
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Informational Arm Limited
Expires: January 9, 2020 H. Birkholz
 Fraunhofer SIT
 July 08, 2019

 SUIT CBOR manifest serialisation format
 draft-moran-suit-manifest-05

Abstract

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about the firmware for an IoT device, where to
 find the firmware, the devices to which it applies, and cryptographic
 information protecting the manifest.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Moran, et al. Expires January 9, 2020 [Page 1]

Internet-Draft Firmware Manifest Format July 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Conventions and Terminology 4
 3. Distributing firmware . 5
 4. Workflow of a device applying a firmware update 5
 5. SUIT manifest goals . 6
 6. SUIT manifest design overview 7
 6.1. Manifest Design Evaluation 8
 6.2. Severable Elements 9
 6.3. Conventions . 9
 6.4. Payloads . 9
 7. Manifest Structure . 10
 7.1. Outer wrapper . 11
 7.2. Manifest . 13
 7.3. SUIT_Dependency . 16
 7.4. SUIT_Component_Reference 17
 7.5. Manifest Parameters 17
 7.5.1. SUIT_Parameter_Strict_Order 19
 7.5.2. SUIT_Parameter_Coerce_Condition_Failure 20
 7.6. SUIT_Parameter_Encryption_Info 20
 7.7. SUIT_Parameter_Compression_Info 20
 7.8. SUIT_Parameter_Unpack_Info 20
 7.9. SUIT_Parameters CDDL 21
 7.10. SUIT_Command_Sequence 22
 7.11. SUIT_Condition . 24
 7.11.1. Identifier Conditions 25
 7.11.2. suit-condition-image-match 25
 7.11.3. suit-condition-image-not-match 25
 7.11.4. suit-condition-use-before 25
 7.11.5. suit-condition-minimum-battery 25
 7.11.6. suit-condition-update-authorised 26
 7.11.7. suit-condition-version 26

Moran, et al. Expires January 9, 2020 [Page 2]

Internet-Draft Firmware Manifest Format July 2019

 7.11.8. SUIT_Condition_Custom 27
 7.11.9. Identifiers . 27
 7.11.10. SUIT_Condition CDDL 29
 7.12. SUIT_Directive . 29
 7.12.1. suit-directive-set-component-index 30
 7.12.2. suit-directive-set-dependency-index 31
 7.12.3. suit-directive-abort 31
 7.12.4. suit-directive-run-sequence 31
 7.12.5. suit-directive-try-each 32
 7.12.6. suit-directive-process-dependency 32
 7.12.7. suit-directive-set-parameters 33
 7.12.8. suit-directive-override-parameters 33
 7.12.9. suit-directive-fetch 34
 7.12.10. suit-directive-copy 34
 7.12.11. suit-directive-swap 35
 7.12.12. suit-directive-run 35
 7.12.13. suit-directive-wait 36
 7.12.14. SUIT_Directive CDDL 37
 8. Dependency processing . 39
 9. Access Control Lists . 40
 10. SUIT digest container . 40
 11. Creating conditional sequences 41
 12. Full CDDL . 43
 13. Examples . 48
 13.1. Example 0: . 48
 13.2. Example 1: . 49
 13.3. Example 2: . 52
 13.4. Example 3: . 54
 13.5. Example 4: . 57
 13.6. Example 5: . 61
 13.7. Example 6: . 65
 14. IANA Considerations . 68
 15. Security Considerations 68
 16. Mailing List Information 69
 17. Acknowledgements . 69
 18. References . 69
 18.1. Normative References 69
 18.2. Informative References 70
 18.3. URIs . 70
 Authors’ Addresses . 71

1. Introduction

 A firmware update mechanism is an essential security feature for IoT
 devices to deal with vulnerabilities. While the transport of
 firmware images to the devices themselves is important there are
 already various techniques available, such as the Lightweight
 Machine-to-Machine (LwM2M) protocol offering device management of IoT

Moran, et al. Expires January 9, 2020 [Page 3]

Internet-Draft Firmware Manifest Format July 2019

 devices. Equally important is the inclusion of meta-data about the
 conveyed firmware image (in the form of a manifest) and the use of
 end-to-end security protection to detect modifications and
 (optionally) to make reverse engineering more difficult. End-to-end
 security allows the author, who builds the firmware image, to be sure
 that no other party (including potential adversaries) can install
 firmware updates on IoT devices without adequate privileges. This
 authorization process is ensured by the use of dedicated symmetric or
 asymmetric keys installed on the IoT device: for use cases where only
 integrity protection is required it is sufficient to install a trust
 anchor on the IoT device. For confidentiality protected firmware
 images it is additionally required to install either one or multiple
 symmetric or asymmetric keys on the IoT device. Starting security
 protection at the author is a risk mitigation technique so firmware
 images and manifests can be stored on untrusted respositories; it
 also reduces the scope of a compromise of any repository or
 intermediate system to be no worse than a denial of service.

 It is assumed that the reader is familiar with the high-level
 firmware update architecture [Architecture].

 The SUIT manifest is heavily optimised for consumption by constrained
 devices. This means that it is not constructed as a conventional
 descriptive document. Instead, of describing what an update IS, it
 describes what a recipient should DO.

 While the SUIT manifest is informed by and optimised for firmware
 update use cases, there is nothing in the [Information] that
 restricts its use to only firmware use cases. Software update and
 delivery of arbitrary data can equally be managed by SUIT-based
 metadata.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 - SUIT: Sofware Update for the Internet of Things, the IETF working
 group for this standard.

 - Payload: A piece of information to be delivered. Typically
 Firmware for the purposes of SUIT.

 - Resource: A piece of information that is used to construct a
 payload.

Moran, et al. Expires January 9, 2020 [Page 4]

Internet-Draft Firmware Manifest Format July 2019

 - Manifest: A piece of information that describes one or more
 payloads, one or more resources, and the processors needed to
 transform resources into payloads.

 - Update: One or more manifests that describe one or more payloads.

 - Update Authority: The owner of a cryptographic key used to sign
 updates, trusted by recipient devices.

 - Recipient: The system, typically an IoT device, that receives a
 manifest.

 - Condition: A test for a property of the Recipient or its
 components.

 - Directive: An action for the Recipient to perform.

 - Command: A Condition or a Directive.

 - Trusted Execution: A process by which a system ensures that only
 trusted code is executed, for example secure boot.

3. Distributing firmware

 Distributing firmware in a multi-party environment is a difficult
 operation. Each party requires a different subset of data. Some
 data may not be accessible to all parties. Multiple signatures may
 be required from parties with different authorities. This topic is
 covered in more depth in [Architecture].

4. Workflow of a device applying a firmware update

 The manifest is designed to work with a pull parser, where each
 section of the manifest is used in sequence. The expected workflow
 for a device installing an update can be broken down into 5 steps:

 1. Verify the signature of the manifest

 2. Verify the applicability of the manifest

 3. Resolve dependencies

 4. Fetch payload(s)

 5. Install payload(s)

 When installation is complete, similar information can be used for
 validating and running images in a further three steps:

Moran, et al. Expires January 9, 2020 [Page 5]

Internet-Draft Firmware Manifest Format July 2019

 1. Verify image(s)

 2. Load image(s)

 3. Run image(s)

 When multiple manifests are used for an update, each manifest’s steps
 occur in a lockstep fashion; all manifests have dependency resolution
 performed before any manifest performs a payload fetch, etc.

5. SUIT manifest goals

 The manifest described in this document is intended to meet several
 goals, as described below.

 1. Meet the requirements defined in [Information].

 2. Simple to parse on a constrained node

 3. Simple to process on a constrained node

 4. Compact encoding

 5. Comprehensible by an intermediate system

 6. Expressive enough to enable advanced use cases on advanced nodes

 7. Extensible

 The SUIT manifest can be used for a variety of purposes throughout
 its lifecycle. The manifest allows:

 1. the Firmware Author to reason about releasing a firmware.

 2. the Network Operator to reason about compatibility of a firmware.

 3. the Device Operator to reason about the impact of a firmware.

 4. the Device Operator to manage distribution of firmware to
 devices.

 5. the Plant Manager to reason about timing and acceptance of
 firmware updates.

 6. the device to reason about the authority & authenticity of a
 firmware prior to installation.

 7. the device to reason about the applicability of a firmware.

Moran, et al. Expires January 9, 2020 [Page 6]

Internet-Draft Firmware Manifest Format July 2019

 8. the device to reason about the installation of a firmware.

 9. the device to reason about the authenticity & encoding of a
 firmware at boot.

 Each of these uses happens at a different stage of the manifest
 lifecycle, so each has different requirements.

6. SUIT manifest design overview

 In order to provide flexible behaviour to constrained devices, while
 still allowing more powerful devices to use their full capabilities,
 the SUIT manifest encodes the required behaviour of a Recipient
 device. Behaviour is encoded as a specialised byte code, contained
 in a CBOR list. This promotes a flat encoding, which simplifies the
 parser. The information encoded by this byte code closely matches
 the operations that a device will perform, which promotes ease of
 processing. The core operations used by most update and trusted
 execution operations are represented in the byte code. The byte code
 can be extended by registering new operations.

 The specialised byte code approach gives benefits equivalent to those
 provided by a scripting language or conventional byte code, with two
 substantial differences. First, the language is extremely high
 level, consisting of only the operations that a device may perform
 during update and trusted execution of a firmware image. Second, the
 language specifies behaviours in a linearised form, without reverse
 branches. Conditional processing is supported, and parallel and out-
 of-order processing may be performed by sufficiently capable devices.

 By structuring the data in this way, the manifest processor becomes a
 very simple engine that uses a pull parser to interpret the manifest.
 This pull parser invokes a series of command handlers that evaluate a
 Condition or execute a Directive. Most data is structured in a
 highly regular pattern, which simplifies the parser.

 The results of this allow a Recipient to implement a very small
 parser for constrained applications. If needed, such a parser also
 allows the Recipient to perform complex updates with reduced
 overhead. Conditional execution of commands allows a simple device
 to perform important decisions at validation-time.

 Dependency handling is vastly simplified as well. Dependencies
 function like subroutines of the language. When a manifest has a
 dependency, it can invoke that dependency’s commands and modify their
 behaviour by setting parameters. Because some parameters come with
 security implications, the dependencies also have a mechanism to
 reject modifications to parameters on a fine-grained level.

Moran, et al. Expires January 9, 2020 [Page 7]

Internet-Draft Firmware Manifest Format July 2019

 Developing a robust permissions system works in this model too. The
 Recipient can use a simple ACL that is a table of Identities and
 Component Identifier permissions to ensure that only manifests
 authenticated by the appropriate identity have access to operate on a
 component.

 Capability reporting is similarly simplified. A Recipient can report
 the Commands, Parameters, Algorithms, and Component Identifiers that
 it supports. This is sufficiently precise for a manifest author to
 create a manifest that the Recipient can accept.

 The simplicity of design in the Recipient due to all of these
 benefits allows even a highly constrained platform to use advanced
 update capabilities.

6.1. Manifest Design Evaluation

 To evaluate this design, it is compared to the goals stated above.

 Goal evaluation:

 1. Each command and condition is anchored to a manifest information
 element in [Information]

 2. The use of a byte code encourages flat encoding and reduces
 nesting depth. This promotes a simple encoding.

 3. The encoded information closely matches the operations that a
 device will perform, making the format easy to process.

 4. Encoding efficiency exceeds 50% when compared to raw data.

 5. Tooling will be required to reason about the manifest.

 6. The core operations used by most update and trusted execution
 operations are represented in the byte code. The use cases
 listed in [Information] are enabled.

 7. Registration of new standard byte code identifiers enables
 extension in a comprehensible way.

 The manifest described by this document meets the stated goals.
 Meeting goal 5-comprehensible by intermediate systems-will require
 additional tooling or a division of metadata.

Moran, et al. Expires January 9, 2020 [Page 8]

Internet-Draft Firmware Manifest Format July 2019

6.2. Severable Elements

 Because the manifest can be used by different actors at different
 times, some parts of the manifest can be removed without affecting
 later stages of the lifecycle. This is called "Severing." Severing
 of information is achieved by separating that information from the
 signed container so that removing it does not affect the signature.
 This means that ensuring authenticity of severable parts of the
 manifest is a requirement for the signed portion of the manifest.
 Severing some parts makes it possible to discard parts of the
 manifest that are no longer necessary. This is important because it
 allows the storage used by the manifest to be greatly reduced. For
 example, no text size limits are needed if text is removed from the
 manifest prior to delivery to a constrained device.

 Elements are made severable by removing them from the manifest,
 encoding them in a bstr, and placing a SUIT_Digest of the bstr in the
 manifest so that they can still be authenticated. The SUIT_Digest
 typically consumes 4 bytes more than the size of the raw digest,
 therefore elements smaller than (Digest Bits)/8 + 4 SHOULD never be
 severable. Elements larger than (Digest Bits)/8 + 4 MAY be
 severable, while elements that are much larger than (Digest Bits)/8 +
 4 SHOULD be severable.

6.3. Conventions

 The map indices in this encoding are reset to 1 for each map within
 the structure. This is to keep the indices as small as possible.
 The goal is to keep the index objects to single bytes (CBOR positive
 integers 1-23).

 Wherever enumerations are used, they are started at 1. This allows
 detection of several common software errors that are caused by
 uninitialised variables. Positive numbers in enumerations are
 reserved for IANA registration. Negative numbers are used to
 identify application-specific implementations.

 CDDL names are hyphenated and CDDL structures follow the convention
 adopted in COSE [RFC8152]: SUIT_Structure_Name.

6.4. Payloads

 Payloads can take many forms, for example, binary, hex, s-record,
 elf, binary diff, PEM certificate, CBOR Web Token, serialised
 configuration. These payloads fall into two broad categories: those
 that require installation-time unpacking and those that do not.
 Binary, PEM certificate, and CBOR Web Token do not require
 installation-time unpacking. Hex, s-record, and serialised

Moran, et al. Expires January 9, 2020 [Page 9]

Internet-Draft Firmware Manifest Format July 2019

 configuration require installation-time unpacking. Elf may or may
 not require unpacking depending on the target.

 Some payloads cannot be directly converted to a writable binary
 stream. Hex, s-record, and elf may contain gaps and they have no
 guarantee of monotonic increase of address, which makes pre-
 processing them into a binary stream difficult on constrained
 platforms. Serialised configuration may be unpacked into a
 configuration database, which makes it impossible to preprocess into
 a binary stream, suitable for direct writing.

 Where a specialised unpacking algorithm is needed, a digest is not
 always calculable over an installed payload. For example, an elf,
 s-record or hex file may contain gaps that can contain any data,
 while not changing whether or not an installed payload is valid.
 Serialised configuration may update only some device data rather than
 all of it. This means that the digest cannot always be calculated
 over an installed payload when a specialised installer is used.

 This presents two problems for the manifest: first, it must indicate
 that a specialised installer is needed and, second, it cannot provide
 a hash of the payload that is checkable after installation. These
 two problems are resolved in two ways:

 1. Payloads that need a specialised installer must indicate this in
 suit-payload-info-unpack.

 2. Payloads that need specialised verification must indicate this in
 the SUIT_Parameter_Image_Digest by indicating a SUIT_Digest
 algorithm that correctly validates their information.

7. Manifest Structure

 The manifest is divided into several sections in a hierarchy as
 follows:

 1. The outer wrapper

 1. The authentication wrapper

 2. The manifest

 1. Critical Information

 2. Information shared by all command sequences

 1. List of dependencies

Moran, et al. Expires January 9, 2020 [Page 10]

Internet-Draft Firmware Manifest Format July 2019

 2. List of payloads

 3. List of payloads in dependencies

 4. Common list of conditions, directives

 3. Dependency resolution Reference or list of conditions,
 directives

 4. Payload fetch Reference or list of conditions,
 directives

 5. Installation Reference or list of conditions, directives

 6. Verification conditions/directives

 7. Load conditions/directives

 8. Run conditions/directives

 9. Text / Reference

 10. COSWID / Reference

 3. Dependency resolution conditions/directives

 4. Payload fetch conditions/directives

 5. Installation conditions/directives

 6. Text

 7. COSWID / Reference

 8. Intermediate Certificate(s) / CWTs

 9. Inline Payload(s)

7.1. Outer wrapper

 This object is a container for the other pieces of the manifest to
 provide a common mechanism to find each of the parts. All elements
 of the outer wrapper are contained in bstr objects. Wherever the
 manifest references an object in the outer wrapper, the bstr is
 included in the digest calculation.

 The CDDL that describes the wrapper is below

Moran, et al. Expires January 9, 2020 [Page 11]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Outer_Wrapper = {
 suit-authentication-wrapper => bstr .cbor
 SUIT_Authentication_Wrapper / nil,
 $SUIT_Manifest_Wrapped,
 ? suit-dependency-resolution => bstr .cbor SUIT_Command_Sequence,
 ? suit-payload-fetch => bstr .cbor SUIT_Command_Sequence,
 ? suit-install => bstr .cbor SUIT_Command_Sequence,
 ? suit-text-external => bstr .cbor SUIT_Text_Info,
 ? suit-coswid-external => bstr .cbor COSWID
}

SUIT_Authentication_Wrapper = [+ (COSE_Mac_Tagged / COSE_Sign_Tagged /
 COSE_Mac0_Tagged / COSE_Sign1_Tagged)]
SUIT_Encryption_Wrapper = COSE_Encrypt_Tagged / COSE_Encrypt0_Tagged

SUIT_Manifest_Wrapped //= (suit-manifest => bstr .cbor SUIT_Manifest)
SUIT_Manifest_Wrapped //= (
 suit-manifest-encryption-info => bstr .cbor SUIT_Encryption_Wrapper,
 suit-manifest-encrypted => bstr
)

 All elements of the outer wrapper must be wrapped in a bstr to
 minimize the complexity of the code that evaluates the cryptographic
 integrity of the element and to ensure correct serialisation for
 integrity and authenticity checks.

 The suit-authentication-wrapper contains a list of 1 or more
 cryptographic authentication wrappers for the core part of the
 manifest. These are implemented as COSE_Mac_Tagged or
 COSE_Sign_Tagged blocks. The Manifest is authenticated by these
 blocks in "detached payload" mode. The COSE_Mac_Tagged and
 COSE_Sign_Tagged blocks are described in RFC 8152 [RFC8152] and are
 beyond the scope of this document. The suit-authentication-wrapper
 MUST come first in the SUIT_Outer_Wrapper, regardless of canonical
 encoding of CBOR. All validators MUST reject any SUIT_Outer_Wrapper
 that begins with any element other than a suit-authentication-
 wrapper.

 A manifest that has not had authentication information added MUST
 still contain the suit-authentication-wrapper element, but the
 content MUST be nil.

 The outer wrapper MUST contain only one of

 - a plaintext manifest: SUIT_Manifest

 - an encrypted manifest: both a SUIT_Encryption_Wrapper and the
 ciphertext of a manifest.

Moran, et al. Expires January 9, 2020 [Page 12]

Internet-Draft Firmware Manifest Format July 2019

 When the outer wrapper contains SUIT_Encryption_Wrapper, the suit-
 authentication-wrapper MUST authenticate the plaintext of suit-
 manifest-encrypted.

 suit-manifest contains a SUIT_Manifest structure, which describes the
 payload(s) to be installed and any dependencies on other manifests.

 suit-manifest-encryption-info contains a SUIT_Encryption_Wrapper, a
 COSE object that describes the information required to decrypt a
 ciphertext manifest.

 suit-manifest-encrypted contains a ciphertext manifest.

 Each of suit-dependency-resolution, suit-payload-fetch, and suit-
 payload-installation contain the severable contents of the
 identically named portions of the manifest, described in Section 7.2.

 suit-text contains all the human-readable information that describes
 any and all parts of the manifest, its payload(s) and its
 resource(s).

 suit-coswid contains a Concise Software Identifier. This may be
 discarded by the recipient if not needed.

7.2. Manifest

 The manifest describes the critical metadata for the referenced
 payload(s). In addition, it contains:

 1. a version number for the manifest structure itself

 2. a sequence number

 3. a list of dependencies

 4. a list of components affected

 5. a list of components affected by dependencies

 6. a reference for each of the severable blocks.

 7. a list of actions that the recipient should perform.

 The following CDDL fragment defines the manifest.

Moran, et al. Expires January 9, 2020 [Page 13]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Manifest = {
 suit-manifest-version => 1,
 suit-manifest-sequence-number => uint,
 suit-common => bstr .cbor SUIT_Common,
 ? suit-dependency-resolution => Digest / bstr .cbor SUIT_Command_Sequence,
 ? suit-payload-fetch => Digest / bstr .cbor SUIT_Command_Sequence,
 ? suit-install => Digest / bstr .cbor SUIT_Command_Sequence
 ? suit-validate => bstr .cbor SUIT_Command_Sequence
 ? suit-load => bstr .cbor SUIT_Command_Sequence
 ? suit-run => bstr .cbor SUIT_Command_Sequence
 ? suit-text-info => Digest / bstr .cbor SUIT_Text_Map
 ? suit-coswid => Digest / bstr .cbor COSWID
}

SUIT_Common = {
 ? suit-dependencies => bstr .cbor [+ SUIT_Dependency],
 ? suit-components => bstr .cbor [+ SUIT_Component_Identifier],
 ? suit-dependency-components => bstr .cbor [+ SUIT_Component_Reference],
 ? suit-common-sequence => bstr .cbor SUIT_Command_Sequence,
}

 Several fields in the Manifest can be either a CBOR structure or a
 SUIT_Digest. In each of these cases, the SUIT_Digest provides for a
 severable field. Severable fields are RECOMMENDED to implement. In
 particular, text SHOULD be severable, since most useful text elements
 occupy more space than a SUIT_Digest, but are not needed by recipient
 devices. Because SUIT_Digest is a CBOR Array and each severable
 element is a CBOR bstr, it is straight-forward for a recipient to
 determine whether an element is been severable. The key used for a
 severable element is the same in the SUIT_Manifest and in the
 SUIT_Outer_Wrapper so that a recipient can easily identify the
 correct data in the outer wrapper.

 The suit-manifest-version indicates the version of serialisation used
 to encode the manifest. Version 1 is the version described in this
 document. suit-manifest-version is REQUIRED.

 The suit-manifest-sequence-number is a monotonically increasing anti-
 rollback counter. It also helps devices to determine which in a set
 of manifests is the "root" manifest in a given update. Each manifest
 MUST have a sequence number higher than each of its dependencies.
 Each recipient MUST reject any manifest that has a sequence number
 lower than its current sequence number. It MAY be convenient to use
 a UTC timestamp in seconds as the sequence number. suit-manifest-
 sequence-number is REQUIRED.

 suit-common encodes all the information that is shared between each
 of the command sequences, including: suit-dependencies, suit-

Moran, et al. Expires January 9, 2020 [Page 14]

Internet-Draft Firmware Manifest Format July 2019

 components, suit-dependency-components, and suit-common-sequence.
 suit-common is REQUIRED to implement.

 suit-dependencies is a list of SUIT_Dependency blocks that specify
 manifests that must be present before the current manifest can be
 processed. suit-dependencies is OPTIONAL to implement.

 In order to distinguish between components that are affected by the
 current manifest and components that are affected by a dependency,
 they are kept in separate lists. Components affected by the current
 manifest only list the component identifier. Components affected by
 a dependency include the component identifier and the index of the
 dependency that defines the component.

 suit-components is a list of SUIT_Component blocks that specify the
 component identifiers that will be affected by the content of the
 current manifest. suit-components is OPTIONAL, but at least one
 manifest MUST contain a suit-components block.

 suit-dependency-components is a list of SUIT_Component_Reference
 blocks that specify component identifiers that will be affected by
 the content of a dependency of the current manifest. suit-dependency-
 components is OPTIONAL.

 suit-common-sequence is a SUIT_Command_Sequence to execute prior to
 executing any other command sequence. Typical actions in suit-
 common-sequence include setting expected device identity and image
 digests when they are conditional (see Section 11 for more
 information on conditional sequences). suit-common-sequence is
 RECOMMENDED.

 suit-dependency-resolution is a SUIT_Command_Sequence to execute in
 order to perform dependency resolution. Typical actions include
 configuring URIs of dependency manifests, fetching dependency
 manifests, and validating dependency manifests’ contents. suit-
 dependency-resolution is REQUIRED when suit-dependencies is present.

 suit-payload-fetch is a SUIT_Command_Sequence to execute in order to
 obtain a payload. Some manifests may include these actions in the
 suit-install section instead if they operate in a streaming
 installation mode. This is particularly relevant for constrained
 devices without any temporary storage for staging the update. suit-
 payload-fetch is OPTIONAL.

 suit-install is a SUIT_Command_Sequence to execute in order to
 install a payload. Typical actions include verifying a payload
 stored in temporary storage, copying a staged payload from temporary
 storage, and unpacking a payload. suit-install is OPTIONAL.

Moran, et al. Expires January 9, 2020 [Page 15]

Internet-Draft Firmware Manifest Format July 2019

 suit-validate is a SUIT_Command_Sequence to execute in order to
 validate that the result of applying the update is correct. Typical
 actions involve image validation and manifest validation. suit-
 validate is REQUIRED. If the manifest contains dependencies, one
 process-dependency invocation per dependency or one process-
 dependency invocation targeting all dependencies SHOULD be present in
 validate.

 suit-load is a SUIT_Command_Sequence to execute in order to prepare a
 payload for execution. Typical actions include copying an image from
 permanent storage into RAM, optionally including actions such as
 decryption or decompression. suit-load is OPTIONAL.

 suit-run is a SUIT_Command_Sequence to execute in order to run an
 image. suit-run typically contains a single instruction: either the
 "run" directive for the bootable manifest or the "process
 dependencies" directive for any dependents of the bootable manifest.
 suit-run is OPTIONAL. Only one manifest in an update may contain the
 "run" directive.

 suit-text-info is a digest that uniquely identifies the content of
 the Text that is packaged in the OuterWrapper. text is OPTIONAL.

 suit-coswid is a digest that uniquely identifies the content of the
 concise-software-identifier that is packaged in the OuterWrapper.
 coswid is OPTIONAL.

7.3. SUIT_Dependency

 SUIT_Dependency specifies a manifest that describes a dependency of
 the current manifest.

 The following CDDL describes the SUIT_Dependency structure.

 SUIT_Dependency = {
 suit-dependency-digest => SUIT_Digest,
 ? suit-dependency-prefix => SUIT_Component_Identifier,
 }

 The suit-dependency-digest specifies the dependency manifest uniquely
 by identifying a particular Manifest structure. The digest is
 calculated over the Manifest structure instead of the COSE
 Sig_structure or Mac_structure. This means that a digest may need to
 be calculated more than once, however this is necessary to ensure
 that removing a signature from a manifest does not break dependencies
 due to missing signature elements. This is also necessary to support
 the trusted intermediary use case, where an intermediary re-signs the

Moran, et al. Expires January 9, 2020 [Page 16]

Internet-Draft Firmware Manifest Format July 2019

 Manifest, removing the original signature, potentially with a
 different algorithm, or trading COSE_Sign for COSE_Mac.

 The suit-dependency-prefix element contains a
 SUIT_Component_Identifier. This specifies the scope at which the
 dependency operates. This allows the dependency to be forwarded on
 to a component that is capable of parsing its own manifests. It also
 allows one manifest to be deployed to multiple dependent devices
 without those devices needing consistent component hierarchy. This
 element is OPTIONAL.

7.4. SUIT_Component_Reference

 The SUIT_Component_Reference describes an image that is defined by
 another manifest. This is useful for overriding the behaviour of
 another manifest, for example by directing the recipient to look at a
 different URI for the image or by changing the expected format, such
 as when a gateway performs decryption on behalf of a constrained
 device. The following CDDL describes the SUIT_Component_Reference.

 SUIT_Component_Reference = {
 suit-component-identifier => SUIT_Component_Identifier,
 suit-component-dependency-index => uint
 }

7.5. Manifest Parameters

 Many conditions and directives require additional information. That
 information is contained within parameters that can be set in a
 consistent way. Parameters MUST only be:

 1. Integers
 2. Byte strings
 3. Booleans

 This allows reduction of manifest size and replacement of parameters
 from one manifest to the next. Byte strings MAY contain CBOR-encoded
 objects.

 The defined manifest parameters are described below.

 +--------+-------+------+---------------+----------+----------------+
Parame	CBOR	Defa	Scope	Name	Description
ter	Type	ult			
Code					
+--------+-------+------+---------------+----------+----------------+					
1	boole	True	Global	Strict	Requires that
	an			Order	the manifest

Moran, et al. Expires January 9, 2020 [Page 17]

Internet-Draft Firmware Manifest Format July 2019

					is processed
					in a strictly
					linear
					fashion. Set
					to 0 to enable
					parallel
					handling of
					manifest
					directives.
2	boole	Fals	Command	Coerce C	Coerces the
	an	e	Segment	ondition	success code
				Failure	of a command
					segment to
					success even
					when aborted
					due to a
					condition
					failure.
3	bstr	nil	Component/Glo	Vendor	A RFC4122 UUID
			bal	ID	representing
					the vendor of
					the device or
					component
4	bstr	nil	Component/Glo	Class ID	A RFC4122 UUID
			bal		representing
					the class of
					the device or
					component
5	bstr	nil	Component/Glo	Device	A RFC4122 UUID
			bal	ID	representing
					the device or
					component
6	bstr	nil	Component/Dep	URI	A URI from
			endency		which to fetch
					a resource
7	bstr	nil	Component/Dep	Encrypti	A COSE object
			endency	on Info	defining the
					encryption
					mode of a
					resource
8	bstr	nil	Component	Compress	A SUIT_Compres

Moran, et al. Expires January 9, 2020 [Page 18]

Internet-Draft Firmware Manifest Format July 2019

				ion Info	sion_Info
					object
9	bstr	nil	Component	Unpack	A SUIT_Unpack_
				Info	Info object
10	uint	nil	Component	Source C	A Component
				omponent	Index
11	bstr	nil	Component/Dep	Image	A SUIT_Digest
			endency	Digest	
12	bstr	nil	Component/Dep	Image	Integer size
			endency	Size	
24	bstr	nil	Component/Dep	URI List	A CBOR encoded
			endency		list of ranked
					URIs
25	boole	Fals	Component/Dep	URI List	A CBOR encoded
	an	e	endency	Append	list of ranked
					URIs
nint	int/b	nil	Custom	Custom P	Application-
	str			arameter	defined
					parameter
 +--------+-------+------+---------------+----------+----------------+

 CBOR-encoded object parameters are still wrapped in a bstr. This is
 because it allows a parser that is aggregating parameters to
 reference the object with a single pointer and traverse it without
 understanding the contents. This is important for modularisation and
 division of responsibility within a pull parser. The same
 consideration does not apply to Conditions and Directives because
 those elements are invoked with their arguments immediately

7.5.1. SUIT_Parameter_Strict_Order

 The Strict Order Parameter allows a manifest to govern when
 directives can be executed out-of-order. This allows for systems
 that have a sensitivity to order of updates to choose the order in
 which they are executed. It also allows for more advanced systems to
 parallelise their handling of updates. Strict Order defaults to
 True. It MAY be set to False when the order of operations does not
 matter. When arriving at the end of a command sequence, ALL commands
 MUST have completed, regardless of the state of
 SUIT_Parameter_Strict_Order. If SUIT_Parameter_Strict_Order is

Moran, et al. Expires January 9, 2020 [Page 19]

Internet-Draft Firmware Manifest Format July 2019

 returned to True, ALL preceding commands MUST complete before the
 next command is executed.

7.5.2. SUIT_Parameter_Coerce_Condition_Failure

 When executing a command sequence inside SUIT_Run_Sequence and a
 condition failure occurs, the manifest processor aborts the sequence.
 If Coerce Condition Failure is True, it returns Success. Otherwise,
 it returns the original condition failure.
 SUIT_Parameter_Coerce_Condition_Failure is scoped to the enclosing
 SUIT_Directive_Run_Sequence. Its value is discarded when
 SUIT_Directive_Run_Sequence terminates.

7.6. SUIT_Parameter_Encryption_Info

 Encryption Info defines the mechanism that Fetch or Copy should use
 to decrypt the data they transfer. SUIT_Parameter_Encryption_Info is
 encoded as a COSE_Encrypt_Tagged or a COSE_Encrypt0_Tagged, wrapped
 in a bstr

7.7. SUIT_Parameter_Compression_Info

 Compression Info defines any information that is required for a
 device to perform decompression operations. Typically, this includes
 the algorithm identifier.

 SUIT_Parameter_Compression_Info is defined by the following CDDL:

 SUIT_Compression_Info = {
 suit-compression-algorithm => SUIT_Compression_Algorithms
 ? suit-compression-parameters => bstr
 }

 SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_gzip
 SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_bzip2
 SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_deflate
 SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_LZ4
 SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_lzma

7.8. SUIT_Parameter_Unpack_Info

 SUIT_Unpack_Info defines the information required for a device to
 interpret a packed format, such as elf, hex, or binary diff.
 SUIT_Unpack_Info is defined by the following CDDL:

Moran, et al. Expires January 9, 2020 [Page 20]

Internet-Draft Firmware Manifest Format July 2019

 SUIT_Unpack_Info = {
 suit-unpack-algorithm => SUIT_Unpack_Algorithms
 ? suit-unpack-parameters => bstr
 }

 SUIT_Unpack_Algorithms //= SUIT_Unpack_Algorithm_Delta
 SUIT_Unpack_Algorithms //= SUIT_Unpack_Algorithm_Hex
 SUIT_Unpack_Algorithms //= SUIT_Unpack_Algorithm_Elf

7.9. SUIT_Parameters CDDL

 The following CDDL describes all SUIT_Parameters.

Moran, et al. Expires January 9, 2020 [Page 21]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Parameters //= (suit-parameter-strict-order => bool)
SUIT_Parameters //= (suit-parameter-coerce-condition-failure => bool)
SUIT_Parameters //= (suit-parameter-vendor-id => bstr)
SUIT_Parameters //= (suit-parameter-class-id => bstr)
SUIT_Parameters //= (suit-parameter-device-id => bstr)
SUIT_Parameters //= (suit-parameter-uri => bstr)
SUIT_Parameters //= (suit-parameter-encryption-info => bstr .cbor SUIT_Encryptio
n_Info)
SUIT_Parameters //= (suit-parameter-compression-info => bstr .cbor SUIT_Compress
ion_Info)
SUIT_Parameters //= (suit-parameter-unpack-info => bstr .cbor SUIT_Unpack_Info)
SUIT_Parameters //= (suit-parameter-source-component => bstr .cbor SUIT_Componen
t_Identifier)
SUIT_Parameters //= (suit-parameter-image-digest => bstr .cbor SUIT_Digest)
SUIT_Parameters //= (suit-parameter-image-size => uint)
SUIT_Parameters //= (suit-parameter-uri-list => bstr .cbor SUIT_URI_List)
SUIT_Parameters //= (suit-parameter_custom => int/bool/bstr)

SUIT_URI_List = [+ [priority: int, uri: tstr]]

SUIT_Encryption_Info= COSE_Encrypt_Tagged/COSE_Encrypt0_Tagged
SUIT_Compression_Info = {
 suit-compression-algorithm => SUIT_Compression_Algorithms
 ? suit-compression-parameters => bstr
}

SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_gzip
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_bzip2
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_deflate
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_LZ4
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_lzma

SUIT_Unpack_Info = {
 suit-unpack-algorithm => SUIT_Unpack_Algorithms
 ? suit-unpack-parameters => bstr
}

SUIT_Unpack_Algorithms //= SUIT_Unpack_Algorithm_Delta
SUIT_Unpack_Algorithms //= SUIT_Unpack_Algorithm_Hex
SUIT_Unpack_Algorithms //= SUIT_Unpack_Algorithm_Elf

7.10. SUIT_Command_Sequence

 A SUIT_Command_Sequence defines a series of actions that the
 recipient MUST take to accomplish a particular goal. These goals are
 defined in the manifest and include:

 1. Dependency Resolution

 2. Payload Fetch

Moran, et al. Expires January 9, 2020 [Page 22]

Internet-Draft Firmware Manifest Format July 2019

 3. Payload Installation

 4. Image Validation

 5. Image Loading

 6. Run or Boot

 Each of these follows exactly the same structure to ensure that the
 parser is as simple as possible.

 Lists of commands are constructed from two kinds of element:

 1. Conditions that MUST be true-any failure is treated as a failure
 of the update/load/boot

 2. Directives that MUST be executed.

 The lists of commands are logically structured into sequences of zero
 or more conditions followed by zero or more directives. The
 logical structure is described by the following CDDL:

 Command_Sequence = {
 conditions => [* Condition],
 directives => [* Directive]
 }

 This introduces significant complexity in the parser, however, so the
 structure is flattened to make parsing simpler:

 SUIT_Command_Sequence = [+ (SUIT_Condition/SUIT_Directive)]

 Each condition and directive is composed of:

 1. A command code identifier

 2. An argument block

 Argument blocks are defined for each type of command.

 Many conditions and directives apply to a given component, and these
 generally grouped together. Therefore, a special command to set the
 current component index is provided with a matching command to set
 the current dependency index. This index is a numeric index into the
 component ID tables defined at the beginning of the document. For
 the purpose of setting the index, the two component ID tables are
 considered to be concatenated together.

Moran, et al. Expires January 9, 2020 [Page 23]

Internet-Draft Firmware Manifest Format July 2019

 To facilitate optional conditions, a special directive is provided.
 It runs several new lists of conditions/directives, one after
 another, that are contained as an argument to the directive. By
 default, it assumes that a failure of a condition should not indicate
 a failure of the update/boot, but a parameter is provided to override
 this behaviour.

7.11. SUIT_Condition

 Conditions are used to define mandatory properties of a system in
 order for an update to be applied. They can be pre-conditions or
 post-conditons of any directive or series of directives, depending on
 where they are placed in the list. Conditions include:

 +----------------+-------------------+----------------------------+
 | Condition Code | Condition Name | Argument Type |
 +----------------+-------------------+----------------------------+
 | 1 | Vendor Identifier | nil |
 | | | |
 | 2 | Class Identifier | nil |
 | | | |
 | 3 | Image Match | nil |
 | | | |
 | 4 | Use Before | Unsigned Integer timestamp |
 | | | |
 | 5 | Component Offset | Unsigned Integer |
 | | | |
 | 24 | Device Identifier | nil |
 | | | |
 | 25 | Image Not Match | nil |
 | | | |
 | 26 | Minimum Battery | Unsigned Integer |
 | | | |
 | 27 | Update Authorised | Integer |
 | | | |
 | 28 | Version | List of Integers |
 | | | |
 | nint | Custom Condition | bstr |
 +----------------+-------------------+----------------------------+

 Each condition MUST report a success code on completion. If a
 condition reports failure, then the current sequence of commands MUST
 terminate. If a recipient encounters an unknown Condition Code, it
 MUST report a failure.

 Positive Condition numbers are reserved for IANA registration.
 Negative numbers are reserved for proprietary, application-specific
 directives.

Moran, et al. Expires January 9, 2020 [Page 24]

Internet-Draft Firmware Manifest Format July 2019

7.11.1. Identifier Conditions

 There are three identifier-based conditions: suit-condition-vendor-
 identifier, suit-condition-class-identifier, and suit-condition-
 device-identifier. Each of these conditions match a RFC 4122
 [RFC4122] UUID that MUST have already been set as a parameter. The
 installing device MUST match the specified UUID in order to consider
 the manifest valid. These identifiers MAY be scoped by component.

 The recipient uses the ID parameter that has already been set using
 the Set Parameters directive. If no ID has been set, this condition
 fails. suit-condition-class-identifier and suit-condition-vendor-
 identifier are REQUIRED to implement. suit-condition-device-
 identifier is OPTIONAL to implement.

7.11.2. suit-condition-image-match

 Verify that the current component matches the digest parameter for
 the current component. The digest is verified against the digest
 specified in the Component’s parameters list. If no digest is
 specified, the condition fails. suit-condition-image-match is
 REQUIRED to implement.

7.11.3. suit-condition-image-not-match

 Verify that the current component does not match the supplied digest.
 If no digest is specified, then the digest is compared against the
 digest specified in the Components list. If no digest is specified
 and the component is not present in the Components list, the
 condition fails. suit-condition-image-not-match is OPTIONAL to
 implement.

7.11.4. suit-condition-use-before

 Verify that the current time is BEFORE the specified time. suit-
 condition-use-before is used to specify the last time at which an
 update should be installed. One argument is required, encoded as a
 POSIX timestamp, that is seconds after 1970-01-01 00:00:00.
 Timestamp conditions MUST be evaluated in 64 bits, regardless of
 encoded CBOR size. suit-condition-use-before is OPTIONAL to
 implement.

7.11.5. suit-condition-minimum-battery

 suit-condition-minimum-battery provides a mechanism to test a
 device’s battery level before installing an update. This condition
 is for use in primary-cell applications, where the battery is only
 ever discharged. For batteries that are charged, suit-directive-wait

Moran, et al. Expires January 9, 2020 [Page 25]

Internet-Draft Firmware Manifest Format July 2019

 is more appropriate, since it defines a "wait" until the battery
 level is sufficient to install the update. suit-condition-minimum-
 battery is specified in mWh. suit-condition-minimum-battery is
 OPTIONAL to implement.

7.11.6. suit-condition-update-authorised

 Request Authorisation from the application and fail if not
 authorised. This can allow a user to decline an update. Argument is
 an integer priority level. Priorities are application defined. suit-
 condition-update-authorised is OPTIONAL to implement.

7.11.7. suit-condition-version

 suit-condition-version allows comparing versions of firmware.
 Verifying image digests is preferred to version checks because
 digests are more precise. The image can be compared as:

 - Greater

 - Greater or Equal

 - Equal

 - Lesser or Equal

 - Lesser

 Versions are encoded as a CBOR list of integers. Comparisons are
 done on each integer in sequence. Comparison stops after all
 integers in the list defined by the manifest have been consumed OR
 after a non-equal match has occured. For example, if the manifest
 defines a comparison, "Equal [1]", then this will match all version
 sequences starting with 1. If a manifest defines both "Greater or
 Equal [1,0]" and "Lesser [1,10]", then it will match versions 1.0.x
 up to, but not including 1.10.

 The following CDDL describes SUIT_Condition_Version_Argument

Moran, et al. Expires January 9, 2020 [Page 26]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Condition_Version_Argument = [
 suit-condition-version-comparison: SUIT_Condition_Version_Comparison_Types,
 suit-condition-version-comparison: SUIT_Condition_Version_Comparison_Value
]
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Gre
ater
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Gre
ater_Equal
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Equ
al
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Les
ser_Equal
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Les
ser
SUIT_Condition_Version_Comparison_Greater = 1
SUIT_Condition_Version_Comparison_Greater_Equal = 2
SUIT_Condition_Version_Comparison_Equal = 3
SUIT_Condition_Version_Comparison_Lesser_Equal = 4
SUIT_Condition_Version_Comparison_Lesser = 5

SUIT_Condition_Version_Comparison_Value = [+int]

 While the exact encoding of versions is application-defined, semantic
 versions map conveniently. For example,

 - 1.2.3 = [1,2,3]

 - 1.2-rc3 = [1,2,-1,3]

 - 1.2-beta = [1,2,-2]

 - 1.2-alpha = [1,2,-3]

 - 1.2-alpha4 = [1,2,-3,4]

 suit-condition-version is OPTIONAL to implement.

7.11.8. SUIT_Condition_Custom

 SUIT_Condition_Custom describes any proprietary, application specific
 condition. This is encoded as a negative integer, chosen by the
 firmware developer, and a bstr that encodes the parameters passed to
 the system that evaluates the condition matching that integer.
 SUIT_Condition_Custom is OPTIONAL to implement.

7.11.9. Identifiers

 Many conditions use identifiers to determine whether a manifest
 matches a given recipient or not. These identifiers are defined to
 be RFC 4122 [RFC4122] UUIDs. These UUIDs are explicitly NOT human-
 readable. They are for machine-based matching only.

Moran, et al. Expires January 9, 2020 [Page 27]

Internet-Draft Firmware Manifest Format July 2019

 A device may match any number of UUIDs for vendor or class
 identifier. This may be relevant to physical or software modules.
 For example, a device that has an OS and one or more applications
 might list one Vendor ID for the OS and one or more additional Vendor
 IDs for the applications. This device might also have a Class ID
 that must be matched for the OS and one or more Class IDs for the
 applications.

 A more complete example: A device has the following physical
 components: 1. A host MCU 2. A WiFi module

 This same device has three software modules: 1. An operating system
 2. A WiFi module interface driver 3. An application

 Suppose that the WiFi module’s firmware has a proprietary update
 mechanism and doesn’t support manifest processing. This device can
 report four class IDs:

 1. hardware model/revision

 2. OS

 3. WiFi module model/revision

 4. Application

 This allows the OS, WiFi module, and application to be updated
 independently. To combat possible incompatibilities, the OS class ID
 can be changed each time the OS has a change to its API.

 This approach allows a vendor to target, for example, all devices
 with a particular WiFi module with an update, which is a very
 powerful mechanism, particularly when used for security updates.

7.11.9.1. Creating UUIDs:

 UUIDs MUST be created according to RFC 4122 [RFC4122]. UUIDs SHOULD
 use versions 3, 4, or 5, as described in RFC4122. Versions 1 and 2
 do not provide a tangible benefit over version 4 for this
 application.

 The RECOMMENDED method to create a vendor ID is: Vendor ID =
 UUID5(DNS_PREFIX, vendor domain name)

 The RECOMMENDED method to create a class ID is: Class ID =
 UUID5(Vendor ID, Class-Specific-Information)

Moran, et al. Expires January 9, 2020 [Page 28]

Internet-Draft Firmware Manifest Format July 2019

 Class-specific information is composed of a variety of data, for
 example:

 - Model number

 - Hardware revision

 - Bootloader version (for immutable bootloaders)

7.11.10. SUIT_Condition CDDL

 The following CDDL describes SUIT_Condition:

SUIT_Condition //= (suit-condition-vendor-identifier, nil)
SUIT_Condition //= (suit-condition-class-identifier, nil)
SUIT_Condition //= (suit-condition-device-identifier, nil)
SUIT_Condition //= (suit-condition-image-match, nil)
SUIT_Condition //= (suit-condition-image-not-match, nil)
SUIT_Condition //= (suit-condition-use-before, uint)
SUIT_Condition //= (suit-condition-minimum-battery, uint)
SUIT_Condition //= (suit-condition-update-authorised, int)
SUIT_Condition //= (suit-condition-version, SUIT_Condition_Version_Arg
ument)
SUIT_Condition //= (suit-condition-component-offset, uint)
SUIT_Condition //= (suit-condition-custom, bstr)

SUIT_Condition_Version_Argument = [
 suit-condition-version-comparison: SUIT_Condition_Version_Comparison_Types,
 suit-condition-version-comparison: SUIT_Condition_Version_Comparison_Value
]
SUIT_Condition_Version_Comparison_Types /= suit-condition-version-comparison-gre
ater
SUIT_Condition_Version_Comparison_Types /= suit-condition-version-comparison-gre
ater-equal
SUIT_Condition_Version_Comparison_Types /= suit-condition-version-comparison-equ
al
SUIT_Condition_Version_Comparison_Types /= suit-condition-version-comparison-les
ser-equal
SUIT_Condition_Version_Comparison_Types /= suit-condition-version-comparison-les
ser

SUIT_Condition_Version_Comparison_Value = [+int]

7.12. SUIT_Directive

 Directives are used to define the behaviour of the recipient.
 Directives include:

Moran, et al. Expires January 9, 2020 [Page 29]

Internet-Draft Firmware Manifest Format July 2019

 +----------------+----------------------+
 | Directive Code | Directive Name |
 +----------------+----------------------+
 | 12 | Set Component Index |
 | | |
 | 13 | Set Dependency Index |
 | | |
 | 14 | Abort |
 | | |
 | 15 | Try Each |
 | | |
 | 16 | Reserved |
 | | |
 | 17 | Reserved |
 | | |
 | 18 | Process Dependency |
 | | |
 | 19 | Set Parameters |
 | | |
 | 20 | Override Parameters |
 | | |
 | 21 | Fetch |
 | | |
 | 22 | Copy |
 | | |
 | 23 | Run |
 | | |
 | 29 | Wait |
 | | |
 | 30 | Run Sequence |
 | | |
 | 31 | Run with Arguments |
 | | |
 | 32 | Swap |
 +----------------+----------------------+

 When a Recipient executes a Directive, it MUST report a success code.
 If the Directive reports failure, then the current Command Sequence
 MUST terminate.

7.12.1. suit-directive-set-component-index

 Set Component Index defines the component to which successive
 directives and conditions will apply. The supplied argument MUST be
 either a boolean or an unsigned integer index into the concatenation
 of suit-components and suit-dependency-components. If the following
 directives apply to ALL components, then the boolean value "True" is
 used instead of an index. True does not apply to dependency

Moran, et al. Expires January 9, 2020 [Page 30]

Internet-Draft Firmware Manifest Format July 2019

 components. If the following directives apply to NO components, then
 the boolean value "False" is used. When suit-directive-set-
 dependency-index is used, suit-directive-set-component-index = False
 is implied. When suit-directive-set-component-index is used, suit-
 directive-set-dependency-index = False is implied.

 The following CDDL describes the argument to suit-directive-set-
 component-index.

 SUIT_Directive_Set_Component_Index_Argument = uint/bool

7.12.2. suit-directive-set-dependency-index

 Set Dependency Index defines the manifest to which successive
 directives and conditions will apply. The supplied argument MUST be
 either a boolean or an unsigned integer index into the dependencies.
 If the following directives apply to ALL dependencies, then the
 boolean value "True" is used instead of an index. If the following
 directives apply to NO dependencies, then the boolean value "False"
 is used. When suit-directive-set-component-index is used, suit-
 directive-set-dependency-index = False is implied. When suit-
 directive-set-dependency-index is used, suit-directive-set-component-
 index = False is implied.

 Typical operations that require suit-directive-set-dependency-index
 include setting a source URI, invoking "Fetch," or invoking "Process
 Dependency" for an individual dependency.

 The following CDDL describes the argument to suit-directive-set-
 dependency-index.

 SUIT_Directive_Set_Manifest_Index_Argument = uint/bool

7.12.3. suit-directive-abort

 Unconditionally fail. This operation is typically used in
 conjunction with suit-directive-try-each.

7.12.4. suit-directive-run-sequence

 To enable conditional commands, and to allow several strictly ordered
 sequences to be executed out-of-order, suit-directive-run-sequence
 allows the manifest processor to execute its argument as a
 SUIT_Command_Sequence. The argument must be wrapped in a bstr.

 When a sequence is executed, any failure of a condition causes
 immediate termination of the sequence.

Moran, et al. Expires January 9, 2020 [Page 31]

Internet-Draft Firmware Manifest Format July 2019

 The following CDDL describes the SUIT_Run_Sequence argument.

 SUIT_Directive_Run_Sequence_Argument = bstr .cbor SUIT_Command_Sequence

 When suit-directive-run-sequence completes, it forwards the last
 status code that occurred in the sequence. If the Coerce on
 Condition Failure parameter is true, then suit-directive-run-sequence
 only fails when a directive in the argument sequence fails.

 SUIT_Parameter_Coerce_Condition_Failure defaults to False when suit-
 directive-run-sequence begins. Its value is discarded when suit-
 directive-run-sequence terminates.

7.12.5. suit-directive-try-each

 This command runs several suit-directive-run-sequence one after
 another, in a strict order. Use this command to implement a "try/
 catch-try/catch" sequence. Manifest processors MAY implement this
 command.

 SUIT_Parameter_Coerce_Condition_Failure is initialised to True at the
 beginning of each sequence. If one sequence aborts due to a
 condition failure, the next is started. If no sequence completes
 without condition failure, then suit-directive-try-each returns an
 error. If a particular application calls for all sequences to fail
 and still continue, then an empty sequence (nil) can be added to the
 Try Each Argument.

 The following CDDL describes the SUIT_Try_Each argument.

 SUIT_Directive_Try_Each_Argument = [
 + bstr .cbor SUIT_Command_Sequence,
 nil / bstr .cbor SUIT_Command_Sequence
]

7.12.6. suit-directive-process-dependency

 Execute the commands in the common section of the current dependency,
 followed by the commands in the equivalent section of the current
 dependency. For example, if the current section is "fetch payload,"
 this will execute "common" in the current dependency, then "fetch
 payload" in the current dependency. Once this is complete, the
 command following suit-directive-process-dependency will be
 processed.

 If the current dependency is False, this directive has no effect. If
 the current dependency is True, then this directive applies to all

Moran, et al. Expires January 9, 2020 [Page 32]

Internet-Draft Firmware Manifest Format July 2019

 dependencies. If the current section is "common," this directive
 MUST have no effect.

 When SUIT_Process_Dependency completes, it forwards the last status
 code that occurred in the dependency.

 The argument to suit-directive-process-dependency is defined in the
 following CDDL.

 SUIT_Directive_Process_Dependency_Argument = nil

7.12.7. suit-directive-set-parameters

 suit-directive-set-parameters allows the manifest to configure
 behaviour of future directives by changing parameters that are read
 by those directives. When dependencies are used, suit-directive-set-
 parameters also allows a manifest to modify the behaviour of its
 dependencies.

 Available parameters are defined in Section 7.5.

 If a parameter is already set, suit-directive-set-parameters will
 skip setting the parameter to its argument. This provides the core
 of the override mechanism, allowing dependent manifests to change the
 behaviour of a manifest.

 The argument to suit-directive-set-parameters is defined in the
 following CDDL.

 SUIT_Directive_Set_Parameters_Argument = {+ SUIT_Parameters}

 N.B.: A directive code is reserved for an optimisation: a way to set
 a parameter to the contents of another parameter, optionally with
 another component ID.

7.12.8. suit-directive-override-parameters

 suit-directive-override-parameters replaces any listed parameters
 that are already set with the values that are provided in its
 argument. This allows a manifest to prevent replacement of critical
 parameters.

 Available parameters are defined in Section 7.5.

 The argument to suit-directive-override-parameters is defined in the
 following CDDL.

 SUIT_Directive_Override_Parameters_Argument = {+ SUIT_Parameters}

Moran, et al. Expires January 9, 2020 [Page 33]

Internet-Draft Firmware Manifest Format July 2019

7.12.9. suit-directive-fetch

 suit-directive-fetch instructs the manifest processor to obtain one
 or more manifests or payloads, as specified by the manifest index and
 component index, respectively.

 suit-directive-fetch can target one or more manifests and one or more
 payloads. suit-directive-fetch retrieves each component and each
 manifest listed in component-index and manifest-index, respectively.
 If component-index or manifest-index is True, instead of an integer,
 then all current manifest components/manifests are fetched. The
 current manifest’s dependent-components are not automatically
 fetched. In order to pre-fetch these, they MUST be specified in a
 component-index integer.

 suit-directive-fetch typically takes no arguments unless one is
 needed to modify fetch behaviour. If an argument is needed, it must
 be wrapped in a bstr.

 suit-directive-fetch reads the URI or URI List parameter to find the
 source of the fetch it performs.

 The behaviour of suit-directive-fetch can be modified by setting one
 or more of SUIT_Parameter_Encryption_Info,
 SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info. These
 three parameters each activate and configure a processing step that
 can be applied to the data that is transferred during suit-directive-
 fetch.

 The argument to suit-directive-fetch is defined in the following
 CDDL.

 SUIT_Directive_Fetch_Argument = nil/bstr

7.12.10. suit-directive-copy

 suit-directive-copy instructs the manifest processor to obtain one or
 more payloads, as specified by the component index. suit-directive-
 copy retrieves each component listed in component-index,
 respectively. If component-index is True, instead of an integer,
 then all current manifest components are copied. The current
 manifest’s dependent-components are not automatically copied. In
 order to copy these, they MUST be specified in a component-index
 integer.

 The behaviour of suit-directive-copy can be modified by setting one
 or more of SUIT_Parameter_Encryption_Info,
 SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info. These

Moran, et al. Expires January 9, 2020 [Page 34]

Internet-Draft Firmware Manifest Format July 2019

 three parameters each activate and configure a processing step that
 can be applied to the data that is transferred during suit-directive-
 copy.

 N.B. Fetch and Copy are very similar. Merging them into one
 command may be appropriate.

 suit-directive-copy reads its source from
 SUIT_Parameter_Source_Component.

 The argument to suit-directive-copy is defined in the following CDDL.

 SUIT_Directive_Copy_Argument = nil

7.12.11. suit-directive-swap

 suit-directive-swap instructs the manifest processor to move the
 source to the destination and the destination to the source
 simultaneously. Swap has nearly identical semantics to suit-
 directive-copy except that suit-directive-swap replaces the source
 with the current contents of the destination in an application-
 defined way. If SUIT_Parameter_Compression_Info or
 SUIT_Parameter_Encryption_Info are present, they must be handled in a
 symmetric way, so that the source is decompressed into the
 destination and the destination is compressed into the source. The
 source is decrypted into the destination and the destination is
 encrypted into the source. suit-directive-swap is OPTIONAL to
 implement.

7.12.12. suit-directive-run

 suit-directive-run directs the manifest processor to transfer
 execution to the current Component Index. When this is invoked, the
 manifest processor MAY be unloaded and execution continues in the
 Component Index. Arguments provided to Run are forwarded to the
 executable code located in Component Index, in an application-
 specific way. For example, this could form the Linux Kernel Command
 Line if booting a linux device.

 If the executable code at Component Index is constructed in such a
 way that it does not unload the manifest processor, then the manifest
 processor may resume execution after the executable completes. This
 allows the manifest processor to invoke suitable helpers and to
 verify them with image conditions.

 The argument to suit-directive-run is defined in the following CDDL.

 SUIT_Directive_Run_Argument = nil/bstr

Moran, et al. Expires January 9, 2020 [Page 35]

Internet-Draft Firmware Manifest Format July 2019

7.12.13. suit-directive-wait

 suit-directive-wait directs the manifest processor to pause until a
 specified event occurs. Some possible events include:

 1. Authorisation

 2. External Power

 3. Network availability

 4. Other Device Firmware Version

 5. Time

 6. Time of Day

 7. Day of Week

 The following CDDL defines the encoding of these events.

SUIT_Wait_Events //= (suit-wait-event-authorisation => int)
SUIT_Wait_Events //= (suit-wait-event-power => int)
SUIT_Wait_Events //= (suit-wait-event-network => int)
SUIT_Wait_Events //= (suit-wait-event-other-device-version
 => SUIT_Wait_Event_Argument_Other_Device_Version)
SUIT_Wait_Events //= (suit-wait-event-time => uint); Timestamp
SUIT_Wait_Events //= (suit-wait-event-time-of-day
 => uint); Time of Day (seconds since 00:00:00)
SUIT_Wait_Events //= (suit-wait-event-day-of-week
 => uint); Days since Sunday

SUIT_Wait_Event_Argument_Authorisation = int ; priority
SUIT_Wait_Event_Argument_Power = int ; Power Level
SUIT_Wait_Event_Argument_Network = int ; Network State
SUIT_Wait_Event_Argument_Other_Device_Version = [
 other-device: bstr,
 other-device-version: [+int]
]
SUIT_Wait_Event_Argument_Time = uint ; Timestamp
SUIT_Wait_Event_Argument_Time_Of_Day = uint ; Time of Day (seconds since 00:00:0
0)
SUIT_Wait_Event_Argument_Day_Of_Week = uint ; Days since Sunday

Moran, et al. Expires January 9, 2020 [Page 36]

Internet-Draft Firmware Manifest Format July 2019

7.12.14. SUIT_Directive CDDL

 The following CDDL describes SUIT_Directive:

Moran, et al. Expires January 9, 2020 [Page 37]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Directive //= (suit-directive-set-component-index, uint/bool)
SUIT_Directive //= (suit-directive-set-dependency-index, uint/bool)
SUIT_Directive //= (suit-directive-run-sequence,
 bstr .cbor SUIT_Command_Sequence)
SUIT_Directive //= (suit-directive-try-each,
 SUIT_Directive_Try_Each_Argument)
SUIT_Directive //= (suit-directive-process-dependency, nil)
SUIT_Directive //= (suit-directive-set-parameters,
 {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-override-parameters,
 {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-fetch, nil)
SUIT_Directive //= (suit-directive-copy, nil)
SUIT_Directive //= (suit-directive-run, nil)
SUIT_Directive //= (suit-directive-wait,
 { + SUIT_Wait_Events })
SUIT_Directive //= (suit-directive-run-with-arguments, bstr)

SUIT_Directive_Try_Each_Argument = [
 + bstr .cbor SUIT_Command_Sequence,
 nil / bstr .cbor SUIT_Command_Sequence
]

SUIT_Wait_Events //= (suit-wait-event-authorisation => int)
SUIT_Wait_Events //= (suit-wait-event-power => int)
SUIT_Wait_Events //= (suit-wait-event-network => int)
SUIT_Wait_Events //= (suit-wait-event-other-device-version
 => SUIT_Wait_Event_Argument_Other_Device_Version)
SUIT_Wait_Events //= (suit-wait-event-time => uint); Timestamp
SUIT_Wait_Events //= (suit-wait-event-time-of-day
 => uint); Time of Day (seconds since 00:00:00)
SUIT_Wait_Events //= (suit-wait-event-day-of-week
 => uint); Days since Sunday

SUIT_Wait_Event_Argument_Authorisation = int ; priority
SUIT_Wait_Event_Argument_Power = int ; Power Level
SUIT_Wait_Event_Argument_Network = int ; Network State
SUIT_Wait_Event_Argument_Other_Device_Version = [
 other-device: bstr,
 other-device-version: [+int]
]
SUIT_Wait_Event_Argument_Time = uint ; Timestamp
SUIT_Wait_Event_Argument_Time_Of_Day = uint ; Time of Day (seconds since 00:00:0
0)
SUIT_Wait_Event_Argument_Day_Of_Week = uint ; Days since Sunday

Moran, et al. Expires January 9, 2020 [Page 38]

Internet-Draft Firmware Manifest Format July 2019

8. Dependency processing

 Dependencies need careful handling on constrained systems. A
 dependency tree that is too deep can cause recursive handling to
 overflow stack space. Systems that parse all dependencies into an
 object tree can easily fill up available memory. Too many
 dependencies can overrun available storage space.

 The dependency handling system in this document is designed to
 address as many of these problems as possible.

 Dependencies MAY be addressed in one of three ways:

 1. Iterate by component

 2. Iterate by manifest

 3. Out-of-order

 Because each manifest has a list of components and a list of
 components defined by its dependencies, it is possible for the
 manifest processor to handle one component at a time, traversing the
 manifest tree once for each listed component. This, however consumes
 significant processing power.

 Alternatively, it is possible for a device with sufficient memory to
 accumulate all parameters for all listed component IDs. This will
 naturally consume more memory, but it allows the device to process
 the manifests in a single pass.

 It is expected that the simplest and most power sensitive devices
 will use option 2, with a fixed maximum number of components.

 Advanced devices may make use of the Strict Order parameter and
 enable parallel processing of some segments, or it may reorder some
 segments. To perform parallel processing, once the Strict Order
 parameter is set to False, the device may fork a process for each
 command until the Strict Order parameter is returned to True or the
 command sequence ends. Then, it joins all forked processes before
 continuing processing of commands. To perform out-of-order
 processing, a similar approach is used, except the device consumes
 all commands after the Strict Order parameter is set to False, then
 it sorts these commands into its preferred order, invokes them all,
 then continues processing.

Moran, et al. Expires January 9, 2020 [Page 39]

Internet-Draft Firmware Manifest Format July 2019

9. Access Control Lists

 To manage permissions in the manifest, there are three models that
 can be used.

 First, the simplest model requires that all manifests are
 authenticated by a single trusted key. This mode has the advantage
 that only a root manifest needs to be authenticated, since all of its
 dependencies have digests included in the root manifest.

 This simplest model can be extended by adding key delegation without
 much increase in complexity.

 A second model requires an ACL to be presented to the device,
 authenticated by a trusted party or stored on the device. This ACL
 grants access rights for specific component IDs or component ID
 prefixes to the listed identities or identity groups. Any identity
 may verify an image digest, but fetching into or fetching from a
 component ID requires approval from the ACL.

 A third model allows a device to provide even more fine-grained
 controls: The ACL lists the component ID or component ID prefix that
 an identity may use, and also lists the commands that the identity
 may use in combination with that component ID.

10. SUIT digest container

 RFC 8152 [RFC8152] provides containers for signature, MAC, and
 encryption, but no basic digest container. The container needed for
 a digest requires a type identifier and a container for the raw
 digest data. Some forms of digest may require additional parameters.
 These can be added following the digest. This structure is described
 by the following CDDL.

 The algorithms listed are sufficient for verifying integrity of
 Firmware Updates as of this writing, however this may change over
 time.

Moran, et al. Expires January 9, 2020 [Page 40]

Internet-Draft Firmware Manifest Format July 2019

 SUIT_Digest = [
 suit-digest-algorithm-id : $suit-digest-algorithm-ids,
 suit-digest-bytes : bytes,
 ? suit-digest-parameters : any
]

 digest-algorithm-ids /= algorithm-id-sha224
 digest-algorithm-ids /= algorithm-id-sha256
 digest-algorithm-ids /= algorithm-id-sha384
 digest-algorithm-ids /= algorithm-id-sha512
 digest-algorithm-ids /= algorithm-id-sha3-224
 digest-algorithm-ids /= algorithm-id-sha3-256
 digest-algorithm-ids /= algorithm-id-sha3-384
 digest-algorithm-ids /= algorithm-id-sha3-512

 algorithm-id-sha224 = 1
 algorithm-id-sha256 = 2
 algorithm-id-sha384 = 3
 algorithm-id-sha512 = 4
 algorithm-id-sha3-224 = 5
 algorithm-id-sha3-256 = 6
 algorithm-id-sha3-384 = 7
 algorithm-id-sha3-512 = 8

11. Creating conditional sequences

 For some use cases, it is important to provide a sequence that can
 fail without terminating an update. For example, a dual-image XIP
 MCU may require an update that can be placed at one of two offsets.
 This has two implications, first, the digest of each offset will be
 different. Second, the image fetched for each offset will have a
 different URI. Conditional sequences allow this to be resolved in a
 simple way.

 The following JSON representation of a manifest demonstrates how this
 would be represented. It assumes that the bootloader and manifest
 processor take care of A/B switching and that the manifest is not
 aware of this distinction.

 {
 "structure-version" : 1,
 "sequence-number" : 7,
 "common" :{
 "components" : [
 [b’0’]
],
 "common-sequence" : [
 {

Moran, et al. Expires January 9, 2020 [Page 41]

Internet-Draft Firmware Manifest Format July 2019

 "directive-set-var" : {
 "size": 32567
 },
 },
 {
 "try-each" : [
 [
 {"condition-component-offset" : "<offset A>"},
 {
 "directive-set-var": {
 "digest" : "<SHA256 A>"
 }
 }
],
 [
 {"condition-component-offset" : "<offset B>"},
 {
 "directive-set-var": {
 "digest" : "<SHA256 B>"
 }
 }
],
 [{ "abort" : null }]
]
 }
]
 }
 "fetch" : [
 {
 "try-each" : [
 [
 {"condition-component-offset" : "<offset A>"},
 {
 "directive-set-var": {
 "uri" : "<URI A>"
 }
 }
],
 [
 {"condition-component-offset" : "<offset B>"},
 {
 "directive-set-var": {
 "uri" : "<URI B>"
 }
 }
],
 [{ "directive-abort" : null }]
]

Moran, et al. Expires January 9, 2020 [Page 42]

Internet-Draft Firmware Manifest Format July 2019

 },
 "fetch" : null
]
 }

12. Full CDDL

 In order to create a valid SUIT Manifest document the structure of
 the corresponding CBOR message MUST adhere to the following CDDL data
 definition.

SUIT_Outer_Wrapper = {
 suit-authentication-wrapper => bstr .cbor SUIT_Authentication_Wrapper / nil,
 suit-manifest => bstr .cbor SUIT_Manifest,
 suit-dependency-resolution => bstr .cbor SUIT_Command_Sequence,
 suit-payload-fetch => bstr .cbor SUIT_Command_Sequence,
 suit-install => bstr .cbor SUIT_Command_Sequence,
 suit-text => bstr .cbor SUIT_Text_Map,
 suit-coswid => bstr .cbor concise-software-identity
}
suit-authentication-wrapper = 1
suit-manifest = 2
suit-dependency-resolution = 7
suit-payload-fetch = 8
suit-install = 9
suit-text = 13
suit-coswid = 14

SUIT_Authentication_Wrapper = [* (
 COSE_Mac_Tagged /
 COSE_Sign_Tagged /
 COSE_Mac0_Tagged /
 COSE_Sign1_Tagged)]

COSE_Mac_Tagged = any
COSE_Sign_Tagged = any
COSE_Mac0_Tagged = any
COSE_Sign1_Tagged = any
COSE_Encrypt_Tagged = any
COSE_Encrypt0_Tagged = any

SUIT_Digest = [
 suit-digest-algorithm-id : $suit-digest-algorithm-ids,
 suit-digest-bytes : bytes,
 ? suit-digest-parameters : any
]

Moran, et al. Expires January 9, 2020 [Page 43]

Internet-Draft Firmware Manifest Format July 2019

; Named Information Hash Algorithm Identifiers
suit-digest-algorithm-ids /= algorithm-id-sha256
suit-digest-algorithm-ids /= algorithm-id-sha256-128
suit-digest-algorithm-ids /= algorithm-id-sha256-120
suit-digest-algorithm-ids /= algorithm-id-sha256-96
suit-digest-algorithm-ids /= algorithm-id-sha256-64
suit-digest-algorithm-ids /= algorithm-id-sha256-32
suit-digest-algorithm-ids /= algorithm-id-sha384
suit-digest-algorithm-ids /= algorithm-id-sha512
suit-digest-algorithm-ids /= algorithm-id-sha3-224
suit-digest-algorithm-ids /= algorithm-id-sha3-256
suit-digest-algorithm-ids /= algorithm-id-sha3-384
suit-digest-algorithm-ids /= algorithm-id-sha3-512

SUIT_Manifest = {
 suit-manifest-version => 1,
 suit-manifest-sequence-number => uint,
 ? suit-dependencies => [+ SUIT_Dependency],
 ? suit-components => [+ SUIT_Component],
 ? suit-dependency-components => [+ SUIT_Component_Reference],
 ? suit-common => bstr .cbor SUIT_Command_Sequence,
 ? suit-dependency-resolution => SUIT_Digest / bstr .cbor SUIT_Command_Seque
nce,
 ? suit-payload-fetch => SUIT_Digest / bstr .cbor SUIT_Command_Seque
nce,
 ? suit-install => SUIT_Digest / bstr .cbor SUIT_Command_Seque
nce
 ? suit-validate => bstr .cbor SUIT_Command_Sequence
 ? suit-load => bstr .cbor SUIT_Command_Sequence
 ? suit-run => bstr .cbor SUIT_Command_Sequence
 ? suit-text-info => SUIT_Digest / bstr .cbor SUIT_Text_Map
 ? suit-coswid => SUIT_Digest / bstr .cbor concise-software-i
dentity
}

suit-manifest-version = 1
suit-manifest-sequence-number = 2
suit-dependencies = 3
suit-components = 4
suit-dependency-components = 5
suit-common = 6
suit-dependency-resolution = 7
suit-payload-fetch = 8
suit-install = 9
suit-validate = 10
suit-load = 11
suit-run = 12
suit-text-info = 13
suit-coswid = 14

concise-software-identity = any

Moran, et al. Expires January 9, 2020 [Page 44]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Dependency = {
 suit-dependency-digest => SUIT_Digest,
 suit-dependency-prefix => SUIT_Component_Identifier,
}

suit-dependency-digest = 1
suit-dependency-prefix = 2

SUIT_Component_Identifier = [* bstr]

SUIT_Component = {
 suit-component-identifier => SUIT_Component_Identifier,
 ? suit-component-size => uint,
 ? suit-component-digest => SUIT_Digest,
}

suit-component-identifier = 1
suit-component-size = 2
suit-component-digest = 3

SUIT_Component_Reference = {
 suit-component-identifier => SUIT_Component_Identifier,
 suit-component-dependency-index => uint
}

suit-component-dependency-index = 2

SUIT_Command_Sequence = [+ { SUIT_Condition // SUIT_Directive // SUIT_Command_C
ustom}]

SUIT_Command_Custom = (nint => bstr)

SUIT_Condition //= (SUIT_Condition_Vendor_Identifier => RFC4122_UUID) ; SUIT_Con
dition_Vendor_Identifier
SUIT_Condition //= (2 => RFC4122_UUID) ; SUIT_Condition_Class_Identifier
SUIT_Condition //= (3 => RFC4122_UUID) ; SUIT_Condition_Device_Identifier
SUIT_Condition //= (4 => SUIT_Digest) ; SUIT_Condition_Image_Match
SUIT_Condition //= (5 => SUIT_Digest) ; SUIT_Condition_Image_Not_Match
SUIT_Condition //= (6 => uint) ; SUIT_Condition_Use_Before
SUIT_Condition //= (7 => uint) ; SUIT_Condition_Minimum_Battery
SUIT_Condition //= (8 => int) ; SUIT_Condition_Update_Authorised
SUIT_Condition //= (9 => SUIT_Condition_Version_Argument) ; SUIT_Condition_Versi
on
SUIT_Condition //= (10 => uint) ; SUIT_Condition_Component_Offset
SUIT_Condition //= (nint => bstr) ; SUIT_Condition_Custom

SUIT_Condition_Vendor_Identifier = 1
RFC4122_UUID = bstr .size 16

SUIT_Condition_Version_Argument = [
 suit-condition-version-comparison: SUIT_Condition_Version_Comparison_Types,

Moran, et al. Expires January 9, 2020 [Page 45]

Internet-Draft Firmware Manifest Format July 2019

 suit-condition-version-comparison: SUIT_Condition_Version_Comparison_Value
]
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Gre
ater
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Gre
ater_Equal
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Equ
al
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Les
ser_Equal
SUIT_Condition_Version_Comparison_Types /= SUIT_Condition_Version_Comparison_Les
ser

SUIT_Condition_Version_Comparison_Greater = 1
SUIT_Condition_Version_Comparison_Greater_Equal = 2
SUIT_Condition_Version_Comparison_Equal = 3
SUIT_Condition_Version_Comparison_Lesser_Equal = 4
SUIT_Condition_Version_Comparison_Lesser = 5

SUIT_Condition_Version_Comparison_Value = [+int]

SUIT_Directive //= (11 => uint/bool) ; SUIT_Directive_Set_Component_Index
SUIT_Directive //= (12 => uint/bool) ; SUIT_Directive_Set_Manifest_Index
SUIT_Directive //= (13 => bstr .cbor SUIT_Command_Sequence) ; SUIT_Directive_Run
_Sequence
SUIT_Directive //= (14 => bstr .cbor SUIT_Command_Sequence) ; SUIT_Directive_Run
_Sequence_Conditional
SUIT_Directive //= (15 => nil) ; SUIT_Directive_Process_Dependency
SUIT_Directive //= (16 => {+ SUIT_Parameters}) ; SUIT_Directive_Set_Parameters
SUIT_Directive //= (19 => {+ SUIT_Parameters}) ; SUIT_Directive_Override_Paramet
ers
SUIT_Directive //= (20 => nil/bstr) ; SUIT_Directive_Fetch
SUIT_Directive //= (21 => nil/bstr) ; SUIT_Directive_Copy
SUIT_Directive //= (22 => nil/bstr) ; SUIT_Directive_Run
SUIT_Directive //= (23 => { + SUIT_Wait_Events }) ; SUIT_Directive_Wait

SUIT_Wait_Events //= (1 => SUIT_Wait_Event_Argument_Authorisation)
SUIT_Wait_Events //= (2 => SUIT_Wait_Event_Argument_Power)
SUIT_Wait_Events //= (3 => SUIT_Wait_Event_Argument_Network)
SUIT_Wait_Events //= (4 => SUIT_Wait_Event_Argument_Other_Device_Version)
SUIT_Wait_Events //= (5 => SUIT_Wait_Event_Argument_Time)
SUIT_Wait_Events //= (6 => SUIT_Wait_Event_Argument_Time_Of_Day)
SUIT_Wait_Events //= (7 => SUIT_Wait_Event_Argument_Day_Of_Week)

SUIT_Wait_Event_Argument_Authorisation = int ; priority
SUIT_Wait_Event_Argument_Power = int ; Power Level
SUIT_Wait_Event_Argument_Network = int ; Network State
SUIT_Wait_Event_Argument_Other_Device_Version = [
 other-device: bstr,
 other-device-version: [+int]
]
SUIT_Wait_Event_Argument_Time = uint ; Timestamp
SUIT_Wait_Event_Argument_Time_Of_Day = uint ; Time of Day (seconds since 00:00:0
0)
SUIT_Wait_Event_Argument_Day_Of_Week = uint ; Days since Sunday

Moran, et al. Expires January 9, 2020 [Page 46]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Parameters //= (1 => bool) ; SUIT_Parameter_Strict_Order
SUIT_Parameters //= (2 => bool) ; SUIT_Parameter_Coerce_Condition_Failure
SUIT_Parameters //= (3 => bstr) ; SUIT_Parameter_Vendor_ID
SUIT_Parameters //= (4 => bstr) ; SUIT_Parameter_Class_ID
SUIT_Parameters //= (5 => bstr) ; SUIT_Parameter_Device_ID
SUIT_Parameters //= (6 => bstr .cbor SUIT_URI_List) ; SUIT_Parameter_URI_List
SUIT_Parameters //= (7 => bstr .cbor SUIT_Encryption_Info) ; SUIT_Parameter_Encr
yption_Info
SUIT_Parameters //= (8 => bstr .cbor SUIT_Compression_Info) ; SUIT_Parameter_Com
pression_Info
SUIT_Parameters //= (9 => bstr .cbor SUIT_Unpack_Info) ; SUIT_Parameter_Unpack_I
nfo
SUIT_Parameters //= (10 => bstr .cbor SUIT_Component_Identifier) ; SUIT_Paramete
r_Source_Component
SUIT_Parameters //= (11 => bstr .cbor SUIT_Digest) ; SUIT_Parameter_Image_Digest
SUIT_Parameters //= (12 => uint) ; SUIT_Parameter_Image_Size
SUIT_Parameters //= (nint => int/bool/bstr) ; SUIT_Parameter_Custom

SUIT_URI_List = [+ [priority: int, uri: tstr]]

SUIT_Encryption_Info = COSE_Encrypt_Tagged/COSE_Encrypt0_Tagged
SUIT_Compression_Info = {
 suit-compression-algorithm => SUIT_Compression_Algorithms
 ? suit-compression-parameters => bstr
}
suit-compression-algorithm = 1
suit-compression-parameters = 2

SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_gzip
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_bzip2
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_lz4
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_lzma

SUIT_Compression_Algorithm_gzip = 1
SUIT_Compression_Algorithm_bzip2 = 2
SUIT_Compression_Algorithm_deflate = 3
SUIT_Compression_Algorithm_lz4 = 4
SUIT_Compression_Algorithm_lzma = 7

SUIT_Unpack_Info = {
 suit-unpack-algorithm => SUIT_Unpack_Algorithms
 ? suit-unpack-parameters => bstr
}
suit-unpack-algorithm = 1
suit-unpack-parameters = 2

SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Delta
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Hex
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Elf

SUIT_Unpack_Algorithm_Delta = 1
SUIT_Unpack_Algorithm_Hex = 2

Moran, et al. Expires January 9, 2020 [Page 47]

Internet-Draft Firmware Manifest Format July 2019

SUIT_Unpack_Algorithm_Elf = 3

SUIT_Text_Map = {int => tstr}

13. Examples

 The following examples demonstrate a small subset of the
 functionality of the manifest. However, despite this, even a simple
 manifest processor can execute most of these manifests.

 None of these examples include authentication. This is provided via
 RFC 8152 [RFC8152], and is omitted for clarity.

13.1. Example 0:

 Secure boot only.

 The following JSON shows the intended behaviour of the manifest.

 {
 "structure-version": 1,
 "sequence-number": 1,
 "run-image": [
 { "directive-set-component": 0 },
 { "condition-image": null },
 { "directive-run": null }
],
 "common": {
 "common-sequence": [
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 }
],
 "components": [
 [
 "Flash",
 78848
]
]
 }
 }

 Converted into the SUIT manifest, this produces:

Moran, et al. Expires January 9, 2020 [Page 48]

Internet-Draft Firmware Manifest Format July 2019

{
 / auth object / 1 : None
 / manifest / 3 : h’a40101020103583ca2024c818245466c6173684300340104’
 h’582a8213a20b582000112233445566778899aabbccddeeff’
 h’0123456789abcdeffedcba98765432100c1987d00c47860c’
 h’0003f617f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 1
 / common / 3 : h’a2024c818245466c6173684300340104582a8213a20b58’
 h’2000112233445566778899aabbccddeeff0123456789ab’
 h’cdeffedcba98765432100c1987d0’ \ {
 / components / 2 : h’818245466c61736843003401’ \
 [
 [h’466c617368’, h’003401’],
],
 / common / 4 : h’8213a20b582000112233445566778899aabbccddee’
 h’ff0123456789abcdeffedcba98765432100c1987d0’
 \ [
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
],
 },
 / run-image / 12 : h’860c0003f617f6’ \ [
 / set-component-index / 12, 0,
 / condition-image / 3, None,
 / run / 23, None,
],
 }
}

 Total size of outer wrapper without COSE authentication object: 83

 Outer:

a201f603584da40101020103583ca2024c818245466c6173684300340104582a8213a20b
582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100c19
87d00c47860c0003f617f6

13.2. Example 1:

 Simultaneous download and installation of payload.

 The following JSON shows the intended behaviour of the manifest.

Moran, et al. Expires January 9, 2020 [Page 49]

Internet-Draft Firmware Manifest Format July 2019

 {
 "structure-version": 1,
 "sequence-number": 2,
 "apply-image": [
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file.bin"
 }
 },
 { "directive-fetch": null }
],
 "common": {
 "common-sequence": [
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 }
],
 "components": [
 [
 "Flash",
 78848
]
]
 }
 }

 Converted into the SUIT manifest, this produces:

Moran, et al. Expires January 9, 2020 [Page 50]

Internet-Draft Firmware Manifest Format July 2019

{
 / auth object / 1 : None
 / manifest / 3 : h’a40101020203583ca2024c818245466c6173684300340104’
 h’582a8213a20b582000112233445566778899aabbccddeeff’
 h’0123456789abcdeffedcba98765432100c1987d009582586’
 h’0c0013a106781b687474703a2f2f6578616d706c652e636f’
 h’6d2f66696c652e62696e15f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 2
 / common / 3 : h’a2024c818245466c6173684300340104582a8213a20b58’
 h’2000112233445566778899aabbccddeeff0123456789ab’
 h’cdeffedcba98765432100c1987d0’ \ {
 / components / 2 : h’818245466c61736843003401’ \
 [
 [h’466c617368’, h’003401’],
],
 / common / 4 : h’8213a20b582000112233445566778899aabbccddee’
 h’ff0123456789abcdeffedcba98765432100c1987d0’
 \ [
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
],
 },
 / apply-image / 9 : h’860c0013a106781b687474703a2f2f6578616d70’
 h’6c652e636f6d2f66696c652e62696e15f6’ \ [
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / uri / 6 : http://example.com/file.bin
 },
 / fetch / 21, None,
],
 }
}

 Total size of outer wrapper without COSE authentication object: 114

 Outer:

a201f603586ca40101020203583ca2024c818245466c6173684300340104582a8213a20b
582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100c19
87d0095825860c0013a106781b687474703a2f2f6578616d706c652e636f6d2f66696c65
2e62696e15f6

Moran, et al. Expires January 9, 2020 [Page 51]

Internet-Draft Firmware Manifest Format July 2019

13.3. Example 2:

 Compatibility test, simultaneous download and installation, and
 secure boot.

 The following JSON shows the intended behaviour of the manifest.

{
 "structure-version": 1,
 "sequence-number": 3,
 "common": {
 "common-sequence": [
 {
 "directive-set-var": {
 "vendor-id": "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe",
 "class-id": "1492af14-2569-5e48-bf42-9b2d51f2ab45",
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 },
 { "condition-vendor-id": null },
 { "condition-class-id": null }
],
 "components": [
 [
 "Flash",
 78848
]
]
 },
 "apply-image": [
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file.bin"
 }
 },
 { "directive-fetch": null }
],
 "run-image": [
 { "directive-set-component": 0 },
 { "condition-image": null },
 { "directive-run": null }
]
}

 Converted into the SUIT manifest, this produces:

Moran, et al. Expires January 9, 2020 [Page 52]

Internet-Draft Firmware Manifest Format July 2019

{
 / auth object / 1 : None
 / manifest / 3 : h’a501010203035864a2024c818245466c6173684300340104’
 h’58528613a40350fa6b4a53d5ad5fdfbe9de663e4d41ffe04’
 h’501492af1425695e48bf429b2d51f2ab450b582000112233’
 h’445566778899aabbccddeeff0123456789abcdeffedcba98’
 h’765432100c1987d001f602f6095825860c0013a106781b68’
 h’7474703a2f2f6578616d706c652e636f6d2f66696c652e62’
 h’696e15f60c47860c0003f617f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 3
 / common / 3 : h’a2024c818245466c617368430034010458528613a40350’
 h’fa6b4a53d5ad5fdfbe9de663e4d41ffe04501492af1425’
 h’695e48bf429b2d51f2ab450b5820001122334455667788’
 h’99aabbccddeeff0123456789abcdeffedcba9876543210’
 h’0c1987d001f602f6’ \ {
 / components / 2 : h’818245466c61736843003401’ \
 [
 [h’466c617368’, h’003401’],
],
 / common / 4 : h’8613a40350fa6b4a53d5ad5fdfbe9de663e4d41ffe’
 h’04501492af1425695e48bf429b2d51f2ab450b5820’
 h’00112233445566778899aabbccddeeff0123456789’
 h’abcdeffedcba98765432100c1987d001f602f6’ \ [
 / set-vars / 19, {
 / vendor-id / 3 : h’fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe’
 / class-id / 4 : h’1492af1425695e48bf429b2d51f2ab45’
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
 / condition-vendor-id / 1, None,
 / condition-class-id / 2, None,
],
 },
 / apply-image / 9 : h’860c0013a106781b687474703a2f2f6578616d70’
 h’6c652e636f6d2f66696c652e62696e15f6’ \ [
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / uri / 6 : http://example.com/file.bin
 },
 / fetch / 21, None,
],
 / run-image / 12 : h’860c0003f617f6’ \ [
 / set-component-index / 12, 0,
 / condition-image / 3, None,

Moran, et al. Expires January 9, 2020 [Page 53]

Internet-Draft Firmware Manifest Format July 2019

 / run / 23, None,
],
 }
}

 Total size of outer wrapper without COSE authentication object: 163

 Outer:

a201f603589da501010203035864a2024c818245466c617368430034010458528613a403
50fa6b4a53d5ad5fdfbe9de663e4d41ffe04501492af1425695e48bf429b2d51f2ab450b
582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100c19
87d001f602f6095825860c0013a106781b687474703a2f2f6578616d706c652e636f6d2f
66696c652e62696e15f60c47860c0003f617f6

13.4. Example 3:

 Compatibility test, simultaneous download and installation, load from
 external storage, and secure boot.

 The following JSON shows the intended behaviour of the manifest.

{
 "structure-version": 1,
 "sequence-number": 4,
 "common": {
 "common-sequence": [
 {
 "directive-set-var": {
 "vendor-id": "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe",
 "class-id": "1492af14-2569-5e48-bf42-9b2d51f2ab45"
 }
 },
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }

Moran, et al. Expires January 9, 2020 [Page 54]

Internet-Draft Firmware Manifest Format July 2019

 },
 { "condition-vendor-id": null },
 { "condition-class-id": null }
],
 "components": [
 [
 "Flash",
 78848
],
 [
 "RAM",
 1024
]
]
 },
 "apply-image": [
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file.bin"
 }
 },
 { "directive-fetch": null }
],
 "run-image": [
 { "directive-set-component": 0 },
 { "condition-image": null },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "source-index": 0
 }
 },
 { "directive-fetch": null },
 { "condition-image": null },
 { "directive-run": null }
]
}

 Converted into the SUIT manifest, this produces:

{
 / auth object / 1 : None
 / manifest / 3 : h’a50101020403589ba20254828245466c6173684300340182’
 h’4352414d4200040458818e13a20350fa6b4a53d5ad5fdfbe’
 h’9de663e4d41ffe04501492af1425695e48bf429b2d51f2ab’
 h’450c0013a20b582000112233445566778899aabbccddeeff’
 h’0123456789abcdeffedcba98765432100c1987d00c0113a2’

Moran, et al. Expires January 9, 2020 [Page 55]

Internet-Draft Firmware Manifest Format July 2019

 h’0b582000112233445566778899aabbccddeeff0123456789’
 h’abcdeffedcba98765432100c1987d001f602f6095825860c’
 h’0013a106781b687474703a2f2f6578616d706c652e636f6d’
 h’2f66696c652e62696e15f60c518e0c0003f60c0113a10a00’
 h’15f603f617f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 4
 / common / 3 : h’a20254828245466c61736843003401824352414d420004’
 h’0458818e13a20350fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe04501492af1425695e48bf429b2d51f2ab450c0013a2’
 h’0b582000112233445566778899aabbccddeeff01234567’
 h’89abcdeffedcba98765432100c1987d00c0113a20b5820’
 h’00112233445566778899aabbccddeeff0123456789abcd’
 h’effedcba98765432100c1987d001f602f6’ \ {
 / components / 2 : h’828245466c61736843003401824352414d4200’
 h’04’ \
 [
 [h’466c617368’, h’003401’],
 [h’52414d’, h’0004’],
],
 / common / 4 : h’8e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe’
 h’04501492af1425695e48bf429b2d51f2ab450c0013’
 h’a20b582000112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba98765432100c1987d00c01’
 h’13a20b582000112233445566778899aabbccddeeff’
 h’0123456789abcdeffedcba98765432100c1987d001’
 h’f602f6’ \ [
 / set-vars / 19, {
 / vendor-id / 3 : h’fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe’
 / class-id / 4 : h’1492af1425695e48bf429b2d51f2ab45’
 },
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
 / condition-vendor-id / 1, None,
 / condition-class-id / 2, None,
],

Moran, et al. Expires January 9, 2020 [Page 56]

Internet-Draft Firmware Manifest Format July 2019

 },
 / apply-image / 9 : h’860c0013a106781b687474703a2f2f6578616d70’
 h’6c652e636f6d2f66696c652e62696e15f6’ \ [
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / uri / 6 : http://example.com/file.bin
 },
 / fetch / 21, None,
],
 / run-image / 12 : h’8e0c0003f60c0113a10a0015f603f617f6’ \ [
 / set-component-index / 12, 0,
 / condition-image / 3, None,
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / source-component / 10 : 0
 },
 / fetch / 21, None,
 / condition-image / 3, None,
 / run / 23, None,
],
 }
}

 Total size of outer wrapper without COSE authentication object: 228

 Outer:

a201f60358dea50101020403589ba20254828245466c61736843003401824352414d4200
040458818e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe04501492af1425695e48bf
429b2d51f2ab450c0013a20b582000112233445566778899aabbccddeeff0123456789ab
cdeffedcba98765432100c1987d00c0113a20b582000112233445566778899aabbccddee
ff0123456789abcdeffedcba98765432100c1987d001f602f6095825860c0013a106781b
687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f60c518e0c0003f6
0c0113a10a0015f603f617f6

13.5. Example 4:

 Compatibility test, simultaneous download and installation, load and
 decompress from external storage, and secure boot.

 The following JSON shows the intended behaviour of the manifest.

{
 "structure-version": 1,
 "sequence-number": 5,
 "common": {
 "common-sequence": [
 {

Moran, et al. Expires January 9, 2020 [Page 57]

Internet-Draft Firmware Manifest Format July 2019

 "directive-set-var": {
 "vendor-id": "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe",
 "class-id": "1492af14-2569-5e48-bf42-9b2d51f2ab45"
 }
 },
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "digest": "0123456789abcdeffedcba9876543210"
 "00112233445566778899aabbccddeeff",
 "size": 34768
 }
 },
 { "condition-vendor-id": null },
 { "condition-class-id": null }
],
 "components": [
 [
 "Flash",
 78848
],
 [
 "RAM",
 1024
]
]
 },
 "apply-image": [
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file.bin"
 }
 },
 { "directive-fetch": null }
],
 "load-image": [
 { "directive-set-component": 0 },
 { "condition-image": null },
 { "directive-set-component": 1 },

Moran, et al. Expires January 9, 2020 [Page 58]

Internet-Draft Firmware Manifest Format July 2019

 {
 "directive-set-var": {
 "source-index": 0,
 "compression-info": {
 "algorithm": "gzip"
 }
 }
 },
 { "directive-copy": null }
],
 "run-image": [
 { "condition-image": null },
 { "directive-run": null }
]
}

 Converted into the SUIT manifest, this produces:

{
 / auth object / 1 : None
 / manifest / 3 : h’a60101020503589ba20254828245466c6173684300340182’
 h’4352414d4200040458818e13a20350fa6b4a53d5ad5fdfbe’
 h’9de663e4d41ffe04501492af1425695e48bf429b2d51f2ab’
 h’450c0013a20b582000112233445566778899aabbccddeeff’
 h’0123456789abcdeffedcba98765432100c1987d00c0113a2’
 h’0b58200123456789abcdeffedcba98765432100011223344’
 h’5566778899aabbccddeeff0c1987d001f602f6095825860c’
 h’0013a106781b687474703a2f2f6578616d706c652e636f6d’
 h’2f66696c652e62696e15f60b508a0c0003f60c0113a20841’
 h’f60a0016f60c458403f617f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 5
 / common / 3 : h’a20254828245466c61736843003401824352414d420004’
 h’0458818e13a20350fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe04501492af1425695e48bf429b2d51f2ab450c0013a2’
 h’0b582000112233445566778899aabbccddeeff01234567’
 h’89abcdeffedcba98765432100c1987d00c0113a20b5820’
 h’0123456789abcdeffedcba987654321000112233445566’
 h’778899aabbccddeeff0c1987d001f602f6’ \ {
 / components / 2 : h’828245466c61736843003401824352414d4200’
 h’04’ \
 [
 [h’466c617368’, h’003401’],
 [h’52414d’, h’0004’],
],
 / common / 4 : h’8e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe’
 h’04501492af1425695e48bf429b2d51f2ab450c0013’

Moran, et al. Expires January 9, 2020 [Page 59]

Internet-Draft Firmware Manifest Format July 2019

 h’a20b582000112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba98765432100c1987d00c01’
 h’13a20b58200123456789abcdeffedcba9876543210’
 h’00112233445566778899aabbccddeeff0c1987d001’
 h’f602f6’ \ [
 / set-vars / 19, {
 / vendor-id / 3 : h’fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe’
 / class-id / 4 : h’1492af1425695e48bf429b2d51f2ab45’
 },
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / digest / 11 :h’0123456789abcdeffedcba987654321000’
 h’112233445566778899aabbccddeeff’,
 / size / 12 : 34768
 },
 / condition-vendor-id / 1, None,
 / condition-class-id / 2, None,
],
 },
 / apply-image / 9 : h’860c0013a106781b687474703a2f2f6578616d70’
 h’6c652e636f6d2f66696c652e62696e15f6’ \ [
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / uri / 6 : http://example.com/file.bin
 },
 / fetch / 21, None,
],
 / load-image / 11 : h’8a0c0003f60c0113a20841f60a0016f6’ \ [
 / set-component-index / 12, 0,
 / condition-image / 3, None,
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / unknown / 8 : h’f6’
 / source-component / 10 : 0
 },
 / copy / 22, None,
],
 / run-image / 12 : h’8403f617f6’ \ [
 / condition-image / 3, None,
 / run / 23, None,
],

Moran, et al. Expires January 9, 2020 [Page 60]

Internet-Draft Firmware Manifest Format July 2019

 }
}

 Total size of outer wrapper without COSE authentication object: 234

 Outer:

a201f60358e4a60101020503589ba20254828245466c61736843003401824352414d4200
040458818e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe04501492af1425695e48bf
429b2d51f2ab450c0013a20b582000112233445566778899aabbccddeeff0123456789ab
cdeffedcba98765432100c1987d00c0113a20b58200123456789abcdeffedcba98765432
1000112233445566778899aabbccddeeff0c1987d001f602f6095825860c0013a106781b
687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f60b508a0c0003f6
0c0113a20841f60a0016f60c458403f617f6

13.6. Example 5:

 Compatibility test, download, installation, and secure boot.

 The following JSON shows the intended behaviour of the manifest.

{
 "structure-version": 1,
 "sequence-number": 6,
 "common": {
 "common-sequence": [
 {
 "directive-set-var": {
 "vendor-id": "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe",
 "class-id": "1492af14-2569-5e48-bf42-9b2d51f2ab45"
 }
 },
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "digest": "0123456789abcdeffedcba9876543210"
 "00112233445566778899aabbccddeeff",
 "size": 34768
 }
 },

Moran, et al. Expires January 9, 2020 [Page 61]

Internet-Draft Firmware Manifest Format July 2019

 { "condition-vendor-id": null },
 { "condition-class-id": null }
],
 "components": [
 [
 "ext-Flash",
 78848
],
 [
 "Flash",
 1024
]
]
 },
 "apply-image": [
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file.bin"
 }
 },
 { "directive-fetch": null }
],
 "load-image": [
 { "directive-set-component": 1 },
 { "condition-not-image": null },
 { "directive-set-component": 0 },
 { "condition-image": null },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "source-index": 0
 }
 },
 { "directive-fetch": null }
],
 "run-image": [
 { "directive-set-component": 1 },
 { "condition-image": null },
 { "directive-run": null }
]
}

 Converted into the SUIT manifest, this produces:

{
 / auth object / 1 : None
 / manifest / 3 : h’a60101020603589ea202578282467b1b4595ab2143003401’

Moran, et al. Expires January 9, 2020 [Page 62]

Internet-Draft Firmware Manifest Format July 2019

 h’8245466c6173684200040458818e13a20350fa6b4a53d5ad’
 h’5fdfbe9de663e4d41ffe04501492af1425695e48bf429b2d’
 h’51f2ab450c0013a20b582000112233445566778899aabbcc’
 h’ddeeff0123456789abcdeffedcba98765432100c1987d00c’
 h’0113a20b58200123456789abcdeffedcba98765432100011’
 h’2233445566778899aabbccddeeff0c1987d001f602f60958’
 h’25860c0013a106581b687474703a2f2f6578616d706c652e’
 h’636f6d2f66696c652e62696e15f60b528e0c011819f60c00’
 h’03f60c0113a10a0015f60c47860c0103f617f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 6
 / common / 3 : h’a202578282467b1b4595ab21430034018245466c617368’
 h’4200040458818e13a20350fa6b4a53d5ad5fdfbe9de663’
 h’e4d41ffe04501492af1425695e48bf429b2d51f2ab450c’
 h’0013a20b582000112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba98765432100c1987d00c0113a2’
 h’0b58200123456789abcdeffedcba987654321000112233’
 h’445566778899aabbccddeeff0c1987d001f602f6’ \ {
 / components / 2 : h’8282467b1b4595ab21430034018245466c6173’
 h’68420004’ \
 [
 [h’7b1b4595ab21’, h’003401’],
 [h’466c617368’, h’0004’],
],
 / common / 4 : h’8e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe’
 h’04501492af1425695e48bf429b2d51f2ab450c0013’
 h’a20b582000112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba98765432100c1987d00c01’
 h’13a20b58200123456789abcdeffedcba9876543210’
 h’00112233445566778899aabbccddeeff0c1987d001’
 h’f602f6’ \ [
 / set-vars / 19, {
 / vendor-id / 3 : h’fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe’
 / class-id / 4 : h’1492af1425695e48bf429b2d51f2ab45’
 },
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / digest / 11 :h’0123456789abcdeffedcba987654321000’
 h’112233445566778899aabbccddeeff’,
 / size / 12 : 34768

Moran, et al. Expires January 9, 2020 [Page 63]

Internet-Draft Firmware Manifest Format July 2019

 },
 / condition-vendor-id / 1, None,
 / condition-class-id / 2, None,
],
 },
 / apply-image / 9 : h’860c0013a106581b687474703a2f2f6578616d70’
 h’6c652e636f6d2f66696c652e62696e15f6’ \ [
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / uri / 6 : h’687474703a2f2f6578616d706c652e636f6d2f66’
 h’696c652e62696e’
 },
 / fetch / 21, None,
],
 / load-image / 11 : h’8e0c011819f60c0003f60c0113a10a0015f6’ \ [
 / set-component-index / 12, 1,
 / condition-not-image / 25, None,
 / set-component-index / 12, 0,
 / condition-image / 3, None,
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / source-component / 10 : 0
 },
 / fetch / 21, None,
],
 / run-image / 12 : h’860c0103f617f6’ \ [
 / set-component-index / 12, 1,
 / condition-image / 3, None,
 / run / 23, None,
],
 }
}

 Total size of outer wrapper without COSE authentication object: 241

 Outer:

a201f60358eba60101020603589ea202578282467b1b4595ab21430034018245466c6173
684200040458818e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe04501492af142569
5e48bf429b2d51f2ab450c0013a20b582000112233445566778899aabbccddeeff012345
6789abcdeffedcba98765432100c1987d00c0113a20b58200123456789abcdeffedcba98
7654321000112233445566778899aabbccddeeff0c1987d001f602f6095825860c0013a1
06581b687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e15f60b528e0c
011819f60c0003f60c0113a10a0015f60c47860c0103f617f6

Moran, et al. Expires January 9, 2020 [Page 64]

Internet-Draft Firmware Manifest Format July 2019

13.7. Example 6:

 Compatibility test, 2 images, simultaneous download and installation,
 and secure boot.

 The following JSON shows the intended behaviour of the manifest.

{
 "structure-version": 1,
 "sequence-number": 7,
 "common": {
 "common-sequence": [
 {
 "directive-set-var": {
 "vendor-id": "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe",
 "class-id": "1492af14-2569-5e48-bf42-9b2d51f2ab45"
 }
 },
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "digest": "00112233445566778899aabbccddeeff"
 "0123456789abcdeffedcba9876543210",
 "size": 34768
 }
 },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "digest": "0123456789abcdeffedcba9876543210"
 "00112233445566778899aabbccddeeff",
 "size": 76834
 }
 },
 { "condition-vendor-id": null },
 { "condition-class-id": null }
],
 "components": [
 [
 "Flash",
 78848
],
 [
 "Flash",
 132096
]
]
 },

Moran, et al. Expires January 9, 2020 [Page 65]

Internet-Draft Firmware Manifest Format July 2019

 "apply-image": [
 { "directive-set-component": 0 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file1.bin"
 }
 },
 { "directive-set-component": 1 },
 {
 "directive-set-var": {
 "uri": "http://example.com/file2.bin"
 }
 },
 { "directive-set-component": true },
 { "directive-fetch": null }
],
 "run-image": [
 { "directive-set-component": true },
 { "condition-image": null },
 { "directive-set-component": 0 },
 { "directive-run": null }
]
}

 Converted into the SUIT manifest, this produces:

{
 / auth object / 1 : None
 / manifest / 3 : h’a5010102070358a0a20257828245466c6173684300340182’
 h’45466c617368430004020458838e13a20350fa6b4a53d5ad’
 h’5fdfbe9de663e4d41ffe04501492af1425695e48bf429b2d’
 h’51f2ab450c0013a20b582000112233445566778899aabbcc’
 h’ddeeff0123456789abcdeffedcba98765432100c1987d00c’
 h’0113a20b58200123456789abcdeffedcba98765432100011’
 h’2233445566778899aabbccddeeff0c1a00012c2201f602f6’
 h’09584b8c0c0013a106781c687474703a2f2f6578616d706c’
 h’652e636f6d2f66696c65312e62696e0c0113a106781c6874’
 h’74703a2f2f6578616d706c652e636f6d2f66696c65322e62’
 h’696e0cf515f60c49880cf503f60c0017f6’ \
 {
 / structure-version / 1 : 1
 / sequence-number / 2 : 7
 / common / 3 : h’a20257828245466c617368430034018245466c61736843’
 h’0004020458838e13a20350fa6b4a53d5ad5fdfbe9de663’
 h’e4d41ffe04501492af1425695e48bf429b2d51f2ab450c’
 h’0013a20b582000112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba98765432100c1987d00c0113a2’
 h’0b58200123456789abcdeffedcba987654321000112233’

Moran, et al. Expires January 9, 2020 [Page 66]

Internet-Draft Firmware Manifest Format July 2019

 h’445566778899aabbccddeeff0c1a00012c2201f602f6’
 \ {
 / components / 2 : h’828245466c617368430034018245466c617368’
 h’43000402’ \
 [
 [h’466c617368’, h’003401’],
 [h’466c617368’, h’000402’],
],
 / common / 4 : h’8e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe’
 h’04501492af1425695e48bf429b2d51f2ab450c0013’
 h’a20b582000112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba98765432100c1987d00c01’
 h’13a20b58200123456789abcdeffedcba9876543210’
 h’00112233445566778899aabbccddeeff0c1a00012c’
 h’2201f602f6’ \ [
 / set-vars / 19, {
 / vendor-id / 3 : h’fa6b4a53d5ad5fdfbe9de663e4d41f’
 h’fe’
 / class-id / 4 : h’1492af1425695e48bf429b2d51f2ab45’
 },
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / digest / 11 :h’00112233445566778899aabbccddeeff01’
 h’23456789abcdeffedcba9876543210’,
 / size / 12 : 34768
 },
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / digest / 11 :h’0123456789abcdeffedcba987654321000’
 h’112233445566778899aabbccddeeff’,
 / size / 12 : 76834
 },
 / condition-vendor-id / 1, None,
 / condition-class-id / 2, None,
],
 },
 / apply-image / 9 : h’8c0c0013a106781c687474703a2f2f6578616d70’
 h’6c652e636f6d2f66696c65312e62696e0c0113a1’
 h’06781c687474703a2f2f6578616d706c652e636f’
 h’6d2f66696c65322e62696e0cf515f6’ \ [
 / set-component-index / 12, 0,
 / set-vars / 19, {
 / uri / 6 : http://example.com/file1.bin
 },
 / set-component-index / 12, 1,
 / set-vars / 19, {
 / uri / 6 : http://example.com/file2.bin
 },

Moran, et al. Expires January 9, 2020 [Page 67]

Internet-Draft Firmware Manifest Format July 2019

 / set-component-index / 12, True,
 / fetch / 21, None,
],
 / run-image / 12 : h’880cf503f60c0017f6’ \ [
 / set-component-index / 12, True,
 / condition-image / 3, None,
 / set-component-index / 12, 0,
 / run / 23, None,
],
 }
}

 Total size of outer wrapper without COSE authentication object: 264

 Outer:

a201f603590101a5010102070358a0a20257828245466c617368430034018245466c6173
68430004020458838e13a20350fa6b4a53d5ad5fdfbe9de663e4d41ffe04501492af1425
695e48bf429b2d51f2ab450c0013a20b582000112233445566778899aabbccddeeff0123
456789abcdeffedcba98765432100c1987d00c0113a20b58200123456789abcdeffedcba
987654321000112233445566778899aabbccddeeff0c1a00012c2201f602f609584b8c0c
0013a106781c687474703a2f2f6578616d706c652e636f6d2f66696c65312e62696e0c01
13a106781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62696e0cf515
f60c49880cf503f60c0017f6

14. IANA Considerations

 Several registries will be required for:

 - standard Commands

 - standard Parameters

 - standard Algorithm identifiers

 - standard text values

15. Security Considerations

 This document is about a manifest format describing and protecting
 firmware images and as such it is part of a larger solution for
 offering a standardized way of delivering firmware updates to IoT
 devices. A more detailed discussion about security can be found in
 the architecture document [Architecture] and in [Information].

Moran, et al. Expires January 9, 2020 [Page 68]

Internet-Draft Firmware Manifest Format July 2019

16. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/suit [2]

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/suit/current/index.html [3]

17. Acknowledgements

 We would like to thank the following persons for their support in
 designing this mechanism:

 - Milosch Meriac

 - Geraint Luff

 - Dan Ros

 - John-Paul Stanford

 - Hugo Vincent

 - Carsten Bormann

 - Oeyvind Roenningstad

 - Frank Audun Kvamtroe

 - Krzysztof Chruściński

 - Andrzej Puzdrowski

 - Michael Richardson

 - David Brown

 - Emmanuel Baccelli

18. References

18.1. Normative References

Moran, et al. Expires January 9, 2020 [Page 69]

Internet-Draft Firmware Manifest Format July 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

18.2. Informative References

 [Architecture]
 Moran, B., "A Firmware Update Architecture for Internet of
 Things Devices", January 2019,
 <https://tools.ietf.org/html/
 draft-ietf-suit-architecture-02>.

 [Information]
 Moran, B., "Firmware Updates for Internet of Things
 Devices - An Information Model for Manifests", January
 2019, <https://tools.ietf.org/html/
 draft-ietf-suit-information-model-02>.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
 <https://www.rfc-editor.org/info/rfc6920>.

18.3. URIs

 [1] mailto:suit@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/suit

 [3] https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires January 9, 2020 [Page 70]

Internet-Draft Firmware Manifest Format July 2019

Authors’ Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@arm.com

 Henk Birkholz
 Fraunhofer SIT

 EMail: henk.birkholz@sit.fraunhofer.de

Moran, et al. Expires January 9, 2020 [Page 71]

