SI DR Oper ati ons O Muravskiy

I nternet-Draft Rl PE NCC
I ntended status: |nformational T. Bruijnzeels
Expires: March 20, 2019 NLNet Labs

Sept enber 16, 2018

RPKI Certificate Tree Validation by the RIPE NCC RPKI Vali dator
draft-ietf-sidrops-rpki-tree-validation-03

Abst ract

Thi s docunent describes the approach to validate the content of the
RPKI certificate tree, as it is inplemented in the R PE NCC RPKI
Validator. This approach is independent of a particul ar object
retrieval nmechanism This allows it to be used with repositories
avai | abl e over the rsync protocol, the RPKI Repository Delta
Protocol, and repositories that use a nmix of both.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on March 20, 2019.
Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 1]

Internet-Draft RPKI Tree Validation Sept enber 2018

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1.
2.
3

©oN

10. .
10.1. Normative Ref er ences .
10.2. Infornmtive References .

DORAEN
NN

1]

oo RCUIgR

Scope of this docunent
I ntroduction .
Ceneral Consi derations

.1. Hash conparisons
.2. Discovery of RPKI objects issued by a CA
.3. Manifest entries versus repository content

Top-down Validation of a Single Trust Anchor Certifi cate Tree

.1. Fetching the Trust Anchor Certificate Using the Trust

Anchor Locat or . .

CA Certificate Valldatlon .

.1. Finding the nost recent vaI i d rranlfest and CRL
.2. Manifest entries validation .

bj ect Store O eanup

nmot e Obj ects Fetcher

Fet cher Operations

.1. Fetch rep03| tory Obj ects

.2. Fetch single repository object

| Object Store o

Store Qperations

1. Store Repository OOJ ect

2. Cet objects by hash .
3

4

5

6

o)
o R

a

Get certificate objects by URI
Get mani fest objects by AKI
Del ete objects for a URI
. Delete outdated objects . .
.7. Update object’s validation tine .
Acknovvl edgenent s
| ANA Consi derations .
Security Considerations .
Hash col i sions .

el S e

2 Algorithmagility . Ce e
.3. Msnmatch between the expect ed and the act ual Iocati on of

an object in the repository .

.4. Manifest content versus publi cat| on p0| nt cont ent
.5. Possible denial of service .

Ref er ences

Aut hors’ Addresses

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page

abhbdbhbhoow

© OO~ U

Internet-Draft RPKI Tree Validation Sept enber 2018

1.

Scope of this docunent

Thi s docunment describes how the RI PE NCC RPKI Validator version 2.23
has been i nplenmented. Source code to this software can be found at
[github]. The purpose of this docunent is to provide transparency to
users of (and contributors to) this software tool, as well as serve
to be subjected to scrutiny by the SIDR Operations Wrking Goup. It
is not intended as a docunent that describes a standard or best
practices on how validation should be done in general

I ntroduction

In order to use information published in RPKI repositories, Relying
Parties (RP) need to retrieve and validate the content of
certificates, certificate revocation lists (CRLs), and other RPK
signed objects. To validate a particular object, one nust ensure
that all certificates in the certificate chain up to the Trust Anchor
(TA) are valid. Therefore the validation of a certificate tree is
performed top-down, starting fromthe TA certificate and descendi ng
down the certificate chain, validating every encountered certificate
and its products. The result of this process is a list of all
encountered RPKI objects with a validity status attached to each of
them These results may | ater be used by a Relying Party in taking
routing decisions, etc.

Traditionally RPKI data is nmade available to RPs through the
repositories [RFC6481] accessible over [rsync] protocol. Relying
parties are advised to keep a local copy of repository data, and
performregul ar updates of this copy fromthe repository (Section 5
of [RFC6481]). The RPKI Repository Delta Protocol [RFC8182]

i ntroduces another nmethod to fetch repository data and keep the | oca
copy up to date with the repository.

Thi s docunent describes how the RIPE NCC RPKI Validator discovers
RPKI objects to downl oad, builds certificate paths, and validates
RPKI objects, independently fromwhat repository access protocol is
used. To achieve this, it puts downl oaded RPKI objects in an object
store, where each RPKI object can be found by its URI, the hash of
its content, value of its Authority Key ldentifier (AKI) extension
or a conbination of these. It also keeps track of the downl oad and
the validation time for every object, to decide which locally stored
objects are not used in the RPKI tree validation and could be
renoved

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 3]

Internet-Draft RPKI Tree Validation Sept enber 2018

3. CGeneral Considerations
3.1. Hash conparisons

This algorithmrelies on the collision resistance properties of the
file hash algorithm (defined in [RFC7935]) to conpute the hash of
repository objects. It assunes that any two objects for which the
hash value is the sane, are identical

The hash conparison is used when nmatching objects in the repository
with entries on the nmanifest (Section 4.2.2), and when | ooki ng up
objects in the object store (Section 6).

3.2. Discovery of RPKI objects issued by a CA

There are several possible ways of discovering potential products of
a CA certificate: one could use all objects located in a repository
directory designated as a publication point for a CA, or only objects
mentioned on the manifest | ocated at that publication point (see
Section 6 of [RFC6486]), or use all known repository objects whose AKI
ext ensi on mat ches the Subject Key ldentifier (SKI) extension

(Section 4.2.1 of[RFC5280]) of a CA certificate.

For publication points whose content is consistent with the nmanifest
and issuing certificate all of these approaches should produce the
same result. For inconsistent publication points the results m ght
be different. Section 6 of [RFC6486] |eaves the decision on howto
deal with inconsistencies to a |local policy.

The inplenentati on described here does not rely on content of
repository directories, but uses the Authority Key Identifier (AKI)
extension of a manifest and a certificate revocation list (CRL) to
find in an object store (Section 6) a manifest and a CRL issued by a
particular Certification Authority (CA) (see Section 4.2.1). It
further uses the hashes of nanifest’'s fileList entries (Section 4.2.1
of [RFC6486]) to find other objects issued by the CA as described in
Section 4.2.2.

3.3. Manifest entries versus repository content

Since the current set of RPKI standards requires use of the manifest
[RFC6486] to describe the content of a publication point, this

i mpl erentation requires strict consistency between the publication
poi nt content and manifest content. (This is a nore stringent

requi renent than established in [RFC6486].) Therefore it will not
process objects that are found in the publication point but do not
mat ch any of the entries of that publication point’s nmanifest (see
Section 4.2.2). It will also issue warnings for all found

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 4]

Internet-Draft RPKI Tree Validation Sept enber 2018

m smat ches, so that the responsible operators could be made aware of
i nconsi stencies and fix them

4.
1.
2.
3.
4.
5.

4.1.

Top-down Validation of a Single Trust Anchor Certificate Tree

The validation of a Trust Anchor (TA) certificate tree starts
fromits TA certificate. To retrieve the TA certificate, a Trust
Anchor Locator (TAL) object is used, as described in Section 4.1

If the TA certificate is retrieved, it is validated according to
Section 7 of [RFC6487] and Section 2.2 of [RFC7730]. O herwi se
the validation of certificate tree is aborted and an error is

i ssued.

If the TA certificate is valid, then all its subordi nate objects
are validated as described in Section 4.2. Oherw se the
validation of certificate tree is aborted and an error is issued.

For each repository object that was validated during this
validation run, its validation timestanp is updated in the object
store (see Section 6.1.7).

Qut dated objects are renoved fromthe store as described in
Section 4.3. This conpletes the validation of the TA certificate
tree.

Fetching the Trust Anchor Certificate Using the Trust Anchor
Locat or

The followi ng steps are performed in order to fetch a Trust Anchor
Certificate:

1.

(Optional) If the Trust Anchor Locator contains a "prefetch.uris”
field, pass the URIs contained in that field to the fetcher (see
Section 5.1.1). (This field is a non-standard addition to the
TAL format. It hel ps fetching non-hierarchical rsync
repositories nore efficiently.)

Extract the first TA certificate URI fromthe TAL’s URl section
(see Section 2.1 of [RFC7730]) and pass it to the object fetcher
(Section 5.1.2). If the fetcher returns an error, repeat this
step for every URI in the URI section, until no error is
encountered, or no nore URIs |eft.

Retrieve fromthe object store (see Section 6.1.3) al
certificate objects, for which the URI natches the URI extracted
fromthe TAL in the previous step, and the public key matches the

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 5]

Internet-Draft RPKI Tree Validation Sept enber 2018

4. 2.

subj ect Publ i cKeyl nfo extension of the TAL (see Section 2.1 of
[RFC7730]) .

If no, or nore than one such objects are found, issue an error
and abort certificate tree validation process with an error

O herwi se, use the single found object as the Trust Anchor
certificate.

CA Certificate Validation

The follow ng steps describe the validation of a single CA Resource
certificate:

1.

If both the caRepository (Section 4.8.8.1 of [RFC6487]), and the
i d-ad-rpki Notify (Section 3.2 of [RFC8182]) SubjectlnfoAccess
(SIA) pointers are present in the CA certificate, use a loca
policy to determi ne which pointer to use. Extract the URI from
the selected pointer and pass it to the object fetcher (that wll
then fetch all objects available fromthat repository, see
Section 5.1.1).

For the CA certificate, find the current mani fest and certificate
revocation list (CRL), using the procedure described in

Section 4.2.1. |If no such mani fest and CRL could be found, stop
validation of this certificate, consider it invalid, and issue an
error.

Conpare the URI found in the id-ad-rpki Manifest field

(Section 4.8.8.1 of [RFC6487]) of the SIA extension of the
certificate with the URI of the manifest found in the previous
step. |If they are different, issue a warning, but continue
val i dation process using the nmanifest found in the previous step
(This warning indicates that there is a m smatch between the
expected and the actual l|ocation of an object in a repository.
See Section 9 for the explanation of this msmatch and the

deci sion taken.)

Perform mani fest entries discovery and validation as described in
Section 4.2.2.

Validate all resource certificate objects found on the nanifest,
usi ng the CRL object found on the manifest:

* if the strict validation option is enabled by the operator,
the validation is perforned according to Section 7 of
[RFC6487] ,

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 6]

Internet-Draft RPKI Tree Validation Sept enber 2018

4. 2.

* otherwi se, the validation is performed according to Section 7
of [RFC6487], with the exception of the resource certification
path validation, that is performed according to
Section 4.2.4.4 of [RFCB8360].

(Note that this inplementation uses the operator configuration to
deci de which algorithmto use for path validation. It applies
the selected algorithmto all resource certificates, rather than
appl ying appropriate algorithm per resource certificate, based on
the object identifier (OD) for the Certificate Policy found in
that certificate, as specified in [RFC8360].)

Validate all Route Origin Authorization (ROA) objects found on
the mani fest, using the CRL object found on the manifest,
according to Section 4 of [RFC6482].

Validate all GChostbusters Record objects found on the nanifest,
using the CRL object found on the nmanifest, according to
Section 7 of [RFC6493].

For every valid CA certificate object found on the manifest,
apply the procedure described in this section (Section 4.2),
recursively, provided that this CA certificate (identified by its
SKI') has not yet been validated during current tree validation
run.

Fi nding the nost recent valid mani fest and CRL

Fetch fromthe store (see Section 6.1.4) all objects of type
mani fest, whose certificate’'s AKl extension matches the SKI of
the current CA certificate. |If no such objects are found, stop
processing the current CA certificate and i ssue an error.

Fi nd anong found objects the nanifest object with the highest
mani f est Nunber field (Section 4.2.1 of [RFC6486]), for which all
followi ng conditions are net:

* There is only one entry in the manifest for which the store
contains exactly one object of type CRL, the hash of which
mat ches the hash of the entry.

* The manifest’s certificate AKI equals the above CRL's AKI.

* The above CRL is a valid object according to Section 6.3 of
[RFC5280] .

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 7]

Internet-Draft RPKI Tree Validation Sept enber 2018

4. 2.

Mur

* The manifest is a valid object according to Section 4.4 of
[RFC6486], and its EE certificates is not in the CRL found
above.

3. If there is an object that matches above criteria, consider this

object to be the valid manifest, and the CRL found at the
previous step - the valid CRL for the current CA certificate's
publication point.

4., Report an error for every other manifest with a nunber higher

than the nunber of the valid nmanifest.
2. Manifest entries validation
For every entry in the manifest object:

1. Construct an entry’'s URl by appending the entry name to the
current CA's publication point UR

2. Cet all objects fromthe store whose hash attribute equals
entry’ s hash (see Section 6.1.2).

3. If no such objects are found, issue an error for this manifest
entry and progress to the next entry. This case indicates that
the repository does not have an object at the location listed in
the mani fest, or that the object’s hash does not match the hash
listed in the manifest.

4. For every found object, conpare its URI with the URl of the

mani fest entry.

* For every object with a non-matching URI issue a warning.
This case indicates that the object fromthe manifest entry is
(also) found at a different location in a (possibly different)
repository.

* |f no objects with a matching URI are found, issue a warning.
This case indicates that there is no object found in the
repository at the location listed in the manifest entry (but
there is at |east one matching object found at a different
| ocation).

5. Use all found objects for further validation as per Section 4.2.
Pl ease note that the above steps will not reject objects whose hash

mat ches the hash listed in the nmanifest, but the URI does not. See
Section 9.3 for additional informtion.

avskiy & Bruijnzeels Expires March 20, 2019 [Page 8]

Internet-Draft RPKI Tree Validation Sept enber 2018

4.3. Object Store C eanup

At the end of every TA tree validation some objects are renoved from
the store using the follow ng rules:

1. Gven all objects that were encountered during the current
validation run, renmove fromthe store (Section 6.1.6) all objects
whose URI attribute matches the URI of one of the encountered
objects, but the content’s hash is different. This renmoves from
the store objects that were replaced in the repository by their
newer versions with the sane URIs.

2. Renove fromthe store all objects that were | ast encountered
during validation a long tine ago (as specified by the |oca
policy). This renoves objects that do not appear on any valid
mani f est anynore (but possibly are still published in a
reposi tory).

3. Renove fromthe store all objects that were downl oaded recently
(as specified by the I ocal policy), but have never been used in
the validation process. This renoves objects that have never
appeared on any valid manifest.

Shortening the tine interval used in step 2 will free nore di sk space
used by the store, at the expense of downl oadi ng renoved objects
again if they are still published in the repository.

Extending the time interval used in step 3 will prevent repeated
downl oads of repository objects, with the risk that such objects, if
created massively by mistake or by an adversary, will fill up |oca
di sk space, if they are not cleaned up pronptly.

5. Renote Objects Fetcher
The fetcher is responsible for downl oadi ng objects fromrenote
repositories (described in Section 3 of [RFC6481]) using rsync
protocol ([rsync]), or RPKI Repository Delta Protocol (RRDP)
([RFC8182]).

5.1. Fetcher Qperations

For every visited URI the fetcher keeps track of the last tine a
successful fetch occurred.

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 9]

Internet-Draft RPKI Tree Validation Sept enber 2018

5.1.1. Fetch repository objects

This operation receives one paraneter - a URI. For an rsync
repository this URI points to a directory. For an RRDP repository it
points to the repository’'s notification file.

The fetcher performs followi ng steps:

1. |If data associated with the URI has been downl oaded recently (as
specified by the local policy), skip follow ng steps.

2. Downl oad renote objects using the URI provided (for an rsync
repository use recursive node). |If the URl contains schem
"https" and downl oad has failed, issue a warning, replace "https"
schema in the URI by "http", and try to downl oad objects again,
using the resulting URI

3. If renote objects can not be downl oaded, issue an error and skip
foll owi ng steps.

4. Performsyntactic verification of fetched objects. The type of
every object (certificate, manifest, CRL, ROA, or Chostbusters
record), is determ ned based on the object’s fil enane extension
(.cer, .nft, .crl, .roa, and .gbr, respectively). The syntax of
the object is described in Section 4 of [RFC6487] for resource
certificates, step 1 of Section 3 of [RFC6488] for signed
objects, and specifically, Section 4 of [RFC6486] for manifests,
[RFC5280] for CRLs, Section 3 of [RFC6482] for ROAs, and
Section 5 of [RFC6493] for Chostbusters records.

5. Put every downl oaded and syntactically correct object in the
obj ect store (Section 6.1.1).

The tine interval used in the step 1 should be chosen based on the
acceptabl e delay in receiving repository updates.

5.1.2. Fetch single repository object

This operation receives one paraneter - a URl that points to an
object in a repository.

The fetcher perfornms follow ng operations:
1. Download renote object using the URI provided. |If the URI
contains "https" schema and downl oad fail ed, issue a warning,

replace "https" schema in the URI by "http", and try to downl oad
the object using the resulting URI

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 10]

Internet-Draft RPKI Tree Validation Sept enber 2018

2. If the renote object can not be downl oaded, issue an error and
skip follow ng steps.

3. Performsyntactic verification of fetched object. The type of
object (certificate, manifest, CRL, ROA, or Ghostbusters record),
is deternined based on the object’s filenane extension (.cer
.nft, .crl, .roa, and .gbr, respectively). The syntax of the
object is described in Section 4 of [RFC6487] for resource
certificates, step 1 of Section 3 of [RFC6488] for signed
obj ects, and specifically, Section 4 of [RFC6486] for manifests,
[RFC5280] for CRLs, Section 3 of [RFC6482] for ROAs, and
Section 5 of [RFC6493] for Chostbusters records.

4. 1f the downl oaded object is not syntactically correct, issue an
error and skip further steps.

5. Delete all objects fromthe object store (Section 6.1.5) whose
URI matches the URI given

6. Put the downl oaded object in the object store (Section 6.1.1).
6. Local Ohject Store
6.1. Store QOperations
6.1.1. Store Repository Object
Put given object in the store, along with its type, URI, hash, and
AKl, if there is no record with the sane hash and URI fields. Note
that in the (unlikely) event of hash collision the given object wll
not replace the object in the store.

6.1.2. Get objects by hash

Retrieve all objects fromthe store whose hash attribute matches the
gi ven hash.

6.1.3. Get certificate objects by UR

Retrieve fromthe store all objects of type certificate, whose UR
attribute matches the given URl.

6.1.4. Get manifest objects by AKI

Retrieve fromthe store all objects of type manifest, whose AKI
attribute matches the given AKI.

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 11]

Internet-Draft RPKI Tree Validation Sept enber 2018

6.1.5. Delete objects for a UR

For a given URI, delete all objects in the store with matchi ng URI
attribute.

6.1.6. Delete outdated objects
For a given URI and a list of hashes, delete all objects in the store
with matching URI, whose hash attribute is not in the given list of
hashes.

6.1.7. Update object’s validation tine

For all objects in the store whose hash attribute matches the given
hash, set the last validation tinme attribute to the given tinmestanp.

7. Acknow edgenents

Thi s docunment describes the algorithmas it is inplenented by the

sof tware devel opment team at the RIPE NCC, which included over tine:
M khai | Puzanov, Erik Rozendaal, M klos Juhasz, Msja Al nma, Thiago da
Cruz Pereira, Yannis Gonianakis, Andrew Snare, Varesh Tapadi a, Paolo
M | ani, Thies Edeling, Hans Westerbeek, Rudi Angela, and Constantijn
Vi sinescu. The authors would also Iike to acknow edge contri butions
by Carlos Martinez, Andy Newton, Rob Austein, and Stephen Kent.

8. | ANA Consi derations
Thi s docunent has no actions for | ANA

9. Security Considerations

9.1. Hash collisions
This inplenmentation will not detect possible hash collisions in the
hashes of repository objects (calculated using the file hash
al gorithm specified in [RFC7935]). It considers objects with sane
hash val ues as identical

9.2. Algorithmagility
This inplenmentation only supports hash al gorithnms and key sizes

specified in [RFC7935]). Algorithmagility described in [RFC6916] is
not support ed.

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 12]

Internet-Draft RPKI Tree Validation Sept enber 2018

9.3. Msnatch between the expected and the actual |ocation of an object
in the repository

According to Section 2 of [RFC6481], all objects issued by a
particular CA certificate are expected to be located in one
repository publication point, specified in the SI A extension of that
CA certificate. The manifest object issued by that CA certificate
enunmerates all other issued objects, listing their file names and
cont ent hashes.

However, it is possible that an object whose content hash matches the
hash listed in the manifest, has either a different file nane, or is
| ocated at a different publication point in a repository.

On the other hand, all RPKI objects, either explicitly or within
their enbedded EE certificate, have an Authority Key Identifier
extension that contains the key identifier of their issuing CA
certificate. Therefore it is always possible to performan RPK
val i dation of the object whose expected | ocation does not match its
actual location, provided that the certificate that matches the AKI
of the object in question is known to the systemthat perforns

val i dati on.

In case of a mismatch descri bed above this inplenmentation will not
exclude an object fromfurther validation nerely because its actua

| ocation or file name does not match the expected | ocation or file
nane. This decision was chosen because the actual |ocation of a file
in arepository is taken fromthe repository retrieval mechani sm
which, in case of an rsync repository, does not provide any
cryptographic security, and in case of an RRDP repository, provides
only a transport layer security, with the fallback to unsecured
transport. On the other hand, the manifest is an RPKI signed object,
and its content could be verified in the context of the RPKI

val i dati on.

9.4. Manifest content versus publication point content

This algorithmuses the content of a nanifest object to determ ne
other objects issued by a CA certificate. It verifies that the

mani fest is located in the publication point designated in the CA
Certificate's SIA extension. However, if there are other (not listed
in the manifest) objects located in the same publication point
directory, they are ignored, even if they m ght be valid and issued
by the same CA as the manifest. (This RP behavior is allowed, but
not required, by [RFC6486].)

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 13]

Internet-Draft RPKI Tree Validation Sept enber 2018

9. 5.

10.

10.

Possi bl e deni al of service

The store cleanup procedure described in Section 4.3 tries to

m ni m se renoval and subsequent re-fetch of objects that are
published in a repository, but not used in the validation. Once such
objects are renoved fromthe renpte repository, they will be

di scarded fromthe | ocal object store after a period of tine
specified by a local policy. By generating an excessive anount of
syntactically valid RPKI objects, a man-in-the-mddle attack between
a validating tool and a repository could force an inplenentation to
fetch and store those objects in the object store (see Section 5.1.1)
before they are validated and discarded, |eading to an out-of-nenory
or out-of-di sk-space conditions, and, subsequently, a denial of

servi ce.

Ref er ences
1. Nornmtive References

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/RFC5280, My 2008,
<https://ww. rfc-editor.org/info/rfc5280>.

[RFC6481] Huston, G, Loomans, R, and G Mchaelson, "A Profile for
Resource Certificate Repository Structure", RFC 6481,
DO 10.17487/ RFC6481, February 2012,
<https://www. rfc-editor.org/info/rfc6481>.

[RFC6482] Lepinski, M, Kent, S., and D. Kong, "A Profile for Route
Origin Authorizations (ROAs)", RFC 6482,
DO 10.17487/ RFC6482, February 2012,
<https://ww. rfc-editor.org/info/rfc6482>.

[RFC6486] Austein, R, Huston, G, Kent, S., and M Lepinski,
"Mani fests for the Resource Public Key Infrastructure
(RPKI)", RFC 6486, DO 10.17487/ RFC6486, February 2012,
<https://www. rfc-editor.org/info/rfc6486>.

[RFC6487] Huston, G, Mchaelson, G, and R Loonans, "A Profile for
X. 509 PKI X Resource Certificates", RFC 6487,
DO 10. 17487/ RFC6487, February 2012,
<https://www. rfc-editor.org/info/rfc6487>.

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 14]

Internet-Draft RPKI Tree Validation Sept enber 2018

[RFC6488] Lepinski, M, Chi, A, and S. Kent, "Signhed bject
Tenpl ate for the Resource Public Key Infrastructure
(RPKI)", RFC 6488, DO 10.17487/ RFC6488, February 2012,
<https://ww.rfc-editor.org/info/rfc6488>.

[RFC6493] Bush, R, "The Resource Public Key Infrastructure (RPKI)
Ghost busters Record", RFC 6493, DO 10. 17487/ RFC6493,
February 2012, <https://ww. rfc-editor.org/info/rfc6493>.

[RFC6916] Gagliano, R, Kent, S., and S. Turner, "AlgorithmAgility
Procedure for the Resource Public Key Infrastructure
(RPKI)", BCP 182, RFC 6916, DO 10.17487/ RFC6916, April
2013, <https://www. rfc-editor.org/info/rfc6916>.

[RFC7730] Huston, G, Wiler, S., Mchaelson, G, and S. Kent,
"Resource Public Key Infrastructure (RPKI) Trust Anchor
Locator", RFC 7730, DO 10.17487/RFC7730, January 2016,
<https://ww. rfc-editor.org/info/rfc7730>.

[RFC7935] Huston, G and G M chael son, Ed., "The Profile for
Al gorithns and Key Sizes for Use in the Resource Public
Key Infrastructure", RFC 7935, DO 10.17487/ RFC7935,
August 2016, <https://ww.rfc-editor.org/info/rfc7935>.

[RFC8182] Bruijnzeels, T., Miravskiy, O, Wber, B., and R Austein,
"The RPKI Repository Delta Protocol (RRDP)", RFC 8182,
DA 10.17487/ RFC8182, July 2017,
<https://ww.rfc-editor.org/info/rfc8182>.

[RFC8360] Huston, G, Mchaelson, G, Martinez, C, Bruijnzeels, T.,
Newt on, A., and D. Shaw, "Resource Public Key
Infrastructure (RPKI) Validation Reconsidered", RFC 8360,
DO 10. 17487/ RFC8360, April 2018,
<https://ww.rfc-editor.org/info/rfc8360>.

10.2. Informative References

[gi t hub] "Rl PE NCC RPKI Validator on G tHub",
<https://github. comf Rl PE- NCC/ r pki - val i dat or >.

[rsync] "Rsync hone page", <https://rsync.sanba. org>.

Aut hors’ Addresses

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 15]

Internet-Draft RPKI Tree Validation Sept enber 2018

A eg Muravskiy
Rl PE NCC

Enail: ol eg@i pe. net
URI : https://ww.ripe. net/

Ti m Bruijnzeel s
NLNet Labs

Emai | : tim@hl netl abs. nl
URI : https://ww. nl netl abs. nl/

Muravskiy & Bruijnzeels Expires March 20, 2019 [Page 16]

