Page 3]

Internet-Draft event-stream-management-api August 2017

 The Event Stream Management API is implemented by the Event
 Transmitter and consists of the following endpoints:

 Configuration Endpoint
 An endpoint used to read the Event Stream’s current configuration.

 Status Endpoint
 An endpoint used to read the Event Stream’s current status.

 Add Subject Endpoint
 An endpoint used to add subjects to an Event Stream.

 Remove Subject Endpoint
 An endpoint used to remove subjects from an Event Stream.

 Verification Endpoint
 An endpoint used to request the Event Transmitter transmit a
 Verification Event over the Event Stream.

 An Event Transmitter MAY use the same URLs as endpoints for multiple
 streams, provided that the Event Transmitter has some mechanism
 through which they can identify the applicable Event Stream for any
 given request, e.g. from authentication credentials. The definition
 of such mechanisms is outside the scope of this specification.

4.1. Stream Configuration

 An Event Stream’s configuration is represented as a JSON object with
 the following properties:

 aud
 A string containing an audience claim as defined in JSON Web Token
 (JWT) [RFC7519] that identifies the Event Receiver for the Event
 Stream. This property cannot be updated.

 events
 OPTIONAL. An array of URIs identifying the set of events which
 MAY be delivered over the Event Stream. If omitted, Event
 Transmitters SHOULD make this set available to the Event Receiver
 via some other means (e.g. publishing it in online
 documentation).

 delivery
 A JSON object containing a set of name/value pairs specifying
 configuration parameters for the SET delivery method. The actual
 delivery method is identified by the special key "delivery_method"
 with the value being a URI as defined in [DELIVERY].

Scurtescu & Backman Expires February 11, 2018 [Page 4]

Internet-Draft event-stream-management-api August 2017

 min_verification_interval
 An integer indicating the minimum amount of time in seconds that
 must pass in between verification requests. If an Event Receiver
 submits verification requests more frequently than this, the Event
 Transmitter MAY respond with a 429 status code. An Event
 Transmitter SHOULD NOT respond with a 429 status code if an Event
 Receiver is not exceeding this frequency.

 status
 A string indicating the current status of the event stream. It
 MUST have one of the following values:

 enabled
 The transmitter will transmit events over the stream, according
 to the stream’s configured delivery method.

 paused
 The transmitter will not transmit events over the stream. The
 transmitter will hold any events it would have transmitted
 while paused, and will transmit them when the stream’s status
 becomes "enabled".

 disabled
 The transmitter will not transmit events over the stream, and
 will not hold any events for later transmission.

4.1.1. Checking a Stream’s Status

 An Event Receiver checks the current status of an event stream by
 making an HTTP GET request to the stream’s Status Endpoint. On
 receiving a valid request the Event Transmitter responds with a 200
 OK response containing a [JSON] object with a single attribute
 "status", whose string value is the value of the stream’s status.

 The following is a non-normative example request to check an event
 stream’s status:

 GET /set/stream/status HTTP/1.1
 Host: transmitter.example.com
 Authorization: Bearer eyJ0b2tlbiI6ImV4YW1wbGUifQo=

 Figure 2: Example: Check Stream Status Request

 The following is a non-normative example response:

Scurtescu & Backman Expires February 11, 2018 [Page 5]

Internet-Draft event-stream-management-api August 2017

 HTTP/1.1 200 OK
 Content-Type: application/json; charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "status": "enabled"
 }

 Figure 3: Example: Check Stream Status Response

4.1.2. Reading a Stream’s Configuration

 An Event Receiver gets the current configuration of a stream by
 making an HTTP GET request to the Configuration Endpoint. On
 receiving a valid request the Event Transmitter responds with a 200
 OK response containing a [JSON] representation of the stream’s
 configuration in the body.

 The following is a non-normative example request to read an Event
 Stream’s configuration:

 GET /set/stream HTTP/1.1
 Host: transmitter.example.com
 Authorization: Bearer eyJ0b2tlbiI6ImV4YW1wbGUifQo=

 Figure 4: Example: Read Stream Configuration Request

 The following is a non-normative example response:

Scurtescu & Backman Expires February 11, 2018 [Page 6]

Internet-Draft event-stream-management-api August 2017

 HTTP/1.1 200 OK
 Content-Type: application/json; charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "aud": "http://www.example.com",
 "delivery": {
 "delivery_method": "urn:example:secevent:delivery:http_post",
 "url": "https://receiver.example.com/events"
 },
 "status": "enabled",
 "events": [
 "urn:example:secevent:events:type_1",
 "urn:example:secevent:events:type_2",
 "urn:example:secevent:events:type_3"
],
 "min_verification_interval": 60,
 }

 Figure 5: Example: Read Stream Configuration Response

 Errors are signaled with HTTP staus codes as follows:

 +------+--+
 | Code | Description |
 +------+--+
401	if authorization failed or it is missing
403	if the Event Receiver is not allowed to read the stream
	configuration
404	if there is no Event Stream configured for this Event
	Receiver
 +------+--+

 Table 1: Read Stream Configuration Errors

4.1.3. Updating a Stream’s Configuration

 An Event Receiver updates the current configuration of a stream by
 making an HTTP POST request to the Configuration Endpoint. The POST
 body contains a {{!JSON} representation of the updated configuration.
 On receiving a valid request the Event Transmitter responds with a
 200 OK response containing a [JSON] representation of the updated
 stream configuration in the body.

Scurtescu & Backman Expires February 11, 2018 [Page 7]

Internet-Draft event-stream-management-api August 2017

 The full set of editable properties must be present in the POST body,
 not only the ones that are specifically intended to be changed.
 Missing properties SHOULD be interpreted as requested to be deleted.
 Event Receivers should read the configuration first, modify the
 [JSON] representation, then make an update request.

 Properties that cannot be updated MAY be present, but they MUST match
 the expected value.

 The following is a non-normative example request to read an Event
 Stream’s configuration:

 POST /set/stream HTTP/1.1
 Host: transmitter.example.com
 Authorization: Bearer eyJ0b2tlbiI6ImV4YW1wbGUifQo=

 {
 "aud": "http://www.example.com",
 "delivery": {
 "delivery_method": "urn:example:secevent:delivery:http_post",
 "url": "https://receiver.example.com/events"
 },
 "status": "paused",
 "events": [
 "urn:example:secevent:events:type_1",
 "urn:example:secevent:events:type_2",
 "urn:example:secevent:events:type_3"
]
 }

 Figure 6: Example: Update Stream Configuration Request

 The following is a non-normative example response:

Scurtescu & Backman Expires February 11, 2018 [Page 8]

Internet-Draft event-stream-management-api August 2017

 HTTP/1.1 200 OK
 Content-Type: application/json; charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "aud": "http://www.example.com",
 "delivery": {
 "delivery_method": "urn:example:secevent:delivery:http_post",
 "url": "https://receiver.example.com/events"
 },
 "status": "paused",
 "events": [
 "urn:example:secevent:events:type_1",
 "urn:example:secevent:events:type_2",
 "urn:example:secevent:events:type_3"
]
 }

 Figure 7: Example: Update Stream Configuration Response

 Errors are signaled with HTTP staus codes as follows:

 +------+--+
 | Code | Description |
 +------+--+
400	if the request body cannot be parsed or if the request is
	otherwise invalid
401	if authorization failed or it is missing
403	if the Event Receiver is not allowed to update the stream
	configuration
 +------+--+

 Table 2: Update Stream Configuration Errors

4.2. Subjects

 An Event Receiver can indicate to an Event Transmitter whether or not
 the receiver wants to receive events about a particular subject by
 "adding" or "removing" that subject to the Event Stream,
 respectively.

Scurtescu & Backman Expires February 11, 2018 [Page 9]

Internet-Draft event-stream-management-api August 2017

4.2.1. Adding a Subject to a Stream

 To add a subject to an Event Stream, the Event Receiver makes an HTTP
 POST request to the Add Subject Endpoint, containing in the body a
 Subject Identifier Object identifying the subject to be added. On a
 successful response, the Event Transmitter responds with an empty 200
 OK response.

 The Event Transmitter MAY choose to silently ignore the request, for
 example if the subject has previously indicated to the transmitter
 that they do not want events to be transmitted to the Event Receiver.
 In this case, the transmitter MAY return an empty 200 OK response or
 an appropriate error code (See Security Considerations (Section 5)).

 Errors are signaled with HTTP staus codes as follows:

 +------+--+
 | Code | Description |
 +------+--+
400	if the request body cannot be parsed or if the request is
	otherwise invalid
401	if authorization failed or it is missing
403	if the Event Receiver is not allowed to add this
	particular subject
404	if the subject is not recognized by the Event Transmitter,
	the Event Transmitter may chose to stay silent in this
	case and respond with 200
429	if the Event Receiver is sending too many requests in a
	gvien amount of time
 +------+--+

 Table 3: Add Subject Errors

 The following is a non-normative example request to add a subject to
 a stream, where the subject is identified by an OpenID Connect email
 claim:

Scurtescu & Backman Expires February 11, 2018 [Page 10]

Internet-Draft event-stream-management-api August 2017

 POST /set/subjects:add HTTP/1.1
 Host: transmitter.example.com
 Authorization: Bearer eyJ0b2tlbiI6ImV4YW1wbGUifQo=

 {
 "email": "example.user@example.com"
 }

 Figure 8: Example: Add Subject Request

 The following is a non-normative example response to a successful
 request:

 HTTP/1.1 200 OK
 Server: transmitter.example.com
 Cache-Control: no-store
 Pragma: no-cache

 Figure 9: Example: Add Subject Response

4.2.2. Removing a Subject

 To remove a subject from an Event Stream, the Event Receiver makes an
 HTTP POST request to the Remove Subject Endpoint, containing in the
 body a Subject Identifier Object identifying the subject to be
 removed. On a successful response, the Event Transmitter responds
 with a 204 No Content response.

 Errors are signaled with HTTP staus codes as follows:

Scurtescu & Backman Expires February 11, 2018 [Page 11]

Internet-Draft event-stream-management-api August 2017

 +------+--+
 | Code | Description |
 +------+--+
400	if the request body cannot be parsed or if the request is
	otherwise invalid
401	if authorization failed or it is missing
403	if the Event Receiver is not allowed to remove this
	particular subject
404	if the subject is not recognized by the Event Transmitter,
	the Event Transmitter may chose to stay silent in this
	case and respond with 204
429	if the Event Receiver is sending too many requests in a
	gvien amount of time
 +------+--+

 Table 4: Remove Subject Errors

 The following is a non-normative example request where the subject is
 identified by a phone_number claim:

 POST /set/subjects:remove HTTP/1.1
 Host: transmitter.example.com
 Authorization: Bearer eyJ0b2tlbiI6ImV4YW1wbGUifQo=

 {
 "phone_number": "+1 206 555 0123"
 }

 Figure 10: Example: Remove Subject Request

 The following is a non-normative example response to a successful
 request:

 HTTP/1.1 204 No Content
 Server: transmitter.example.com
 Cache-Control: no-store
 Pragma: no-cache

 Figure 11: Example: Remove Subject Response

Scurtescu & Backman Expires February 11, 2018 [Page 12]

Internet-Draft event-stream-management-api August 2017

4.3. Verification

 In some cases, the frequency of event transmission on an Event Stream
 will be very low, making it difficult for an Event Receiver to tell
 the difference between expected behavior and event transmission
 failure due to a misconfigured stream. Event Receivers can request
 that a verification event be transmitted over the Event Stream,
 allowing the receiver to confirm that the stream is configured
 correctly upon successful receipt of the event. The acknowledgment
 of a Verification Event also confirms to the Event Transmitter that
 end-to-end delivery is working, including signature verification and
 encryption.

 An Event Transmitter MAY send a Verification Event at any time, even
 if one was not requested by the Event Receiver.

4.3.1. Verification Event

 The Verification Event is a standard SET with the following
 attributes:

 event type
 The Event Type URI is: "urn:ietf:params:secevent:event-
 type:core:verification".

 state
 OPTIONAL An opaque value provided by the Event Receiver when the
 event is triggered. This is a nested attribute in the event
 payload.

 Upon receiving a Verification Event, the Event Receiver SHALL parse
 the SET and validate its claims. In particular, the Event Receiver
 SHALL confirm that the value for "state" is as expected. If the
 value of "state" does not match, an error response of "setData"
 SHOULD be returned (see Section 2.4 of [DELIVERY]).

 In many cases, Event Transmitters MAY disable or suspend an Event
 Stream that fails to successfully verify based on the acknowledgement
 or lack of acknowledgement by the Event Receiver.

4.3.2. Triggering a Verification Event.

 To request that a verification event be sent over an Event Stream,
 the Event Receiver makes an HTTP POST request to the Verification
 Endpoint, with a JSON object containing the parameters of the
 verification request, if any. On a successful request, the event
 transmitter responds with an empty 204 No Content response.

Scurtescu & Backman Expires February 11, 2018 [Page 13]

Internet-Draft event-stream-management-api August 2017

 Verification requests have the following properties:

 state
 OPTIONAL. An arbitrary string that the Event Transmitter MUST
 echo back to the Event Receiver in the verification event’s
 payload. Event Receivers MAY use the value of this parameter to
 correlate a verification event with a verification request. If
 the verification event is initiated by the transmitter then this
 parameter MUST not be set.

 A successful response from a POST to the Verification Endpoint does
 not indicate that the verification event was transmitted
 successfully, only that the Event Transmitter has transmitted the
 event or will do so at some point in the future. Event Transmitters
 MAY transmit the event via an asynchronous process, and SHOULD
 publish an SLA for verification event transmission times. Event
 Receivers MUST NOT depend on the verification event being transmitted
 synchronously or in any particular order relative to the current
 queue of events.

 Errors are signaled with HTTP staus codes as follows:

 +------+--+
 | Code | Description |
 +------+--+
400	if the request body cannot be parsed or if the request is
	otherwise invalid
401	if authorization failed or it is missing
429	if the Event Receiver is sending too many requests in a
	gvien amount of time
 +------+--+

 Table 5: Verification Errors

 The following is a non-normative example request to trigger a
 verification event:

Scurtescu & Backman Expires February 11, 2018 [Page 14]

Internet-Draft event-stream-management-api August 2017

 POST /set/verify HTTP/1.1
 Host: transmitter.example.com
 Authorization: Bearer eyJ0b2tlbiI6ImV4YW1wbGUifQo=
 Content-Type: application/json; charset=UTF-8

 {
 "state": "VGhpcyBpcyBhbiBleGFtcGxlIHN0YXRlIHZhbHVlLgo="
 }

 Figure 12: Example: Trigger Verification Request

 The following is a non-normative example response to a successful
 request:

 HTTP/1.1 204 No Content
 Server: transmitter.example.com
 Cache-Control: no-store
 Pragma: no-cache

 Figure 13: Example: Trigger Verification Response

 And the following is a non-normative example of a verification event
 sent to the Event Receiver as a result of the above request:

 {
 "jti": "123456",
 "iss": "https://transmitter.example.com",
 "aud": "receiver.example.com",
 "iat": "1493856000",
 "events": [
 "urn:ietf:params:secevent:event-type:core:verification" : {
 "state": "VGhpcyBpcyBhbiBleGFtcGxlIHN0YXRlIHZhbHVlLgo=",
 },
],
 }

 Figure 14: Example: Verification SET

5. Security Considerations

5.1. Subject Probing

 It may be possible for an Event Transmitter to leak information about
 subjects through their responses to add subject requests. A 404
 response may indicate to the Event Receiver that the subject does not
 exist, which may inadvertantly reveal information about the subject
 (e.g. that a particular individual does or does not use the Event
 Transmitter’s service).

Scurtescu & Backman Expires February 11, 2018 [Page 15]

Internet-Draft event-stream-management-api August 2017

 Event Transmitters SHOULD carefully evaluate the conditions under
 which they will return error responses to add subject requests.
 Event Transmitters MAY return a 204 response even if they will not
 actually send any events related to the subject, and Event Receivers
 MUST NOT assume that a 204 response means that they will receive
 events related to the subject.

5.2. Information Harvesting

 SETs may contain personally identifiable information (PII) or other
 non-public information about the event transmitter, the subject (of
 an event in the SET), or the relationship between the two. It is
 important for Event Transmitters to understand what information they
 are revealing to Event Receivers when transmitting events to them,
 lest the event stream become a vector for unauthorized access to
 private information.

 Event Transmitters SHOULD interpret add subject requests as
 statements of interest in a subject by an Event Receiver, and ARE NOT
 obligated to transmit events related to every subject an Event
 Receiver adds to the stream. Event Transmitters MAY choose to
 transmit some, all, or no events related to any given subject and
 SHOULD validate that they are permitted to share the information
 contained within an event with the Event Receiver before transmitting
 the event. The mechanisms by which such validation is performed are
 outside the scope of this specification.

5.3. Malicious Subject Removal

 A malicious party may find it advantageous to remove a particular
 subject from a stream, in order to reduce the Event Receiver’s
 ability to detect malicious activity related to the subject,
 inconvenience the subject, or for other reasons. Consequently it may
 be in the best interests of the subject for the Event Transmitter to
 continue to send events related to the subject for some time after
 the subject has been removed from a stream.

 Event Transmitters MAY continue sending events related to a subject
 for some amount of time after that subject has been removed from the
 stream. Event Receivers MUST tolerate receiving events for subjects
 that have been removed from the stream, and MUST NOT report these
 events as errors to the Event Transmitter.

6. Normative References

Scurtescu & Backman Expires February 11, 2018 [Page 16]

Internet-Draft event-stream-management-api August 2017

 [DELIVERY]
 "SET Token Delivery Using HTTP", n.d., <https://github
 .com/independentid/Identity-Events/blob/master/draft-hunt-
 secevent-delivery.txt>.

 [JSON] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [SET] "Security Event Token (SET)", n.d., <https://tools.ietf
 .org/html/draft-ietf-secevent-token-01>.

Authors’ Addresses

 Marius Scurtescu
 Google

 Email: mscurtescu@google.com

 Annabelle Backman
 Amazon

 Email: richanna@amazon.com

Scurtescu & Backman Expires February 11, 2018 [Page 17]

