
SUIT B. Moran
Internet-Draft M. Meriac
Intended status: Informational H. Tschofenig
Expires: September 6, 2018 Arm Limited
 March 05, 2018

 A Firmware Update Architecture for Internet of Things Devices
 draft-moran-suit-architecture-03

Abstract

 Vulnerabilities with Internet of Things (IoT) devices have raised the
 need for a solid and secure firmware update mechanism that is also
 suitable for constrained devices. Incorporating such update
 mechanism to fix vulnerabilities, to update configuration settings as
 well as adding new functionality is recommended by security experts.

 This document lists requirements and describes an architecture for a
 firmware update mechanism suitable for IoT devices. The architecture
 is agnostic to the transport of the firmware images and associated
 meta-data.

 This version of the document assumes asymmetric cryptography and a
 public key infrastructure. Future versions may also describe a
 symmetric key approach for very constrained devices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Moran, et al. Expires September 6, 2018 [Page 1]

Internet-Draft IoT Firmware Update Architecture March 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 2. Conventions and Terminology 4
 3. Requirements . 5
 3.1. Agnostic to how firmware images are distributed 6
 3.2. Friendly to broadcast delivery 6
 3.3. Uses state-of-the-art security mechanisms 6
 3.4. Rollback attacks must be prevented 6
 3.5. High reliability . 6
 3.6. Operates with a small bootloader 7
 3.7. Small Parsers . 7
 3.8. Minimal impact on existing firmware formats 7
 3.9. Robust permissions 7
 4. Claims . 8
 5. Architecture . 9
 6. Manifest . 11
 7. Example Flow . 12
 8. IANA Considerations . 14
 9. Security Considerations 14
 10. Mailing List Information 15

Moran, et al. Expires September 6, 2018 [Page 2]

Internet-Draft IoT Firmware Update Architecture March 2018

 11. Acknowledgements . 15
 12. References . 16
 12.1. Normative References 16
 12.2. Informative References 16
 12.3. URIs . 16
 Appendix A. Threat Model, User Stories, Security Requirements,
 and Usability Requirements 17
 A.1. Threat Model . 17
 A.2. Threat Descriptions 17
 A.2.1. Threat MFT1: Old Firmware 17
 A.2.2. Threat MFT2: Mismatched Firmware 18
 A.2.3. Threat MFT3: Offline device + Old Firmware 18
 A.2.4. Threat MFT4: The target device misinterprets the type
 of payload . 18
 A.2.5. Threat MFT5: The target device installs the payload
 to the wrong location 19
 A.2.6. Threat MFT6: Redirection 19
 A.2.7. Threat MFT7: Payload Verification on Boot 19
 A.2.8. Threat MFT8: Unauthenticated Updates 19
 A.2.9. Threat MFT9: Unexpected Precursor images 20
 A.2.10. Threat MFT10: Unqualified Firmware 20
 A.2.11. Threat MFT11: Reverse Engineering Of Firmware Image
 for Vulnerability Analysis 21
 A.3. Security Requirements 21
 A.3.1. Security Requirement MFSR1: Monotonic Sequence
 Numbers . 21
 A.3.2. Security Requirement MFSR2: Vendor, Device-type
 Identifiers . 22
 A.3.3. Security Requirement MFSR3: Best-Before Timestamps . 22
 A.3.4. Security Requirement MFSR4: Signed Payload Descriptor 22
 A.3.5. Security Requirement MFSR5: Cryptographic
 Authenticity . 23
 A.3.6. Security Requirement MFSR6: Rights Require
 Authenticity . 23
 A.3.7. Security Requirement MFSR7: Firmware encryption . . . 23
 A.4. User Stories . 23
 A.4.1. Use Case MFUC1: Installation Instructions 24
 A.4.2. Use Case MFUC2: Reuse Local Infrastructure 24
 A.4.3. Use Case MFUC3: Modular Update 24
 A.4.4. Use Case MFUC4: Multiple Authorisations 25
 A.4.5. Use Case MFUC5: Multiple Payload Formats 25
 A.4.6. Use Case MFUC6: IP Protection 25
 A.5. Usability Requirements 25
 A.5.1. Usability Requirement MFUR1 25
 A.5.2. Usability Requirement MFUR2 25
 A.5.3. Usability Requirement MFUR3 26
 A.5.4. Usability Requirement MFUR4 26
 A.5.5. Usability Requirement MFUR5 26

Moran, et al. Expires September 6, 2018 [Page 3]

Internet-Draft IoT Firmware Update Architecture March 2018

 A.6. Manifest Fields . 26
 A.6.1. Manifest Field: Timestamp 27
 A.6.2. Manifest Field: Vendor ID Condition 27
 A.6.3. Manifest Field: Class ID Condition 27
 A.6.4. Manifest Field: Precursor Image Digest Condition . . 27
 A.6.5. Manifest Field: Best-Before timestamp condition . . . 27
 A.6.6. Manifest Field: Payload Format 28
 A.6.7. Manifest Field: Storage Location 28
 A.6.8. Manifest Field: URIs 28
 A.6.9. Manifest Field: Digests 28
 A.6.10. Manifest Field: Size 28
 A.6.11. Manifest Field: Signature 28
 A.6.12. Manifest Field: Directives 29
 A.6.13. Manifest Field: Aliases 29
 A.6.14. Manifest Field: Dependencies 29
 A.6.15. Manifest Field: Content Key Distribution Method . . . 29
 Authors’ Addresses . 29

1. Introduction

 When developing IoT devices, one of the most difficult problems to
 solve is how to update the firmware on the device. Once the device
 is deployed, firmware updates play a critical part in its lifetime,
 particularly when devices have a long lifetime, are deployed in
 remote or inaccessible areas or where manual intervention is cost
 prohibitive or otherwise difficult. The need for a firmware update
 may be to fix bugs in software, to add new functionality, or to re-
 configure the device.

 The firmware update process has to ensure that

 - The firmware image is authenticated and attempts to flash a
 malicious firmware image are prevented.

 - The firmware image can be confidentiality protected so that
 attempts by an adversary to recover the plaintext binary can be
 prevented. Obtaining the plaintext binary is often one of the
 first steps for an attack to mount an attack.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 This document uses the following terms:

Moran, et al. Expires September 6, 2018 [Page 4]

Internet-Draft IoT Firmware Update Architecture March 2018

 - Manifest: The manifest contains meta-data about the firmware
 image. The manifest is protected against modification and
 provides information about the author.

 - Firmware Image: The firmware image is a binary that may contain
 the complete software of a device or a subset of it. The firmware
 image may consist of multiple images, if the device contains more
 than one microcontroller. The image may consist of a differential
 update for performance reasons. Firmware is the more universal
 term. Both terms are used in this document and are
 interchangeable.

 The following entities are used:

 - Author: The author is the entity that creates the firmware image,
 signs and/or encrypts it and attaches a manifest to it. The
 author is most likely a developer using a set of tools.

 - Device: The device is the recipient of the firmware image and the
 manifest. The goal is to update the firmware of the device.

 - Untrusted Storage: Firmware images and manifests are stored on
 untrusted fileservers or cloud storage infrastructure. Some
 deployments may require storage of the firmware images/manifests
 to be stored on various entities before they reach the device.

3. Requirements

 The firmware update mechanism described in this specification was
 designed with the following requirements in mind:

 - Agnostic to how firmware images are distributed

 - Friendly to broadcast delivery

 - Uses state-of-the-art security mechanisms

 - Rollback attacks must be prevented.

 - High reliability

 - Operates with a small bootloader

 - Small Parsers

 - Minimal impact on existing firmware formats

 - Robust permissions

Moran, et al. Expires September 6, 2018 [Page 5]

Internet-Draft IoT Firmware Update Architecture March 2018

3.1. Agnostic to how firmware images are distributed

 Firmware images can be conveyed to devices in a variety of ways,
 including USB, UART, WiFi, BLE, low-power WAN technologies, etc and
 use different protocols (e.g., CoAP, HTTP). The specified mechanism
 needs to be agnostic to the distribution of the firmware images and
 manifests.

3.2. Friendly to broadcast delivery

 For an update to be broadcast friendly, it cannot rely on link layer,
 network layer, or transport layer security. In addition, the same
 message must be deliverable to many devices; both those to which it
 applies and those to which it does not without a chance that the
 wrong device will accept the update. Considerations that apply to
 network broadcasts apply equally to the use of third-party content
 distribution networks for payload distribution.

3.3. Uses state-of-the-art security mechanisms

 End-to-end security between the author and the device, as shown in
 Section 5, is used to ensure that the device can verify firmware
 images and manifests produced by authorized authors.

 The use of post-quantum secure signature mechanisms, such as hash-
 based signatures, should be explored. A mandatory-to-implement set
 of algorithms has to be defined offering a key length of 112-bit
 symmetric key or security or more, as outlined in Section 20 of RFC
 7925. This corresponds to a 233 bit ECC key or a 2048 bit RSA key.

 If the firmware image is to be encrypted, it must be done in such a
 way that every intended recipient can decrypt it. The information
 that is encrypted individually for each device must be an absolute
 minimum.

3.4. Rollback attacks must be prevented

 A device presented with an old, but valid manifest and firmware must
 not be tricked into installing such firmware since a vulnerability in
 the old firmware image may allow an attacker gain control of the
 device.

3.5. High reliability

 A power failure at any time must not cause a failure of the device.
 A failure to validate any part of an update must not cause a failure
 of the device. One way to achieve this functionality is to provide a
 minimum of two storage locations for firmware and one bootable

Moran, et al. Expires September 6, 2018 [Page 6]

Internet-Draft IoT Firmware Update Architecture March 2018

 location for firmware. An alternative approach is to use a 2nd stage
 bootloader with build-in full featured firmware update functionality
 such that it is possible to return to the update process after power
 down.

 Note: This is an implementation requirement rather than a requirement
 on the manifest format.

3.6. Operates with a small bootloader

 The bootloader must be minimal, containing only flash support,
 cryptographic primitives and optionally a recovery mechanism. The
 recovery mechanism is used in case the update process failed and may
 include support for firmware updates over serial, USB or even a
 limited version of wireless connectivity standard like a limited
 Bluetooth Smart. Such a recovery mechanism must provide security at
 least at the same level as the full featured firmware update
 functionalities.

 The bootloader needs to verify the received manifest and to install
 the bootable firmware image. The bootloader should not require
 updating since a failed update poses a risk in reliability. If more
 functionality is required in the bootloader, it must use a two-stage
 bootloader, with the first stage comprising the functionality defined
 above.

 All information necessary for a device to make a decision about the
 installation of a firmware update must fit into the available RAM of
 a constrained IoT device. This prevents flash write exhaustion.

 Note: This is an implementation requirement.

3.7. Small Parsers

 Since parsers are known sources of bugs they must be minimal.
 Additionally, it must be easy to parse only those fields which are
 required to validate at least one signature with minimal exposure.

3.8. Minimal impact on existing firmware formats

 The design of the firmware update mechanism must not require changes
 to existing firmware formats.

3.9. Robust permissions

 A device may have many modules that require updating individually.
 It may also need to trust several actors in order to authorize an
 update. For example, a firmware author may not have the authority to

Moran, et al. Expires September 6, 2018 [Page 7]

Internet-Draft IoT Firmware Update Architecture March 2018

 install firmware on a device in critical infrastructure without the
 authorization of a device operator. In this case, the device should
 reject firmware updates unless they are signed both by the firmware
 author and by the device operator. To facilitate complex use-cases
 such as this, updates require several permissions.

4. Claims

 When a simple set of permissions fails to encapsulate the rules
 required for a device make decisions about firmware, claims can be
 used instead. Claims represent a form of policy. Several claims can
 be used together, when multiple actors should have the rights to set
 policies.

 Some example claims are:

 - Trust the actor identified by the referenced public key.

 - Three actors are trusted identified by their public keys.
 Signatures from at least two of these actors are required to trust
 a manifest.

 - The actor identified by the referenced public key is authorized to
 create secondary policies

 The baseline claims for all manifests are described in Appendix A.
 In summary, they are:

 - Do not install firmware with earlier metadata than the current
 metadata.

 - Only install firmware with a matching vendor, model, hardware
 revision, software version, etc.

 - Only install firmware that is before its best-before timestamp.

 - Only install firmware with metadata signed by a trusted actor.

 - Only allow an actor to exercise rights on the device via a
 manifest if that actor has signed the manifest.

 - Only allow a firmware installation if all required rights have
 been met through signatures (one or more) or manifest dependencies
 (one or more).

 - Use the instructions provided by the manifest to install the
 firmware.

Moran, et al. Expires September 6, 2018 [Page 8]

Internet-Draft IoT Firmware Update Architecture March 2018

 - Any authorized actor may redirect any URI.

 - Install any and all firmware images that are linked together with
 manifest dependencies.

 - Choose the mechanism to install the firmware, based on the type of
 firmware it is.

5. Architecture

 We start the architectural description with the security model. It
 is based on end-to-end security. Figure 1 illustrates the security
 model where a firmware image and the corresponding manifest are
 created by an author and verified by the device. The firmware image
 is integrity protected and may be encrypted. The manifest is
 integrity protected and authenticated. When the author is ready to
 distribute the firmware image it is conveyed using some communication
 channel to the device, which will typically involve the use of
 untrusted storage. Examples of untrusted storage are FTP servers,
 Web servers or USB sticks.

 +-----------+
 +--------+ Firmware Image | | Firmware Image +--------+
	+ Manifest	Untrusted	+ Manifest	
Device	<-----------------	Storage	<------------------	Author
 +--------+ +-----------+ +--------+
 ^ *
 * *
 **
 End-to-End Security

 Figure 1: End-to-End Security.

 Whether the firmware image and the manifest is pushed to the device
 or fetched by the device is outside the scope of this work and
 existing device management protocols can be used for efficiently
 distributing this information.

 The following assumptions are made to allow the device to verify the
 received firmware image and manifest before updating software:

 - To accept an update, a device needs to decide whether the author
 signing the firmware image and the manifest is authorized to make
 the updates. We use public key cryptography to accomplish this.
 The device verifies the signature covering the manifest using a
 digital signature algorithm. The device is provisioned with a
 trust anchor that is used to validate the digital signature

Moran, et al. Expires September 6, 2018 [Page 9]

Internet-Draft IoT Firmware Update Architecture March 2018

 produced by the author. This trust anchor is potentially
 different from the trust anchor used to validate the digital
 signature produced for other protocols (such as device management
 protocols). This trust anchor may be provisioned to the device
 during manufacturing or during commissioning.

 - For confidentiality protection of firmware images the author needs
 to be in possession of the certificate/public key or a pre-shared
 key of a device.

 There are different types of delivery modes, which are illustrates
 based on examples below.

 There is an option for embedding a firmware image into a manifest.
 This is a useful approach for deployments where devices are not
 connected to the Internet and cannot contact a dedicated server for
 download of the firmware. It is also applicable when the firmware
 update happens via a USB stick or via Bluetooth Smart. Figure 2
 shows this delivery mode graphically.

 /------------\ /------------\
 /Manifest with \ /Manifest with \
 |attached | |attached |
 \firmware image/ \firmware image/
 \------------/ +-----------+ \------------/
 +--------+ | | +--------+
 | |<.................| Untrusted |<................| |
 | Device | | Storage | | Author |
 | | | | | |
 +--------+ +-----------+ +--------+

 Figure 2: Manifest with attached firmware.

 Figure 3 shows an option for remotely updating a device where the
 device fetches the firmware image from some file server. The
 manifest itself is delivery independently and provides information
 about the firmware image(s) to download.

Moran, et al. Expires September 6, 2018 [Page 10]

Internet-Draft IoT Firmware Update Architecture March 2018

 /------------\
 / \
 | Manifest |
 \ /
 +--------+ \------------/ +--------+
 | |<..>| |
 | Device | -- | Author |
 | |<- --- | |
 +--------+ -- --- +--------+
 -- ---
 --- ---
 -- +-----------+ --
 -- | | --
 /------------\ -- | Untrusted |<- /------------\
 / \ -- | Storage | / \
 | Firmware | | | | Firmware |
 \ / +-----------+ \ /
 \------------/ \------------/

 Figure 3: Independent retrieval of the firmware image.

 This architecture does not mandate a specific delivery mode but a
 solution must support both types.

6. Manifest

 In order for a device to apply an update, it has to make several
 decisions about the update:

 - Does it trust the author of the update?

 - Has the firmware been corrupted?

 - Does the firmware update apply to this device?

 - Is the update older than the active firmware?

 - When should the device apply the update?

 - How should the device apply the update?

 - What kind of firmware binary is it?

 - Where should the update be obtained?

 - Where should the firmware be stored?

Moran, et al. Expires September 6, 2018 [Page 11]

Internet-Draft IoT Firmware Update Architecture March 2018

 The manifest encodes the information that devices need in order to
 make these decisions. It is a data structure that contains the
 following information:

 - information about the device(s) the firmware image is intented to
 be applied to,

 - information about when the firmware update has to be applied,

 - information about when the manifest was created,

 - dependencies to other manifests,

 - pointers to the firmware image and information about the format,

 - information about where to store the firmware image,

 - cryptographic information, such as digital signatures.

 The manifest format is described in a companion document.

7. Example Flow

 The following example message flow illustrates the interaction for
 distributing a firmware image to a device starting with an author
 uploading the new firmware to untrusted storage and creating a
 manifest.

 +--------+ +-----------------+ +------+
 | Author | |Untrusted Storage| |Device|
 +--------+ +-----------------+ +------+
 | | | |
 | Create Firmware | |
 |--------------- | |
 | | | |
 |<-------------- | |
 | | |
 | Upload Firmware | |
 |------------------>| |
 | | |
 | Create Manifest | |
 |---------------- | |
 | | | |
 |<--------------- | |
 | | |
 | Sign Manifest | |
 |-------------- | |
 | | | |

Moran, et al. Expires September 6, 2018 [Page 12]

Internet-Draft IoT Firmware Update Architecture March 2018

 |<------------- | |
 | | |
 | Upload Manifest | |
 |------------------>| |
 | | |
 | | Query Manifest |
 | |<--------------------|
 | | |
 | | Send Manifest |
 | |-------------------->|
 | | |
 | | | Validate Manifest
 | | |------------------
 | | | |
 | | |<-----------------
 | | |
 | | Request Firmware |
 | |<--------------------|
 | | |
 | | Send Firmware |
 | |-------------------->|
 | | |
 | | | Verify Firmware
 | | |---------------
 | | | |
 | | |<--------------
 | | |
 | | | Store Firmware
 | | |--------------
 | | | |
 | | |<-------------
 | | |
 | | | Reboot
 | | |-------
 | | | |
 | | |<------
 | | |
 | | | Bootloader validates
 | | | Firmware
 | | |----------------------
 | | | |
 | | |<---------------------
 | | |
 | | | Bootloader activates
 | | | Firmware
 | | |----------------------
 | | | |
 | | |<---------------------

Moran, et al. Expires September 6, 2018 [Page 13]

Internet-Draft IoT Firmware Update Architecture March 2018

 | | |
 | | | Bootloader transfers
 | | | control to new Firmware
 | | |----------------------
 | | | |
 | | |<---------------------
 | | |

 Figure 4: Example Flow for a Firmware Upate.

8. IANA Considerations

 This document does not require any actions by IANA.

9. Security Considerations

 Firmware updates fix security vulnerabilities and are considered to
 be an important building block in securing IoT devices. Due to the
 importance of firmware updates for IoT devices the Internet
 Architecture Board (IAB) organized a ’Workshop on Internet of Things
 (IoT) Software Update (IOTSU)’, which took place at Trinity College
 Dublin, Ireland on the 13th and 14th of June, 2016 to take a look at
 the big picture. A report about this workshop can be found at
 [RFC8240]. This document (and associated specifications) offer a
 standardized firmware manifest format providing end-to-end security
 from the author to the device.

 There are, however, many other considerations raised during the
 workshop. Many of them are outside the scope of standardization
 organizations since they fall into the realm of product engineering,
 regulatory frameworks, and business models. The following
 considerations are outside the scope of this document, namely

 - installing firmware updates in a robust fashion so that the update
 does not break the device functionality of the environment this
 device operates in.

 - installing firmware updates in a timely fashion considering the
 complexity of the decision making process of updating devices,
 potential re-certification requirements, and the need for user’s
 consent to install updates.

 - the distribution of the actual firmware update, potentially in an
 efficient manner to a large number of devices without human
 involvement.

 - energy efficiency and battery lifetime considerations.

Moran, et al. Expires September 6, 2018 [Page 14]

Internet-Draft IoT Firmware Update Architecture March 2018

 - key management required for verifying the digitial signature
 protecting the manifest.

 - incentives for manufacturers to offer a firmware update mechanism
 as part of their IoT products.

10. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/suit

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/suit/current/index.html

11. Acknowledgements

 We would like to thank the following persons for their feedback:

 - Geraint Luff

 - Amyas Phillips

 - Dan Ros

 - Thomas Eichinger

 - Michael Richardson

 - Emmanuel Baccelli

 - Ned Smith

 - David Brown

 - Jim Schaad

 - Carsten Bormann

 - Cullen Jennings

 - Olaf Bergmann

 - Suhas Nandakumar

 - Phillip Hallam-Baker

Moran, et al. Expires September 6, 2018 [Page 15]

Internet-Draft IoT Firmware Update Architecture March 2018

 - Marti Bolivar

 - Andrzej Puzdrowski

 - Markus Gueller

 We would also like to thank the WG chairs, Russ Housley, David
 Waltermire, Dave Thaler and the responsible security area director,
 Kathleen Moriarty, for their support and their reviews.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

12.2. Informative References

 [RFC8240] Tschofenig, H. and S. Farrell, "Report from the Internet
 of Things Software Update (IoTSU) Workshop 2016",
 RFC 8240, DOI 10.17487/RFC8240, September 2017,
 <https://www.rfc-editor.org/info/rfc8240>.

 [STRIDE] Microsoft, "The STRIDE Threat Model", January 2018.

12.3. URIs

 [1] mailto:suit@ietf.org

Moran, et al. Expires September 6, 2018 [Page 16]

Internet-Draft IoT Firmware Update Architecture March 2018

Appendix A. Threat Model, User Stories, Security Requirements, and
 Usability Requirements

A.1. Threat Model

 This appendix aims to provide information about the threats that were
 considered, the security requirements that are derived from those
 threats and the fields that permit implementation of the security
 requirements. This model uses the S.T.R.I.D.E. [STRIDE] approach.
 Each threat is classified according to:

 - Spoofing Identity

 - Tampering with data

 - Repudiation

 - Information disclosure

 - Denial of service

 - Elevation of privilege

 This threat model only covers elements related to the transport of
 firmware updates. It explicitly does not cover threats outside of
 the transport of firmware updates. For example, threats to an IoT
 device due to physical access are out of scope.

A.2. Threat Descriptions

A.2.1. Threat MFT1: Old Firmware

 Classification: Escalation of Privilege

 An attacker sends an old, but valid manifest with an old, but valid
 firmware image to a device. If there is a known vulnerability in the
 provided firmware image, this may allow an attacker to exploit the
 vulnerability and gain control of the device.

 Threat Escalation: If the attacker is able to exploit the known
 vulnerability, then this threat can be escalated to ALL TYPES.

 Mitigated by: MFSR1

Moran, et al. Expires September 6, 2018 [Page 17]

Internet-Draft IoT Firmware Update Architecture March 2018

A.2.2. Threat MFT2: Mismatched Firmware

 Classification: Denial of Service

 An attacker sends a valid firmware image, for the wrong type of
 device, signed by an actor with firmware installation permission on
 both types of device. The firmware is verified by the device
 positively because it is signed by an actor with the appropriate
 permission. This could have wide-ranging consequences. For devices
 that are similar, it could cause minor breakage, or expose security
 vulnerabilities. For devices that are very different, it is likely
 to render devices inoperable.

 Mitigated by: MFSR2

A.2.3. Threat MFT3: Offline device + Old Firmware

 Classification: Escalation of Privilege

 An attacker targets a device that has been offline for a long time
 and runs an old firmware version. The attacker sends an old, but
 valid manifest to a device with an old, but valid firmware image.
 The attacker-provided firmware is newer than the installed one but
 older than the most recently available firmware. If there is a known
 vulnerability in the provided firmware image then this may allow an
 attacker to gain control of a device. Because the device has been
 offline for a long time, it is unaware of any new updates. As such
 it will treat the old manifest as the most current.

 Threat Escalation: If the attacker is able to exploit the known
 vulnerability, then this threat can be escalated to ALL TYPES.

 Mitigated by: MFSR3

A.2.4. Threat MFT4: The target device misinterprets the type of payload

 Classification: Denial of Service

 If a device misinterprets the type of the firmware image, it may
 cause a device to install a firmware image incorrectly. An
 incorrectly installed firmware image would likely cause the device to
 stop functioning.

 Threat Escalation: An attacker that can cause a device to
 misinterpret the received firmware image may gain escalation of
 privilege and potentially expand this to all types of threat.

 Mitigated by: MFSR4

Moran, et al. Expires September 6, 2018 [Page 18]

Internet-Draft IoT Firmware Update Architecture March 2018

A.2.5. Threat MFT5: The target device installs the payload to the wrong
 location

 Classification: Denial of Service

 If a device installs a firmware image to the wrong location on the
 device, then it is likely to break. For example, a firmware image
 installed as an application could cause a device and/or an
 application to stop functioning.

 Threat Escalation: An attacker that can cause a device to
 misinterpret the received code may gain escalation of privilege and
 potentially expand this to all types of threat.

 Mitigated by: MFSR4

A.2.6. Threat MFT6: Redirection

 Classification: Denial of Service

 If a device does not know where to obtain the payload for an update,
 it may be redirected to an attacker’s server. This would allow an
 attacker to provide broken payloads to devices.

 Mitigated by: MFSR4

A.2.7. Threat MFT7: Payload Verification on Boot

 Classification: All Types

 An attacker replaces a newly downloaded firmware after a device
 finishes verifying a manifest. This could cause the device to
 execute the attacker’s code. This attack likely requires physical
 access to the device. However, it is possible that this attack is
 carried out in combination with another threat that allows remote
 execution.

 Mitigated by: MFSR4

A.2.8. Threat MFT8: Unauthenticated Updates

 Classification: All Types

 If an attacker can install their firmware on a device, by
 manipulating either payload or metadata, then they have complete
 control of the device.

 Mitigated by: MFSR5

Moran, et al. Expires September 6, 2018 [Page 19]

Internet-Draft IoT Firmware Update Architecture March 2018

A.2.9. Threat MFT9: Unexpected Precursor images

 Classification: Denial of Service

 An attacker sends a valid, current manifest to a device that has an
 unexpected precursor image. If a payload format requires a precursor
 image (for example, delta updates) and that precursor image is not
 available on the target device, it could cause the update to break.

 Threat Escalation: An attacker that can cause a device to install a
 payload against the wrong precursor image could gain escalation of
 privilege and potentially expand this to all types of threat.

 Mitigated by: MFSR4

A.2.10. Threat MFT10: Unqualified Firmware

 Classification: Denial of Service, Escalation of Privilege

 This threat can appear in several ways, however it is ultimately
 about interoperability of devices with other systems. The owner or
 operator of a network needs to approve firmware for their network in
 order to ensure interoperability with other devices on the network,
 or the network itself. If the firmware is not qualified, it may not
 work. Therefore, if a device installs firmware without the approval
 of the network owner or operator, this is a threat to devices and the
 network.

 Example 1: We assume that OEMs expect the rights to create firmware,
 but that Operators expect the rights to qualify firmware as fit-for-
 purpose on their networks.

 An attacker obtains a manifest for a device on Network A. They send
 that manifest to a device on Network B. Because Network A and
 Network B are different, and the firmware has not been qualified for
 Network B, the target device is disabled by this unqualified, but
 signed firmware.

 This is a denial of service because it can render devices inoperable.
 This is an escalation of privilege because it allows the attacker to
 make installation decisions that should be made by the Operator.

 Example 2: Multiple devices that interoperate are used on the same
 network. Some devices are manufactured by OEM A and other devices by
 OEM B. These devices communicate with each other. A new firmware is
 released by OEM A that breaks compatibility with OEM B devices. An
 attacker sends the new firmware to the OEM A devices without approval
 of the network operator. This breaks the behaviour of the larger

Moran, et al. Expires September 6, 2018 [Page 20]

Internet-Draft IoT Firmware Update Architecture March 2018

 system causing denial of service and possibly other threats. Where
 the network is a distributed SCADA system, this could cause
 misbehaviour of the process that is under control.

 Threat Escalation: If the firmware expects configuration that is
 present in Network A devices, but not Network B devices, then the
 device may experience degraded security, leading to threats of All
 Types.

 Mitigated by: MFSR6

A.2.11. Threat MFT11: Reverse Engineering Of Firmware Image for
 Vulnerability Analysis

 Classification: All Types

 An attacker wants to mount an attack on an IoT device. To prepare
 the attack he or she retrieves the provided firmware image and
 performs reverse engineering of the firmware image to analyze it for
 specific vulnerabilities.

 Mitigated by: MFSR7

A.3. Security Requirements

 The security requirements here are a set of policies that mitigate
 the threats described in the previous section.

A.3.1. Security Requirement MFSR1: Monotonic Sequence Numbers

 Only an actor with firmware installation authority is permitted to
 decide when device firmware can be installed. To enforce this rule,
 Manifests MUST contain monotonically increasting sequence numbers.
 Manifests MAY use UTC epoch timestamps to coordinate monotonically
 increasting sequence numbers across many actors in many locations.
 Devices MUST reject manifests with sequence numbers smaller than any
 onboard sequence number.

 N.B. This is not a firmware version. It is a manifest sequence
 number. A firmware version may be rolled back by creating a new
 manifest for the old firmware version with a later sequence number.

 Mitigates: Threat MFT1 Implemented by: Manifest Field: Timestamp

Moran, et al. Expires September 6, 2018 [Page 21]

Internet-Draft IoT Firmware Update Architecture March 2018

A.3.2. Security Requirement MFSR2: Vendor, Device-type Identifiers

 Devices MUST only apply firmware that is intended for them. Devices
 MUST know with fine granularity that a given update applies to their
 vendor, model, hardware revision, software revision. Human-readable
 identifiers are often error-prone in this regard, so unique
 identifiers SHOULD be used.

 Mitigates: Threat MFT2 Implemented by: Manifest Fields: Vendor ID
 Condition, Class ID Condition

A.3.3. Security Requirement MFSR3: Best-Before Timestamps

 Firmware MAY expire after a given time. Devices MAY provide a secure
 clock (local or remote). If a secure clock is provided and the
 Firmware manifest has a best-before timestamp, the device MUST reject
 the manifest if current time is larger than the best-before time.

 Mitigates: Threat MFT3 Implemented by: Manifest Field: Best-Before
 timestamp condition

A.3.4. Security Requirement MFSR4: Signed Payload Descriptor

 All descriptive information about the payload MUST be signed. This
 MUST include:

 - The type of payload (which may be independent of format)

 - The location to store the payload

 - The payload digest, in each state of installation (encrypted,
 plaintext, installed, etc.)

 - The payload size

 - The payload format

 - Where to obtain the payload

 - All instructions or parameters for applying the payload

 - Any rules that identify whether or not the payload can be used on
 this device

 Mitigates: Threats MFT4, MFT5, MFT6, MFT7, MFT9 Implemented by:
 Manifest Fields: Vendor ID Condition, Class ID Condition, Precursor
 Image Digest Condition, Payload Format, Storage Location, URIs,
 Digests, Size

Moran, et al. Expires September 6, 2018 [Page 22]

Internet-Draft IoT Firmware Update Architecture March 2018

A.3.5. Security Requirement MFSR5: Cryptographic Authenticity

 The authenticity of an update must be demonstrable. Typically, this
 means that updates must be digitally signed. Because the manifest
 contains information about how to install the update, the manifest’s
 authenticity must also be demonstrable. To reduce the overhead
 required for validation, the manifest contains the digest of the
 firmware image, rather than a second digitial signature. The
 authenticity of the manifest can be verified with a digital
 signature, the authenticity of the firmware image is tied to the
 manifest by the use of a fingerprint of the firmware image.

 Mitigates: Threat MFT8 Implemented by: Signature

A.3.6. Security Requirement MFSR6: Rights Require Authenticity

 If a device grants different rights to different actors, exercising
 those rights MUST be accompanied by proof of those rights, in the
 form of proof of authenticity. Authenticity mechanisms such as those
 required in MFSR5 are acceptable but need to follow the end-to-end
 security model.

 For example, if a device has a policy that requires that firmware
 have both an Authorship right and a Qualification right and if that
 device grants Authorship and Qualification rights to different
 parties, such as an OEM and an Operator, respectively, then the
 firmware cannot be installed without proof of rights from both the
 OEM and the Operator.

 Mitigates: MFT10 Implemented by: Signature

A.3.7. Security Requirement MFSR7: Firmware encryption

 Firmware images must be encrypted to prevent third parties, including
 attackers, from reading the content of the firmware image and to
 reverse engineer the code.

 Mitigates: MFT11 Implemented by: Manifest Field: Content Key
 Distribution Method

A.4. User Stories

 User stories provide expected use cases. These are used to feed into
 usability requirements.

Moran, et al. Expires September 6, 2018 [Page 23]

Internet-Draft IoT Firmware Update Architecture March 2018

A.4.1. Use Case MFUC1: Installation Instructions

 As an OEM for IoT devices, I want to provide my devices with
 additional installation instructions so that I can keep process
 details out of my payload data.

 Some installation instructions might be:

 - Specify a package handler

 - Use a table of hashes to ensure that each block of the payload is
 validate before writing.

 - Run post-processing script after the update is installed

 - Do not report progress

 - Pre-cache the update, but do not install

 - Install the pre-cached update matching this manifest

 - Install this update immediately, overriding any long-running
 tasks.

 Satisfied by: MFUR1

A.4.2. Use Case MFUC2: Reuse Local Infrastructure

 As an Operator of IoT devices, I would like to tell my devices to
 look at my own infrastructure for payloads so that I can manage the
 traffic generated by firmware updates on my network and my peers’
 networks.

 Satisfied by: MFUR2, MFUR3

A.4.3. Use Case MFUC3: Modular Update

 As an OEM of IoT devices, I want to divide my firmware into
 frequently updated and infrequently updated components, so that I can
 reduce the size of updates and make different parties responsible for
 different components.

 Satisfied by: MFUR3

Moran, et al. Expires September 6, 2018 [Page 24]

Internet-Draft IoT Firmware Update Architecture March 2018

A.4.4. Use Case MFUC4: Multiple Authorisations

 As an Operator, I want to ensure the quality of a firmware update
 before installing it, so that I can ensure a high standard of
 reliability on my network. The OEM may restrict my ability to create
 firmware, so I cannot be the only authority on the device.

 Satisfied by: MFUR4

A.4.5. Use Case MFUC5: Multiple Payload Formats

 As a OEM or Operator of devices, I want to be able to send multiple
 payload formats to suit the needs of my update, so that I can
 optimise the bandwidth used by my devices.

 Satisfied by: MFUR5

A.4.6. Use Case MFUC6: IP Protection

 As an OEM or developer for IoT devices, I want to protect the IP
 contained in the firmware image, such as the utilized algorithms.
 The need for protecting IP may have also been imposed on my due to
 the use of some third party code libraries.

 Satisfied by: MFSR7

A.5. Usability Requirements

 The following usability requirements satisfy the user stories listed
 above.

A.5.1. Usability Requirement MFUR1

 It must be possible to write additional installation instructions
 into the manifest.

 Satisfies: Use-Case MFUC1 Implemented by: Manifest Field: Directives

A.5.2. Usability Requirement MFUR2

 It must be possible to redirect payload fetches. This applies where
 two manifests are used in conjunction. For example, an OEM manifest
 specifies a payload and signs it, and provides a URI for that
 payload. An Operator creates a second manifest, with a dependency on
 the first. They use this second manifest to override the URIs
 provided by the OEM, directing them into their own infrastructure
 instead.

Moran, et al. Expires September 6, 2018 [Page 25]

Internet-Draft IoT Firmware Update Architecture March 2018

 Satisfies: Use-Case MFUC2 Implemented by: Manifest Field: Aliases

A.5.3. Usability Requirement MFUR3

 It MUST be possible to link multiple manifests together so that a
 multi-component update can be described. This allows multiple
 parties with different permissions to collaborate in creating a
 single update for the IoT device, across multiple components.

 Satisfies: Use-Case MFUC2, MFUC3 Implemented by: Manifest Field:
 Dependencies

A.5.4. Usability Requirement MFUR4

 It MUST be possible to sign a manifest multiple times so that
 signatures from multiple parties with different permissions can be
 required in order to authorise installation of a manifest.

 Satisfies: Use-Case MFUC4 Implemented by: COSE Signature (or similar)

A.5.5. Usability Requirement MFUR5

 The manifest format MUST accommodate any payload format that an
 operator or OEM wishes to use. Some examples of payload format would
 be:

 - Binary

 - Elf

 - Differential

 - Compressed

 - Packed configuration

 Satisfies: Use-Case MFUC5 Implemented by: Manifest Field: Payload
 Format

A.6. Manifest Fields

 Each manifest field is anchored in a security requirement or a
 usability requirement. The manifest fields are described below and
 justified by their requirements.

Moran, et al. Expires September 6, 2018 [Page 26]

Internet-Draft IoT Firmware Update Architecture March 2018

A.6.1. Manifest Field: Timestamp

 A monotonically increasing sequence number. For convenience, a
 timestamp implements the requirement of a monotonically increasing
 sequence number. This allows global synchronisation of sequence
 numbers without any additional management.

 Implements: Security Requirement MFSR1.

A.6.2. Manifest Field: Vendor ID Condition

 Vendor IDs MUST be unique. This is to prevent similarly, or
 identically named entities from different geographic regions from
 colliding in their customer’s infrastructure. Recommended practice
 is to use type 5 UUIDs with the vendor’s domain name and the UUID DNS
 prefix. Other options include type 1 and type 4 UUIDs.

 Implements: Security Requirement MFSR2, MFSR4.

A.6.3. Manifest Field: Class ID Condition

 Class Identifiers MUST be unique within a Vendor ID. This is to
 prevent similarly, or identically named devices colliding in their
 customer’s infrastructure. Recommended practice is to use type 5
 UUIDs with the model, hardware revision, etc. and use the Vendor ID
 as the UUID prefix. Other options include type 1 and type 4 UUIDs.
 A device "Class" is defined as any device that can run the same
 firmware without modification. Classes MAY be implemented in a more
 granular way. Classes MUST NOT be implemented in a less granular
 way. Class ID can encompass model name, hardware revision, software
 revision. Devices MAY have multiple Class IDs.

 Implements: Security Requirement MFSR2, MFSR4.

A.6.4. Manifest Field: Precursor Image Digest Condition

 When a precursor image is required by the payload format, a precursor
 image digest condition MUST be present in the conditions list.

 Implements: Security Requirement MFSR4

A.6.5. Manifest Field: Best-Before timestamp condition

 This field tells a device the last application time. This is only
 usable in conjunction with a secure clock.

 Implements: Security Requirement MFSR3

Moran, et al. Expires September 6, 2018 [Page 27]

Internet-Draft IoT Firmware Update Architecture March 2018

A.6.6. Manifest Field: Payload Format

 The format of the payload must be indicated to devices is in an
 unambiguous way. This field provides a mechanism to describe the
 payload format, within the signed metadata.

 Implements: Security Requirement MFSR4, Usability Requirement MFUR5

A.6.7. Manifest Field: Storage Location

 This field tells the device which component is being updated. The
 device can use this to establish which permissions are necessary and
 the physical location to use.

 Implements: Security Requirement MFSR4

A.6.8. Manifest Field: URIs

 This field is a list of weighted URIs that the device uses to select
 where to obtain a payload.

 Implements: Security Requirement MFSR4

A.6.9. Manifest Field: Digests

 This field is a map of digests, each for a separate stage of
 installation. This allows the target device to ensure authenticity
 of the payload at every step of installation.

 Implements: Security Requirement MFSR4

A.6.10. Manifest Field: Size

 The size of the payload in bytes.

 Implements: Security Requirement MFSR4

A.6.11. Manifest Field: Signature

 This is not strictly a manifest field. Instead, the manifest is
 wrapped by a standardised authentication container, such as a COSE or
 CMS signature object. The authentication container MUST support
 multiple actors and multiple authentications.

 Implements: Security Requirement MFSR5, MFSR6, MFUR4

Moran, et al. Expires September 6, 2018 [Page 28]

Internet-Draft IoT Firmware Update Architecture March 2018

A.6.12. Manifest Field: Directives

 A list of instructions that the device should execute, in order, when
 installing the payload.

 Implements: Usability Requirement MFUR1

A.6.13. Manifest Field: Aliases

 A list of URI/Digest pairs. A device should build an alias table
 while paring a manifest tree and treat any aliases as top-ranked URIs
 for the corresponding digest.

 Implements: Usability Requirement MFUR2

A.6.14. Manifest Field: Dependencies

 A list of URI/Digest pairs that refer to other manifests by digest.
 The manifests that are linked in this way must be acquired and
 installed simultaneously in order to form a complete update.

 Implements: Usability Requirement MFUR3

A.6.15. Manifest Field: Content Key Distribution Method

 Encrypting firmware images requires symmetric content encryption
 keys. Since there are several methods to protect or distribute the
 symmetric content encryption keys, the manifest contains a field for
 the Content Key Distribution Method. One examples for such a Content
 Key Distribution Method is the usage of Key Tables, pointing to
 content encryption keys, which themselves are encrypted using the
 public keys of devices.

 Implements: Security Requirement MFSR7.

Authors’ Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Milosch Meriac
 Arm Limited

 EMail: Milosch.Meriac@arm.com

Moran, et al. Expires September 6, 2018 [Page 29]

Internet-Draft IoT Firmware Update Architecture March 2018

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@gmx.net

Moran, et al. Expires September 6, 2018 [Page 30]

